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Abstract. For a sequence (Aj) of mutually orthogonal projections in a Banach space,
we discuss all possible limits of the sums Sn =

∑n
j=1 Aj in a “strong” sense. Those limits

turn out to be some special idempotent operators (unbounded, in general). In the case of
X = L2(Ω,µ), an arbitrary unbounded closed and densely defined operator A in X may
be the µ-almost sure limit of Sn (i.e. Snf → Af µ-a.e. for all f ∈ D(A)).

Introduction. Monotone families of projections are important objects
in both classical and functional analysis. Let us mention here the huge clas-
sical theory of Fourier series with respect to general or special orthonor-
mal systems of functions, the theory of martingales, the spectral theory of
normal operators in a Hilbert space or, more generally, the theory of spec-
tral or well-bounded operators in a Banach space ([3], [5]). In the case of
non-selfadjoint projections, the assumption that the systems of idempotent
operators considered are uniformly bounded is important and, as a rule,
necessary if we want to reach results similar to the classical well-known
ones for selfadjoint projections in a Hilbert space. The most typical results
of this kind are the integral spectral representations for well-bounded or
power-bounded operators ([1], [11], [12]).

The main goal of this paper is to consider some “unbounded situations”.
We discuss the convergence problems concerning series of mutually orthogo-
nal projections in Banach spaces. We do not assume that the partial sums
of those series are bounded in the operator norm. This implies, in particu-
lar, that every unbounded closed and densely defined operator A in L2(µ)

1991 Mathematics Subject Classification: Primary 47A58, 46E30.
Key words and phrases: idempotent, mutually orthogonal projections, L2-space, con-

vergence almost everywhere.

Research supported by the KBN grant 2 P03A 048 08.

[137]



138 R. Jajte and A. Paszkiewicz

is the sum, in the sense of the almost sure convergence, of a certain series of
mutually orthogonal idempotent operators. It should be stressed here that
the possibility of almost sure approximation of A by the multiples of orthog-

onal projections in L2(µ) depends heavily on the properties of the spectral
measure of |A| (cf. [7], [8]).

0. Generalities. Let X be a Banach space. For any fixed pair (F,K)
of linear subspaces of X (not necessarily closed) satisfying the condition
F ∩K = (Θ), we can define an operator A by putting

(1) D(A) = F ⊕K and A(f + k) = f for f ∈ F, k ∈ K.

Obviously, Ax = A2x for x ∈ D(A). Such an A will be called an idempotent

operator .A may not be closed or densely defined. Such a general definition is
motivated by the situations which will be described later and which appear
in natural circumstances.

In the sequel, we shall often write A = (F,K) or A = (FA,KA).

A bounded idempotent defined on the whole space X is called a pro-

jection in X. Then, obviously, F and K are closed subspaces of X and
X = F ⊕ K. Let us remark that an idempotent A = (F,K) is closable iff
F ∩K = (Θ). Indeed, let A be the closure of A; then Ax = x, Ay = Θ for
any x ∈ F , y ∈ K. Thus x = Ax = Θ for any x ∈ F ∩ K. On the other
hand, if F ∩K = (Θ), then for any fn ∈ F , kn ∈ K with fn + kn → x and
A(fn + kn) → f , we have fn → f ∈ F and kn → k ∈ K. This means that
(F,K) represents the closure (F,K)− of (F,K).

Clearly, the idempotent (F,K) is closed iff the subspaces F and K are
closed.

1. Quasi-strong convergence of orthogonal series of projections

in a Banach space

1.1. Projections Ai, i∈I, are said to be mutually orthogonal iff AiAj = 0
for i 6= j, which is equivalent to Fi ⊆ Kj for i 6= j. For two projections A
and B, we write A ≤ B iff AB = BA = A. Evidently, if the projections
A1, A2, . . . are mutually orthogonal, then A1 + . . .+An ≤ A1 + . . .+An+1.
Conversely, if S1 ≤ S2 ≤ . . . are projections, then S2 − S1, S3 − S2, . . . are
mutually orthogonal projections. It is easy to check that if A1, A2, . . . are
mutually orthogonal projections and Aj = (Fj ,Kj), then

A1 + . . .+An = (F1 ⊕ . . .⊕ Fn,K1 ∩ . . . ∩Kn).

Obviously, A ≤ B iff FA ⊆ FB and KA ⊇ KB (for more details, see e.g. [4]).

1.2. Let Aj = (Fj ,Kj) (j = 1, 2, . . .) be mutually orthogonal projections
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in a Banach space X. Put Sn =
∑n

j=1Aj . Let

(2) D(S) = {x ∈ X : s- lim
n→∞

Snx exists}

and let

(3) Sx = s-limSnx for x ∈ D(S).

