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Existence of the fundamental solution

of a second order evolution equation

by Jan Bochenek (Kraków)

W lodzimierz Mlak in memoriam

Abstract. We give sufficient conditions for the existence of the fundamental solution
of a second order evolution equation. The proof is based on stable approximations of an
operator A(t) by a sequence {An(t)} of bounded operators.

1. Introduction. Let X be a real Banach space. Suppose that for each
t ∈ [0, T ] a linear (in general unbounded) operator A(t) : X → X is defined.

We make the assumption

(Z1) D(A) := D(A(t)) is independent of t,D(A) is dense in X and for
each t ∈ [0, T ] the operator A(t) has a bounded inverse A−1(t).

Suppose that the operator A(t) is strongly continuous on D(A), i.e. for
every x ∈ D(A) the function t → A(t)x is continuous. It follows that the
operator A(t)A−1(0) is bounded and continuous in t on [0, T ], so in view of
the Banach–Steinhaus theorem it is uniformly bounded in t, i.e.

(1) ‖A(t)A−1(0)‖ ≤ c for t ∈ [0, T ]

(cf. [7, p. 9]).
If we assume that A−1(t) is uniformly bounded on [0, T ] then the

mapping

(2) [0, T ] ∋ t → A−1(t)

is strongly continuous. Analogously, if we assume that

(3) ‖A(0)A−1(s)‖ ≤ M for 0 ≤ s ≤ T,

then it will follow from the foregoing that the mapping
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(4) [0, T ] × [0, T ] ∋ (t, s) → A(t)A−1(s)

is strongly continuous (cf. [7, p. 177]).

We shall need the following.

Lemma 1 ([7, Lemma 1.5, p. 179]). Suppose that A(t) is strongly contin-

uously differentiable on its domain D(A) and has a bounded inverse A−1(t).
Then

1◦ The operator A(t)A−1(s) is continuous in the operator norm in the

variables s and t taken together , where 0 ≤ s, t ≤ T , and satisfies a Lipschitz

condition in each of them. In particular , (3) holds.

2◦ The operator A(t)A−1(s) is strongly differentiable relative to t and s,
and the derivatives

[A(t)A−1(s)]′t = A′(t)A−1(s)(5)

and

[A(t)A−1(s)]′s = − A(t)A−1(s)A′(s)A−1(s)(6)

are strongly continuous as functions of two variables s and t.

The aim of this paper is to investigate the abstract second order linear
initial value problem

(7)
d2u

dt2
= A(t)u + f(t), t ∈ [0, T ], u(0) = u0, u′(0) = u1,

where A(t), for t ∈ [0, T ], is the operator defined above, u and f are functions
from R into X, and u0, u1 ∈ X.

First we shall consider the first order problem.

2. First order initial value problem. In this section we consider the
homogeneous differential equation

(8)
dx

dt
= A(t)x, 0 ≤ t ≤ T,

where A(t) is the operator defined in the introduction and satisfying as-
sumption (Z1).

Definition 1. By a Cauchy problem for the equation (8) in the triangle
∆T := {(s, t) : 0 ≤ s ≤ t ≤ T} we mean the problem of finding for each
fixed s ∈ [0, T ) a solution x(t, s) of (8) on the segment [s, T ], satisfying a
given initial condition

(9) x(s, s) = x0 ∈ D(A).

Definition 2 ([7, p. 193]). The Cauchy problem (8), (9) is said to be
uniformly correct if:
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1◦ For each s ∈ [0, T ] and any x0 ∈ D(A) there exists a unique solution
x(t, s) of (8) on the segment [s, T ] satisfying condition (9).

2◦ The function ∆T ∋ (t, s) → x(t, s) and its derivative ∆T ∋ (t, s) →
x′

t(t, s) are continuous.
3◦ The solution depends continuously on the initial data in the sense

that if the x0n ∈ D(A) converge to zero then the corresponding solutions
xn(t, s) converge to zero uniformly relative to (t, s) ∈ ∆T .

It is known (see [7, p. 195]) that if the mapping [0, T ] ∋ t → A(t) is
strongly continuous on D(A) and the Cauchy problem (8), (9) is uniformly
correct, then it is possible to introduce a linear operator U(t, s) : X → X
for (t, s) ∈ ∆T which has the following properties:

1◦ The operator U(t, s) is bounded in X relative to (t, s) ∈ ∆T , i.e.,

(10) ‖U(t, s)‖ ≤ M (0 ≤ s ≤ t ≤ T ).

2◦ The mapping ∆T ∋ (t, s) → U(t, s) is strongly continuous.
3◦ The following identities hold:

(11) U(t, s) = U(t, r)U(r, s), U(t, t) = I (0 ≤ s ≤ r ≤ t ≤ T ).

4◦ On D(A) the mapping ∆T ∋ (t, s) → U(t, s) is strongly differentiable
relative to t and s, and

(12) ∂U(t, s)/∂t = A(t)U(t, s), ∂U(t, s)/∂s = −U(t, s)A(s).

5◦ If, additionally, the operator A(t) has a bounded inverse such that
condition (3) is satisfied, then the operator

(13) V (t, s) = A−1(t)U(t, s)A−1(s)

is bounded and strongly continuous in the triangle ∆T .

Definition 3. The operator U(t, s), with (t, s) ∈ ∆T , having the prop-
erties 1◦–4◦ is called the evolution operator (or fundamental solution) cor-
responding to equation (8).

Consider the family of equations

(14)
dx

dt
= An(t)x, n = 1, 2, . . . , t ∈ [0, T ],

with bounded strongly continuous operators An(t).

Definition 4 ([7, p. 199]). If there exists a sequence of bounded strongly
continuous operators An(t) for which

(15) lim
n→∞

{ sup
0≤t≤T

‖[A(t) − An(t)]A−1(t)x‖} = 0, x ∈ X,

A(t) satisfies (3), and the condition of uniform boundedness of the evolution
operators corresponding to equation (14) is satisfied, i.e.

(16) ‖Un(t, s)‖ ≤ M
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(M does not depend on n, t and s), then we will say that the operator A(t)
is stably approximated by the operators An(t).

Theorem 1. Suppose that the operator A(t) is strongly continuously

differentiable on D(A) for t ∈ [0, T ], has a bounded inverse and is stably

approximated by operators An(t) such that :

1◦ each An(t) is strongly continuously differentiable for t ∈ [0, T ] and

has a bounded inverse such that ‖A−1
n (t)‖ ≤ C (C does not depend on n

and t),
2◦ the sequence {A′

n(t)A−1
n (t)} converges strongly and uniformly on [0, T ]

to a bounded operator B(t).

If the evolution operators Un(t, s) converge, as n → ∞, strongly and

uniformly in t and s to an operator U(t, s), then the Cauchy problem for

equation (8 ) is uniformly correct and U(t, s) is the evolution operator cor-

responding to it.

P r o o f. Consider the equation

(17)
dy

dt
= An(t)y + A′

n(t)A−1

n (t)y.

It follows from the continuous differentiability of An(t) that the operator
A′

n(t)A−1

n (t) is strongly continuous (cf. [7, Lemma 1.5]). Denote by Vn(t, s)
the evolution operator corresponding to equation (17). According to Re-
mark 2.1 in [7, p. 192] the operators Vn(t, s) converge strongly and uniformly
relative to t and s to a limit which we shall denote by V (t, s). The operator
V (t, s) is strongly continuous for t and s in ∆T .

We make the substitution A−1
n (t)y(t, s) = x(t, s) in (17). Then

dx

dt
= A−1

n (t)
dy

dt
− A−1

n (t)A′
n(t)A−1

n (t)y

= A−1

n (t)An(t)y = An(t)A−1

n (t)y = An(t)x.

In view of the uniqueness of the solution of equation (14) we have

A−1

n (t)y(t, s) = x(t, s) = Un(t, s)x(s, s),

so that

y(t, s) = An(t)Un(t, s)x(s, s) = An(t)Un(t, s)A−1

n (s)y(s, s)

or, in another form,

(18) Vn(t, s) = An(t)Un(t, s)A−1

n (s).

From (15) and the assumption ‖A−1

n (t)‖ ≤ C we obtain

‖[A−1

n (t) − A−1(t)]x‖ ≤ ‖A−1

n (t)‖ · ‖[I − An(t)A−1(t)]x‖

≤ C‖[A(t) − An(t)]A−1(t)x‖ → 0
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for each x ∈ X uniformly in t ∈ [0, T ] as n → ∞. On the other hand, by
(18) we get

(19) A−1

n (t)Vn(t, s)x = Un(t, s)A−1

n (s)x for x ∈ X.