Let us put

K =

∞⋂

s=1

Ks and

F 0 = {f0 = f1 + f2 + . . . : the series is strongly convergent, fj ∈ Fj}.
Then we have S = (F 0,K), that is, D(S) = F 0 ⊕K and S(f0 + k) = f0 for
f0 + k ∈ F 0 ⊕K. Indeed, for x ∈ D(S), there exist a sequence (f1, f2, . . .),
fj ∈ Fj , and kn ∈ ⋂n

j=1Kj (n = 1, 2, . . .), uniquely determined by x and
such that

(4) x = f1 + f2 + . . .+ fn + kn for n = 1, 2, . . .

In particular, we have fj = Ajx. Thus x ∈ D(A) iff f1 + . . .+fn strongly
converges to Ax as n→ ∞ and kn → k ∈ K. Consequently, (4) leads us to
the equality

x = (f1 + f2 + . . .) + k

exactly for x ∈ D(A).

The idempotent S = (F 0,K) satisfying (2), (3) (not necessarily bounded
or densely defined) will be called a quasi-strong limit of Sn =

∑n

j=1Aj . We

shall also write q.s.-limn→∞ Sn = S or q.s.-
∑∞

j=1Aj = S = (F 0,K).

Obviously, in the case when the projections Aj act in a Hilbert space

and are selfadjoint, then S is an orthogonal projection (onto F 0 = F 0). In
general (i.e. when Aj are not necessarily selfadjoint), the operator S can be
unbounded. It may be closed and densely defined but also it may happen
that it is not closed or densely defined. It may also not be closable, even if
X is a Hilbert space.

In the sequel, we shall use the following notation. For vectors x, y, . . .
in a Banach space X, the symbol [x, y, . . .] denotes the closed subspace of
X spanned by x, y, . . . We shall also write [Fi; i ∈ I] = [

⋃
i∈I Fi] for a

family (Fi)i∈I of subspaces. If X is a Hilbert space, [x, y, . . .]∧ will stand
for the orthogonal projection onto [x, y, . . .], and, for e ∈ X, we will write
ê = [e]∧ = 〈·, e〉e/‖e‖2 .

1.3. Example (S is unbounded, densely defined and closed). Let H be
a separable Hilbert space and let (e1, e2, . . . , f1, f2, . . .) be an orthonormal
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basis in H. We put

gk = cos
1

k
ek + sin

1

k
fk for k = 1, 2, . . . ,

F̂n =

n∑

k=1

ĝk, K̂n =

∞∑

k=1

êk +

∞∑

k=n+1

f̂k

(F̂n is an orthogonal projection onto Fn). Then F̂n ր F̂ =
∑∞

k=1 ĝk and

K̂n ց K̂ =
∑∞

k=1 êk. For the sequence Sn = (Fn,Kn), S0 = 0, we have
Sn ≤ Sn+1, which means that Sn =

∑n

i=1Ai with mutually orthogonal
projections

Ai = Si − Si−1.

It can easily be checked that F ∩K = (Θ), F ⊕K = H and F ⊕K 6= H.
To show that F ⊕K 6= H, it is enough to take ϕ =

∑∞
i=1 i

−1fi ∈ H. Then
the assumption that ϕ = f + k, with f ∈ F , k ∈ K, leads directly to a
contradiction. Thus the idempotent (F,K) is unbounded, densely defined
and closed. It remains to prove that Sn → S = (F,K) quasi-strongly, i.e.

D(S) = {x ∈ H : Snx converges strongly} = F ⊕K, and

S(f + k) = f for f ∈ F, k ∈ K.

To do this, let us remark that, for x ∈ H, we have the unique representation

(5) x =
∞∑

i=1

αiei +
∞∑

i=1

βifi with
∞∑

i=1

(|αi|2 + |βi|2) ≤ ∞.

We shall first show that, for such an x (of the form (5)), x ∈ D(S) iff∑∞
i=1 i

2|βi|2 <∞.

Indeed, for x ∈ H and n = 1, 2, . . . ,

x =
n∑

i=1

c
(n)
i gi +

∞∑

i=1

γ
(n)
i ei +

∞∑

i=n+1

δ
(n)
i fi

and, for x of the form (5),

c
(n)
i =

βi

sin(1/i)
for i = 1, . . . , n.

Thus

Snx =

n∑

i=1

c
(n)
i gi =

n∑

i=1

βi

sin(1/i)
gi

is convergent iff

(6)

∞∑

i=1

|βi|2
sin2(1/i)

<∞.
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On the other hand, x ∈ F⊕K iff x =
∑∞

i=1(γiei+cigi) with
∑∞

i=1(|γi|2+
|ci|2) < ∞. By the uniqueness of coefficients for x of the form (5), we have
βi = ci sin(1/i). This means that x ∈ F ⊕K iff (6) holds.