Since the Un(t, s) converge to U(t, s) and Vn(t, s) converge to V (t, s) and
A−1

n (t) converge strongly and uniformly to A−1(t), we have, from (19),

A−1(t)V (t, s)x = U(t, s)A−1(s)x for x ∈ X,

so that

(20) V (t, s) = A(t)U(t, s)A−1(s).

Let x0 ∈ D(A) and A(s)x0 = ys. We have

dUn(t, s)x0/dt = An(t)Un(t, s)x0 = An(t)A−1

n (t)Vn(t, s)An(s)A−1(s)ys

= Vn(t, s)An(s)A−1(s)ys.

In view of (15) the operators An(s)A−1(s) tend strongly, and uniformly in
s ∈ [0, T ], to the identity operator, so that the derivatives dUn(t, s)x0/dt
converge uniformly in t to the function V (t, s)ys = A(t)U(t, s)x0. Since the
differentiation operator is closed we have

dU(t, s)x0

dt
= A(t)U(t, s)x0,

i.e. the function x(t, s) := U(t, s)x0 is a solution of equation (8) on [s, T ].
Since Un(s, s) = I for each n ∈ N, we have

x(s, s) = U(s, s)x0 = lim
n→∞

Un(s, s)x0 = x0.

This means that the function x = x(t, s) is a solution of the Cauchy problem
(8), (9).

The uniqueness of solution of the problem (8), (9) follows from Lem-
ma 3.1 in [7, p. 199], because each solution of this problem is given by

(21) x(t, s) = lim
n→∞

Un(t, s)x0.

Properties 2◦ and 3◦ of Definition 2 follow from the boundedness and strong
continuity of the operators U(t, s) and V (t, s), (t, s) ∈ ∆T . Theorem 1 is
proved.

R e m a r k 1. Theorem 1 and its proof are a slight modification of The-
orem 3.6 of the monograph [7, pp. 200–201]. This modification consists in
omitting the assumption “the operators An(t) for each t ∈ [0, T ] commute
with A(t) on D(A)”.
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3. Fractional powers of operators. In this section we shall need the
following assumptions:

(Z2) For each t ∈ [0, T ], A(t) is the infinitesimal generator of a strongly
continuous cosine family {Ct(ξ) : ξ ∈ R} of bounded linear operators
from X into itself.

(Z3) For each t ∈ [0, T ] there exists a linear operator B(t) : X → X such
that B2(t) = A(t), the domain D(B(t)) := D(B) is independent of
t and 0 belongs to the resolvent set of B(t).

(Z4) For each x ∈ D(B) the mapping t → B(t)x is of class C1 in [0, T ].

R e m a r k 2. In (Z3) the essential assumption is the condition “the do-
main D(B(t)) = D(B) is independent of t”. The existence of the operator
B(t) for each t ∈ [0, T ] may be obtained by translation of A(t) without loss
of generality (cf. [10]).

Let A(t), t ∈ [0, T ], satisfy (Z1)–(Z3). Then the resolvent

(22) R(λ;A(t)) := (λ − A(t))−1

is defined for λ > 0 and satisfies the inequality

(23) ‖R(λ;A(t))‖ ≤
M

λ
, λ > 0, t ∈ [0, T ],

where M ≥ 1 is a constant independent of λ and t (cf. [2] or [4, p. 61]).

We define the operators

(24) An(t) := nA(t)R(n;A(t)), t ∈ [0, T ], n ∈ N.

(see [7, p. 204]). Obviously, each An(t) is bounded. It is proved in [7, pp.
204–205] that if A(t) is strongly continuous on D(A), then the operators
An(t) satisfy the condition (15).

By the identity (cf. [7, p. 205])

(25) R(λ;An(t)) =
1

λ + n
I +

n2

(n + λ)2
R

(
nλ

n + λ
;A(t)

)

and inequality (23) we get

(26) ‖R(λ;An(t))‖ ≤
M

λ
, λ > 0, t ∈ [0, T ],

where M is the constant from (23).