R e m a r k. For any idempotent (F̂H, K̂H) in a Hilbert space H with F̂ ,

K̂ orthogonal projections, and for any finite-dimensional orthogonal projec-
tions P̂1 ≤ P̂2 ≤ . . . tending to identity and commuting with F̂ and K̂, the
projections

(P̂nF̂H, (P̂nK̂ + 1 − P̂n)H)

tend quasi-strongly to (F̂H, K̂H).

1.4. Example (S is defined only on an arbitrary closed infinite-dimen-
sional subspace F ). Let (fis, gs; i, s = 1, 2, . . .) be a basis in H with F =
[fi,s; i, s = 1, 2, . . .]. Put Ai =

∑∞
s=1〈·, fis + gs〉fis. Then, obviously, Ai are

mutually orthogonal projections. Moreover,
∑n

i=1Aifjs = fjs for n > j,
and

n∑

i=1

Aix =
( n∑

i=1

∞∑

s=1

f̂is

)
x→ x for x ∈ F

as well as
n∑

i=1

Aigs =

n∑

i=1

fis

and
∥∥∥

n∑

i=1

Aix
∥∥∥

2

= n‖x‖2 → ∞ for x ∈ [gs; s = 1, 2, , . . .].

1.5. Example (S is densely defined but not closable). Let (e1, e2, . . .)
be an orthonormal basis in a Hilbert space H. Let us fix (fn) by putting

f0 = e1,

f1 =

(
cos

1

21

)
f0 +

(
sin

1

21

)
e2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn =

(
cos

1

2n

)
fn−1 +

(
sin

1

2n

)
en+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and define Fn = [fn], Kn = [fi; i = 0, 1, . . . , i 6= n]. Then Fn ∩Kn = (Θ).
Indeed, suppose that fn ∈ Kn, where, obviously,

(7) Kn = [e1, . . . , en, fn+1, en+3, en+4, . . .] for n = 0, 1, . . .

Thus

fn = αfn+1 +
∑

s6=n+1
s6=n+2

cses.
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Consequently,

0 = 〈fn, en+2〉 = α〈fn+1, en+2〉 = α sin
1

2n+1
, so α = 0

and

fn =
∑

s6=n+1
s6=n+2

cses,

which is impossible.
Obviously, Fn ⊕Kn = H, so (Fn,Kn) is a projection.
We know that S = (F 0,K), where

(8) F 0 =
{ ∞∑

i=0

αifi : the series is strongly convergent
}

and K =
⋂∞

n=0Kn. Obviously, F 0 = H. Moreover, K = [k] for

k = e1 +
sin(1/2)

cos(1/2)
e2 +

sin(1/22)

cos(1/2) cos(1/22)
e3 + . . .

Indeed, by (7), we have k ∈ Kn iff

(ên+1 + ên+2)k = (ên+1 + ên+2)λnfn+1

= λn

[(
cos

1

2n+1
sin

1

2n

)
en+1 +

(
sin

1

2n+1

)
en+2

]
,

and k ∈ K0 iff

(ê1 + ê2)k = (ê1 + ê2)λ0f1 = λ0

[(
cos

1

2

)
e1 +

(
sin

1

2

)
e2

]
.

1.6. Example (S is not closed but closable with the closure 1). Let, as
before, (e1, e2, . . .) be an orthonormal basis in H and let

f0 = e1,

f1 =

(
cos

1√
1

)
f0 +

(
sin

1√
1

)
e2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn =

(
cos

1√
n

)
fn−1 +

(
sin

1√
n

)
en+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and Fn = [fn], Kn = [fi; i = 0, 1, . . . , i 6= n]. Then, as in Example 1.5, Kn

is of the form (7) and (Fn,Kn) denotes a projection for any n = 0, 1, . . .
It remains to prove that S = (F 0, (Θ)), according to (8). Indeed, k ∈ Kn

iff

(ên+1 + ên+2)k = λn

[(
cos

1√
n+ 1

sin
1√
n

)
en+1 +

(
sin

1√
n+ 1

)
en+2

]
,



Convergence of orthogonal series of projections 143

and k ∈ K0 iff

(ê1 + ê2)k = λ0

[(
cos

1√
1

)
e1 +

(
sin

1√
1

)
e2

]
,

and x ∈ ⋂∞
n=0Kn iff

x = λ

[
e1 +

sin(1/
√

1)

cos(1/
√

1)
e2 +

sin(1/
√

2)

cos(1/
√

1) cos(1/
√

2)
e3

+
sin(1/

√
3)

cos(1/
√

1) cos(1/
√

2) cos(1/
√

3)
e4 + . . .

]
.

This is equivalent to x = Θ.

We are going to characterize those densely defined idempotents which
are quasi-strong sums of series of mutually orthogonal projections. To clarify
the situation a little bit, let us first consider the case (F 0, (Θ)) with F 0 = X.

1.7. Proposition. The idempotent (F 0, (Θ)) with F 0 = X is a quasi-

strong sum of a series of mutually orthogonal projections if and only if there

exists a sequence (Fi)
∞
i=1 of closed subspaces such that , by putting F̃i =

[Fj ; j = 1, 2, . . . , j 6= i], we have

(9) Fj ∩ F̃j = (Θ), Fj ⊕ F̃j = X,

(10) F 0 = {f0 = f1 + f2 + . . . :

the series is strongly convergent and fj ∈ Fj},

(11)

∞⋂

j=1

F̃j = (Θ).

P r o o f. Let Ai = (Fi,Ki) be a sequence of mutually orthogonal projec-
tions and let (F 0, (Θ)) = q.s.-

∑∞
i=1Ai (with F 0 = X). Then the sequence

(Fi) satisfies (9)–(11). Indeed, by the mutual orthogonality of Ai, we have

F̃i ⊆ Ki, which implies (11), and Fi∩ F̃i = (Θ) by 1.2. Moreover, for a fixed
i and x ∈ X, we have

x = lim
s→∞

(f
(s)
i + f̃

(s)
i ) for some f

(s)
i ∈ Fi and f̃

(s)
i ∈ F̃i ⊆ Ki.

Thus x = lims→∞(f
(s)
i + f̃

(s)
i ) with f

(s)
i ∈ Fi and f̃

(s)
i ∈ Ki. But the

projection (Fi,Ki) is continuous, therefore f
(s)
i → fi = Aix ∈ Fi and,

consequently, f̃
(s)

i → f̃i ∈ F̃i; so x = fi + f̃i ∈ Fi ⊕ F̃i, which means that

X = Fi ⊕ F̃i.

Clearly, (10) holds by 1.2.

Let (Fj)∞j=1 be a sequence of subspaces satisfying (9)–(11). Then, putting

Aj = (Fj , F̃j), we obtain a sequence of mutually orthogonal projections such
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that

q.s.-
∞∑

j=1

Aj = (F 0, (Θ)).

In the case of the kernel K 6= (Θ), the situation is more complicated.
Let us start with the following

1.8. Definition. LetY be a linear subspace of X (not closed in general).
A sequence (F1, F2, . . .) of closed subspaces is said to be basic for Y relative

to a closed subspace F0 iff

(12) Y = {y = f1 + f2 + . . . :

the series is strongly convergent and fj ∈ Fj}
and

(13) Fi ∩ F̃ (F0)
i = (Θ), Fi ⊕ F̃

(F0)
i = X for i = 1, 2, . . . ,

where F̃
(F0)
i = [Fj ; j = 0, 1, . . . , j 6= i].

A sequence (F1, F2, . . .) basic for Y relative to the zero subspace (Θ) will
simply be called basic for Y .

R e m a r k. A sequence (Fj)∞j=1 is basic for F 0 iff conditions (9) and (10)
of Proposition 1.7 are satisfied.

If (xj) is a Schauder basis in X, then the one-dimensional subspaces [xj ]
form a basic sequence for X. Conversely, if one-dimensional spaces [xj ] form
a basic sequence for X, then (xj) is a Schauder basis in X.

Now, we are in a position to formulate the following characterization of
limit idempotents.

1.9. Theorem. Let (F 0,K) be a densely defined idempotent in X. Then

the following conditions are equivalent :

(i) (F 0,K)=q.s.-
∑∞

i=1Ai for some mutually orthogonal projections Ai;
(ii) there exists a sequence (Fj) of subspaces of X, basic for F 0 relative

to K, where K is closed and maximal in the sense that , if (Fj) is basic for

F 0 relative to some closed subspace K ′ ⊇ K, then K = K ′.

P r o o f. (i)⇒(ii). Let Ai = (Fi,Ki). Then, by 1.2, K =
⋂∞

s=1Ks, soK is
closed and F 0 = {f0 = f1 + f2 + . . . : the series is strongly convergent and
fi ∈ Fi}. Moreover, for F0 = K, condition (13) is satisfied (comp. the proof
of Proposition 1.7), so (Fj) is basic for F 0 relative to K.

Let K ′ ⊇ K and let

Fi ∩ F̃ (K′)
i = (Θ), Fi ⊕ F̃

(K′)
i = X.