From (26) we deduce that it is possible to define positive fractional pow-
ers (−An(t))α (α > 0) of −An(t), for each n ∈ N and t ∈ [0, T ], by

(27) (−An(t))α :=
sin απ

π

∞\
0

λα−1R(λ;An(t))(−An(t)) dλ
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(cf. [4, p. 51], [7, p. 112] or [12, Chapter IX, 11]). In formula (27) the branch
of λα−1 is that which is real when λ ≥ 0. We let

(28) Bn(t) := [An(t)]1/2 := i[−An(t)]1/2.

It is proved in [4, p. 59] that if µ2 ∈ ̺(−An(t)) then µ ∈ ̺(Bn(t)) and

(29) R(µ;Bn(t)) =
1

π

∞\
0

λ1/2

λ + µ2
R(λ;An(t)) dλ.

From (29) by the estimate (26) we get

(30) ‖R(µ;Bn(t))‖ ≤
M

|µ|
, µ 6= 0, t ∈ [0, T ],

where M is the constant of (26).

Lemma 2. Assume (Z1) and (Z2). If the family of generators {A(t)},
t ∈ [0, T ], is stable with constants M ≥ 1 and ω = 0 (called the stability
constants), i.e., the following conditions are satisfied :

(31) ‖(λk − A(tk))−1(λk−1 − A(tk−1))
−1 . . . (λ1 − A(t1))

−1‖

≤ M
k∏

j=1

λ−1

j , λj > 0,

and

(32) ‖(λ1 − A(t1))
−1(λ2 − A(t2))

−1 . . . (λk − A(tk))−1‖

≤ M

k∏

j=1

(−λj)
−1, λj < 0,

then the family {Bn(t)}, t ∈ [0, T ], n ∈ N, is uniformly twice-stable, i.e.,
the following conditions are satisfied :

(33) ‖(µ − Bn(tk))−1(µ − Bn(tk−1))
−1 . . . (µ − Bn(t1))

−1‖ ≤ M |µ|−k

and

(34) ‖(µ − Bn(t1))
−1(µ − Bn(t2))

−1 . . . (µ − Bn(tk))−1‖ ≤ M |µ|−k,

for µ 6= 0 and any finite sequence 0 ≤ t1 ≤ . . . ≤ tk ≤ T , k, n ∈ N.

P r o o f. In [1, Lemma 1] we proved that if a family {A(t)}, t ∈ [0, T ], is
stable with stability constants M and ω, then the family {An(t)}, t ∈ [0, T ],
n ∈ N, where An(t) is defined by (24), is uniformly stable with stability
constants M and 2ω. Since by assumption ω = 0, the family {An(t)}, t∈
[0, T ], n ∈ N, is uniformly stable with constants M and ω = 0.
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As remarked above, if λ ∈ ̺(−An(t)) and λ > 0 then µ ∈ ̺(Bn(t)),
where µ2 = λ. From this, by (29), we have

(35) (µ − Bn(tj))
−1 =

1

π

∞\
0

λ
1/2

j

λj + µ2
(λj − An(tj))

−1 dλj ,

j = 1, . . . , k, λj > 0, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ T.

Hence

(µ − Bn(tk))−1(µ − Bn(tk−1))
−1 . . . (µ − Bn(t1))

−1

= π−k
∞\
0

. . .

∞\
0

k∏

j=1

λ
1/2

j

λj + µ2
(λk − An(tk))−1 . . .(λ1 − An(t1))

−1 dλk . . . dλ1.

From this, by the uniform stability of the family {An(t)}, t ∈ [0, T ], n ∈ N,
we obtain

‖(µ − Bn(tk))−1(µ − Bn(tk−1))
−1 . . . (µ − Bn(t1))

−1‖

≤ Mπ−k
∞\
0

. . .

∞\
0

k∏

j=1

λ
−1/2

j dλj

λj + µ2

= M

k∏

j=1

(
1

π

∞\
0

λ
−1/2

j dλj

λj + µ2

)
= M |µ|−k.

Inequality (33) is proved. The proof of (34) is similar and so we omit it.

Lemma 3. Let A(t), t ∈ [0, T ], be the operator defined in the introduction.