Since Fi ∩ F̃ (K′)
i = (Θ) and Fi ⊕ F̃

(K′)
i = X and K ′ ⊇ K, we have

F̃
(K′)
i = F̃

(K)
i for i = 1, 2, . . .
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Consequently,

Ki ⊇ F̃
(K)
i = F̃

(K′)
i ⊇ K ′,

so K =
⋂

i Ki ⊇ K ′ and, finally, K = K ′.

(ii)⇒(i). Let us put Ai =(Fi, F̃
(K)
i ). Obviously, Ai are mutually orthog-

onal. We shall show that

q.s.-

∞∑

i=1

Ai = (F 0,K).

Indeed, by 1.2,

F 0 = {f0 = f1 + f2 + . . . : the series is strongly convergent, fi ∈ Fi}.
It remains to show that

∞⋂

i=1

F̃
(K)
i = K.

To this end, let us put

K ′ =

∞⋂

i=1

F̃
(K)
i .

Then we have K⊂K ′ and, as can easily be checked, the sequence (F1, F2, . . .)
is basic for F 0 relative to K ′. By (ii), this implies K = K ′, which ends the
proof.

1.10. Example. Let H = L2[0, 1] and let F0 denote the space of all
polynomials (considered on the interval [0, 1]). Evidently, there is no basic
sequence of subspaces for F0. Thus (F0, (Θ)) is the idempotent (closable
with the closure 1) which is not a quasi-strong sum of any series of mutually
orthogonal projections in H.

2. Almost sure convergence of orthogonal series of projections

in L2-spaces

2.1. In this section we are interested in the following kind of convergence
for operators acting in X = L2(Ω,A, µ). Let (An) be a sequence of bounded
linear operators in X and let A be linear (bounded or not). We say that
An converge to A almost surely (An → A a.s.) iff Anf → Af µ-almost
everywhere for all f ∈ D(A).

There are several important results concerning this type of convergence.
Let us mention here theorems on martingales, on iterates of conditional
expectations, individual ergodic theorems or the results on orthogonal series
[6], [9].

Let us start with the following theorem, which is an improvement of our
previous results [2], [8].
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2.2. Theorem. Let X be a closed subspace of a separable Hilbert space

L2(Ω,A, µ) (over an arbitrary measure space (Ω,A, µ)). Let (Bk) be a se-

quence of finite-dimensional operators in X with Bk → B strongly. Then

there exists an increasing sequence n(k) of indices such that Bn(k) → B a.s.

P r o o f. By the separability of L2(Ω,A, µ), there exists a sequence (An)
of finite subfields of A such that the conditional expectations Pn = E

An

converge strongly and almost surely in L2(Ω,A, µ) to the identity operator
1 = E

A. Obviously, Pn are finite-dimensional orthogonal projections in
L2(Ω,A, µ). Assume first that the operators Bk act in the whole space
L2(Ω,A, µ). Then Cn = Bn − PnB → 0 strongly and Cn are finite-dimen-
sional. One can define, by induction, sequences n(k) ր ∞ and t(k) ր ∞
satisfying t(1) = 1 and

‖Cn(k)Pt(k)‖ < 2−k, ‖Cn(k)P
⊥
t(k+1)‖ < 2−k for k = 1, 2, . . .

with P⊥
t = 1 − Pt. Then

Cn(k)f = Cn(k)Pt(k)f + Cn(k)(Pt(k+1) − Pt(k))f + Cn(k)P
⊥
t(k+1)f

= π1
k + π2

k + π3
k.

Clearly, ∑

k

‖π1
k‖2 <∞,

∑

k

‖π3
k‖2 <∞

and ∑

k

‖π2
k‖2 ≤ max

n
‖Cn‖2‖f‖2 <∞.

Thus Cn(k) → 0 a.s. Consequently, Bn(k) → B a.s.
Passing to the general case, assume that Bk act in a closed subspace X

of L2(Ω,A, µ). Let (ϕs) be an orthonormal basis in X. Then Qn =
∑n

s=1 ϕ̂s

form a sequence of finite-dimensional projections in L2(Ω,A, µ). Passing, if
necessary, to a subsequence, we can assume by the first part of the proof
that Qn → 1X strongly and almost surely. Now it is enough to repeat the
previous argument for Pk = Qk.

2.3. Corollary. Let (Ak) be a sequence of finite-dimensional mutually

orthogonal projections (not necessarily selfadjoint) in the separable Hilbert

space L2(Ω,A, µ). Denote by (S,D(S)) a quasi-strong sum of the series∑∞
k=1Ak. Assume that S is a closed operator (but not necessarily densely

defined). Then there exists n(k) ր ∞ such that
∑n(k)

s=1 As → S a.s.