If A(t) satisfies inequalities (3) and (23), then for each n ∈ N and any

t ∈ [0, T ] the operator Bn(t) defined by (28) is invertible and

(36) ‖B−1

n (t)‖ ≤ C,

where C does not depend on n and t.

P r o o f. From (28) we get

B−1

n (t) = [An(t)]−1/2 =
1

i
[−An(t)]−1/2.

It follows that (see [7, p. 112])

(37) B−1

n (t) =
1

πi

∞\
0

λ−1/2R(λ;An(t)) dλ,

where An(t) is defined by (24).
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In order to prove the existence of B−1
n (t) it suffices to show the conver-

gence of the integral in (37). We have
∞\
0

λ−1/2R(λ;An(t)) dλ

=

1\
0

λ−1/2R(λ;An(t)) dλ +

∞\
1

λ−1/2R(λ;An(t)) dλ

=

1\
0

λ−1/2An(t)R(λ;An(t))A−1

n (t) dλ +

∞\
1

λ−1/2R(λ;An(t)) dλ

=

1\
0

λ−1/2[λR(λ;An(t)) − I]A−1

n (t) dλ +

∞\
1

λ−1/2R(λ;An(t)) dλ.

By (24) we obtain

A−1

n = A−1(t) −
1

n
I.

It follows from (3) that ‖A−1(t)‖ ≤ C1 for t ∈ [0, T ], and so ‖A−1

n (t)‖ ≤
C1 + 1. From this and from (23) we get

∥∥∥
1\
0

λ−1/2R(λ;An(t)) dλ
∥∥∥ ≤ (M + 1)(C1 + 1)

1\
0

λ−1/2 dλ = 2(M + 1)(C1 + 1)

and
∥∥∥

∞\
1

λ−1/2R(λ;An(t)) dλ
∥∥∥ ≤ M

∞\
1

λ−3/2 dλ = 2M,

which proves the existence of B−1
n (t), and also the estimate (36) with C :=

2

π [(M + 1)(C1 + 1) + M ].

Lemma 4. Under the assumptions of Lemma 3, if the mapping [0, T ] ∋
t → A(t)x is continuous for x ∈ D(A) then the sequence {Bn(t)} is strongly

and uniformly convergent to the operator B(t) on the domain D(A), where

B(t) is taken from assumption (Z3).

P r o o f. From the definition of B(t) and from inequality (23) it follows
that for x ∈ D(A) we have

(38) B(t)x = [A(t)]1/2x =
i

π

∞\
0

λ−1/2R(λ;A(t))(−A(t)x) dλ, t ∈ [0, T ].

Combining (27) with (28) we obtain

(39) Bn(t)x =
i

π

∞\
0

λ−1/2R(λ;An(t))(−An(t)x) dλ, x ∈ X, t ∈ [0, T ].
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Fix x ∈ D(A). In this case, similarly to Lemma 3, one may prove that
the improper integral in (39), as well in (38), is convergent absolutely and
uniformly relative to t and n.

By the definition of An(t) and by the strong continuity of the mapping
t → A(t), we have, for x ∈ D(A) and t ∈ [0, T ],

‖[An(t) − A(t)]A−1(t)x‖ = ‖[nR(n;A(t))A(t) − A(t)]A−1(t)x‖

= ‖R(n;A(t))A(t)x‖

≤
M

n
max

0≤t≤T
‖A(t)x‖ → 0 as n → ∞.

The norms of the operators nR(n;A(t)) are bounded by M , so that in
view of the Banach–Steinhaus theorem the operators An(t)A−1(t) tend to
the identity operator strongly and uniformly in t ∈ [0, T ]. Therefore, the
operators An(t) tend strongly and uniformly on D(A) to the operator A(t).
Letting n → ∞ in (39) we get

lim
n→∞

Bn(t)x =
i

π

∞\
0

λ−1/2R(λ;A(t))(−A(t))x dλ = B(t)x, x ∈ D(A).

Hence,

(40) Bn(t)x → B(t)x as n → ∞ for x ∈ D(A),

uniformly in t ∈ [0, T ].
Formula (38) defines the operator B(t) on D(A).
The entire operator B(t) may be obtained by closure from its restriction

to D(A) (cf. [7, p. 114]). As in the proof of Lemma 3, we may show that
the operator B(t) is invertible for each t ∈ [0, T ] and

(41) ‖B−1(t)‖ ≤ C,

where C is the same as in (36).
The domain D(B(t)) = D(B), by assumption (Z3), is dense in X and

contains D(A).