P r o o f. The corollary is an easy consequence of the previous theorem.
Indeed, let Aj = (Fj ,Kj). Then, by 1.2, D(S) = F 0⊕K and S(f0+k) = f0,
where K =

⋂∞
j=1Kj and

F 0 = {f0 = f1 + f2 + . . . : the series is strongly convergent and fj ∈ Fj}.
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Since S is closed, F 0 is a closed subspace of L2(Ω,A, µ). Putting Sn =∑n

j=1Aj , we find that Snf
0 → f0 strongly for each f0 ∈ F 0, and Sn

are finite-dimensional. By Theorem 2.2, there exists n(k) ր ∞ such that
Sn(k)f

0 → f0 µ-almost everywhere for all f0 ∈ F 0. But this implies Sn → S
a.s.

R e m a r k. Theorem 2.2 and Corollary 2.3 can (and should) be treated
as generalizations of the classical Marcinkiewicz result [10].

2.4. In contrast to the case of quasi-strong convergence, roughly speak-
ing, each unbounded operator A in L2(µ) is an almost sure sum of a series
of mutually orthogonal projections. The construction of a suitable sequence
of projections is based on the following facts:

(1) the generalization of Marcinkiewicz’s theorem easily gives the exis-
tence of a sequence (Aj) of finite-dimensional operators such that

∑∞
j=1Aj =

A a.s.,
(2) mutually orthogonal projections (Bj) such that

∑∞
j=1Bj = A a.s.

can be obtained by a suitable perturbation of Ai’s with the use of vectors
with small supports and some vectors “asymptotically orthogonal” to the
domain of A.

Passing to precise formulations, we have the following result.

2.5. Theorem. Let H = L2(Ω,A, µ) be a separable Hilbert space such

that 0 < µ(Zn) → 0 for some (Zn) ⊂ A. Let A be an unbounded closed

and densely defined operator in H. Then there exists a sequence (Bj) of

mutually orthogonal finite-dimensional projections in X such that the sums

Sn =
∑n

j=1Bj converge almost surely to A.

The following lemma is a key point in the proof of the theorem just for-
mulated. In the sequel, for Z ∈ A, the symbol 1Z denotes the multiplication
operator in L2 by the indicator χZ of Z.

2.6. Lemma. Let H = L2(Ω,A, µ) for an arbitrary measure space satis-

fying 0 6= µ(Zn) → 0 for some (Zn) ⊂ A. Let D = {f ∈ H :
T∞
0
λ2‖e(dλ)f‖2

< ∞} for some spectral measure e(·) satisfying e(Λ,∞) 6= 0 for all Λ > 0.

Then, for any sequence (An) of finite-dimensional operators in H, there

exists a sequence (Bn) of mutually orthogonal finite-dimensional projec-

tions in H (not necessarily selfadjoint) satisfying , for some Y1 ⊇ Y2 ⊇ . . .
. . . , (Yn) ⊂ A, µ(Yn) → 0, the condition

∞∑

n=1

∥∥∥1Ω\Yn

( n∑

i=1

Ai −
n∑

i=1

Bi

)
f
∥∥∥

2

<∞ for all f ∈ D.

P r o o f. Clearly, there exist sets Z(1) ⊇ Z(2) ⊇ . . . in A such that
µ(Z(s)) → 0 and the projections 1Z(s) are infinite-dimensional. Then some
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selfadjoint projections

L(1) ≤ L(2) ≤ . . . , L(s) → 1,

can be fixed in such a way that the subspaces

(L(s + 1) − L(s))H ∩ 1Z(s)H and (L(s+ 1) − L(s))H ∩ e(s,∞)H

are infinite-dimensional. Indeed, one can take, for example, an orthonormal
system (ξs, ζt; s, t = 1, 2, . . .) with ξs ∈ 1Z(s)H, ζt ∈ e(t,∞)H and put
L(Λ) = 1 − [ξs, ζt; s, t are divisible by 2Λ]∧.

Now, fix an orthonormal system (ϕij
s , ψ

ij(Λ); i, j, s, Λ = 1, 2, . . .) satisfy-
ing

(14)
ϕij

s ∈ (L(s+ 1) − L(s))H ∩ 1Z(s)H,

ψij(Λ) ∈ (L(Λ+ 1) − L(Λ))H ∩ e(Λ,∞)H.

Define

(15) ‖f‖2
e =

∞\
0

λ2‖e(dλ)f‖2 for all f ∈ D.

Let us begin the inductive construction of B1, B2, . . . Put A0 = B0 = 0
and assume that the mutually orthogonal projections B0, . . . , Bn for some
n ≥ 0 have already been defined so that

(16)
∥∥∥1Ω\Yk

( k∑

i=0

Ai −
k∑

i=0

Bi

)
f
∥∥∥ ≤ 2−k(‖f‖e + 2‖f‖), µ(Yk) <

1

k

for f ∈ D, k = 1, . . . , n and for some sets Y1 ⊇ . . . ⊇ Yn in A. Assume
additionally that the projections Bi for i = 1, . . . , n can be written in the
form

(17) Bi =

k(i)∑

j=1

〈
·, uij

n +
∞∑

s=M(n)

δij
s ϕ

ij
s

〉(
vij

n +
∑

t=1,2,...

Λ
ij
t ≥M(n)

εij
t ψ

ij(Λij
t )

)
,

where δij
s > 0, εij

t > 0, M(n) is some positive integer, the sequences of
positive integers Λij

1 < Λij
2 < . . . satisfy the inequalities

(18) Λij
t >

t

εij
t

,

and

(19) uij
n , v

ij
n ∈ L(M(n))H, Z(M(n)) ⊆ Yn.
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We define an operator Bn+1 satisfying (16) for k = n + 1 and rewrite
the operators B1, . . . , Bn modifying (17) by taking n+ 1 instead of n. Let

n+1∑

i=0

Ai −
n∑

i=0

Bi =

k(n+1)∑

j=1

〈·, uj〉vj .

There exists M ≥ 1, M > M(n) in the case n > 0, such that, for

xn+1,j = L(M)uj , yn+1,j = L(M)vj ,

we have

(20)

∥∥∥
k(n+1)∑

j=0

〈·, uj〉vj −
k(n+1)∑

j=0

〈·, xn+1,j〉yn+1,j
∥∥∥ < 2−(n+1),

µ(Z(M)) <
1

n+ 1
.

Obviously, B1, . . . , Bn can be written in the form

Bi =

k(i)∑

j=1

〈
·, xij +

∞∑

s=M

δij
s ϕ

ij
s

〉(
yij +

∑

t=1,2,...

Λ
ij

t
≥M

εij
t ψ

ij(Λij
t )

)
,

where

xij = uij
n +

M−1∑

s=M(n)

δij
s ϕ

ij
s ∈ L(M)H,

yij = vij
n +

∑

t=1,2,...

M(n)≤Λ
ij
t

<M

εij
t ψ

ij(Λij
t ) ∈ L(M)H.

Let us fix

δn+1,j
s > 0, εn+1,j

t > 0,

Λn+1,j
1 < Λn+1,j

2 < . . . , Λn+1,j
t ≥ t

εn+1,j
t

, Λn+1,j
t ≥M,

such that, for

B̃n+1 =

k(n+1)∑

j=1

〈
·, xn+1,j +

∞∑

s=M

δn+1,j
s ϕn+1,j

s

〉
(21)

×
(
yn+1,j +

∞∑

t=1

εn+1,j
t ψn+1,j(Λn+1,j

t )
)
,
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we have the estimate

(22)
∥∥∥B̃n+1 −

k(n+1)∑

j=1

〈·, xn+1,j〉yn+1,j
∥∥∥ < 2−(n+1).

Now, one can find a perturbation Bn+1 of B̃n+1 such that B0, . . . , Bn+1

are the required mutually orthogonal projections. Namely, there exist ma-
trices

(aij′

j )
i=1,...,n+1, j′=1,...,k(i)
j=1,...,k(n+1) , (bij

′′

j )
i=1,...,n, j′′=1,...,k(i)
j=1,...,k(n+1)

such that, for an arbitrary orthonormal system

(eij , f ij ; i = 1, . . . , n, j = 1, . . . , k(i)) ∪ (fn+1,j; j = 1, . . . , k(n + 1))

orthogonal to

(xij , yij ; i = 1, . . . , n+ 1, j = 1, . . . , k(i)),

the operators

C1 =

k(1)∑

j=1

〈·, x1j + e1j〉(y1j + f1j),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cn =

k(n)∑

j=1

〈·, xnj + enj〉(ynj + fnj),

Cn+1 =

k(n+1)∑

j=1

〈
·, xn+1,j +

n+1∑

i=1

k(i)∑

j′=1

aij′

j f ij′

〉

×
(
yn+1,j + fn+1,j +

n∑

i=1

k(i)∑

j′′=1

bij
′′

j eij′′

)

satisfy the conditions

Cn+1 is a projection,(23)

Cn+1Ci = 0,(24)

CiCn+1 = 0,(25)

for i = 1, . . . , n. In fact, (23) uniquely determines the entries (an+1,j′

j ; j, j′ =
1, . . . , k(n + 1)), and, for n > 0, condition (24) (respectively (25)) uniquely

determines the entries (ai,j′

j ; j = 1, . . . , k(n + 1), j′ = 1, . . . , k(i)) (respec-

tively (bi,j
′′

j ; j = 1, . . . , k(n + 1), j′′ = 1, . . . , k(i))).
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Let us remark that, for q > 0, ε > 0, ψ ∈ H, ‖ψ‖ = 1, we see, by (15),
that

ψ ∈ e

(
q

ε
,∞

)
implies

∣∣∣
〈
f,
ψ

ε

〉∣∣∣ <
1

q
‖f‖e for any f ∈ D.

This makes it possible to find q (large enough) such that

(26)

∥∥∥∥
k(n+1)∑

j=1

〈
f,

n+1∑

i=1

k(i)∑

j′=1

aij′

j

εij′

j+q

ψij′

(Λij′

j+q)

〉

×
(
yn+1,j +

∞∑

t=1

εn+1,j
t ψn+1,j(Λn+1,j

t )
)∥∥∥∥ < 2−(n+1)‖f‖e

(by (14), (18)). Finally, we define Bn+1 by putting

Bn+1 =

k(n+1)∑

j=1

〈
·, xn+1,j +

∞∑

s=M

δn+1,j
s ϕn+1,j

s(27)

+

n+1∑

i=1

k(i)∑

j′=1

aij′

j

εij′

j+q

ψij′

(Λij′

j+q)

〉

×
(
yn+1,j +

∞∑

t=1

εn+1,j
t ψn+1,j(Λij

t ) +
n∑

i=1

k(i)∑

j′′=1

bij
′′

j

δij′′

j+M

ϕij′′

j+M

)

=

k(n+1)∑

j=1

〈·, x̃n+1,j〉ỹ n+1,j.

One can easily observe, for Yn+1 = Z(M), that (14) implies

1Ω\Yn+1
ϕij′′

j+M = 0 for j′′ = 1, . . . , k(i), j = 1, . . . , k(n + 1)

and, in the case n > 0, Yn ⊇ Yn+1. Thus, by (26) and by (20)–(22),

∥∥∥1Ω\Yn+1

( n+1∑

i=1

Ai −
n+1∑

i=1

Bi

)
f
∥∥∥

≤ 2−n‖f‖e +
∥∥∥1Ω\Yn+1

( n+1∑

i=1

Ai −
n∑

i=1

Bi − B̃n+1

)
f
∥∥∥

≤ 2−(n+1)(‖f‖e + 2‖f‖),

µ(Yn+1) <
1

n+ 1
.

To conclude the proof, it remains to show that the operators B1, . . . ,
Bn+1 can be rewritten in form (17) with n+ 1 instead of n. To this end, it
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is enough to fix M(n + 1) such that

M(n+ 1) ≥M,

M(n+ 1) ≥ max(M + k(i); i = 1, . . . , n+ 1),

M(n+ 1) ≥ max(Λij′

j+q; i = 1, . . . , n+ 1,

j = 1, . . . , k(n+ 1), j′′ = 1, . . . , k(i)),

and to put

uij
n+1 = L(M(n+ 1))

(
uij

n +

∞∑

s=M(n)

εij
s ϕ

ij
s

)
for i = 1, . . . , n,

un+1,j
n+1 = L(M(n+ 1))x̃n+1,j ,

vij
n+1 = L(M(n+ 1))

(
vij

n +
∑

t=1,2,...

Λ
ij

t
≥M(n)

εij
t ψ

ij(Λij
t )

)
for i = 1, . . . , n,

vn+1,j
n+1 = L(M(n+ 1))ỹ n+1,j

(compare (27)).

P r o o f o f T h e o r e m 2.5. For a closed and densely defined A, one
can easily construct a sequence (Cn) of finite-dimensional operators such
that ‖Cnf − Af‖ → 0 for all f ∈ D(A). Let e(·) be the spectral measure
of |A|. Putting B =

T∞
0

min(1, λ−1) e(dλ), we can apply Theorem 2.2 to a
sequence CnB, so there exists n(k) ր ∞ such that Cn(k)Bg → ABg for
all g ∈ H. Moreover, f ∈ D(A) iff f = Bg for some g. Thus we have
Sk = Cn(k)B → A a.s.

Putting Ak = Sk − Sk−1, S0 = 0, we have
∑∞

i=1Ai = A a.s. Now, it is
enough to apply Lemma 2.6.

R e m a r k. In the theorem just proved, the assumption that H = L2(Ω,
A, µ) with 0 < µ(Zn) → 0 for some (Zn) ⊂ A can be replaced by a weaker
condition. Namely, it is enough to assume that H is a closed subspace of
L2(Ω,A, µ) such that there exists (fn) ⊂ H with ‖fn‖ = 1, fn → 0 in
measure µ.
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