In the sequel we shall use a generalized convergence of sequences of
operators (see [5, Section IV. 2]). We only use a sufficient condition for the
generalized convergence (see [5, Theorem 2.29, p. 207]), and we make the
following definition.

Definition 5. Let Tn(t), T (t) ∈ C(X) for t ∈ [a, b]. Consider a second
Banach space Y and operators Un(t), U(t), Vn(t), V (t) ∈ B(Y,X) such that
Un(t), U(t) map Y one-to-one onto D(Tn(t)),D(T (t)), respectively, and
Tn(t)Un(t) = Vn(t), T (t)U(t) = V (t). If, for each x ∈ Y , Un(t)x → U(t)x
and Vn(t)x → V (t)x as n → ∞ for t ∈ [a, b], then we shall say that the
sequence {Tn(t)} converges strongly in [a, b] to the operator T (t) in the

generalized sense.
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Lemma 5. Let assumptions (Z1)–(Z4) hold. If the mapping [0, T ] ∋ t →
A(t)x, x ∈ D(A), is continuous and inequality (3) is satisfied , then the

operators Bn(t)B−1(s) are uniformly bounded in the square KT := [0, T ] ×
[0, T ] and

Bn(t)B−1(s)x → B(t)B−1(s)x for x ∈ X,

uniformly in KT .

P r o o f. By (3) and the strong continuity of the operator A(t) we get the
uniform boundedness of the operator A(t)A−1(s) in KT . From this, by (38),
we obtain the uniform boundedness of B(t)A−1(s) in KT . Analogously, from
(39) we get the uniform boundedness of the sequence {Bn(t)A−1(s)} in KT .
Next, from (40), it follows that

(42) Bn(t)A−1(s)x → B(t)A−1(s)x as n → ∞ for x ∈ X,

uniformly in the square KT .

From (42), by Definition 5, we deduce that the sequence {Bn(t)}, where
the Bn(t) are defined in the subspace D(A), converges strongly and uni-
formly to the operator B(t) on D(A) for t ∈ [0, T ] in the generalized sense.

Consider now the sequence {Bn(t)B−1(t)}, defined on D(B), where
D(B) is taken from assumption (Z3). We proceed to show that

(43) Bn(t)B−1(s) → B(t)B−1(s)

uniformly in KT , in the sense of Definition 5. Indeed, we take

Y := X, Un(s) := B−1(s), U(s) := B−1(s) for s ∈ [0, T ].

It follows that Vn(t, s) = Bn(t)A−1(s) and V (t, s) = B(t)A−1(s), (t, s) ∈
KT . From this, by (42), we obtain (43).

On the other hand, by assumption (Z3), the operator B(t)B−1(s) : X →
X is bounded uniformly in KT . Therefore, by Theorem 2.23 in [5, p. 206],
the operators Bn(t)B−1(s) are uniformly bounded in KT for sufficiently
large n and

‖Bn(t)B−1(s)x − B(t)B−1(s)x‖ → 0, for x ∈ D(B),

uniformly in KT . Using the Banach–Steinhaus theorem we obtain the asser-
tion of Lemma 5.

Lemma 6. If assumption (Z1) holds, the mapping [0, T ] ∋ t → A(t)x,
x ∈ D(A), is of class C1 and inequality (23) is satisfied , then the mapping

[0, T ] ∋ t → An(t)x, x ∈ D(A), is of class C1, where An(t) is given by (24),
and :



26 J. Bochenek

(44)

(45)

(46)

A′
n(t)A−1

n (t)x → A′(t)A−1(t)x as n → ∞, for x ∈ X,

A′
n(t)A−1(s)x → A′(t)A−1(s)x as n → ∞, for x ∈ X,

A′
n(t)x → A′(t)x as n → ∞, for x ∈ D(A),

uniformly in t ∈ [0, T ] or (t, s) ∈ KT , respectively.

P r o o f. Let us remark that the operator An(t) may be written in the
form

(47) An(t) = n2R(n;A(t)) − nI.

Formula (47) implies the existence of A′
n(t) in the strong sense, and

(48) A′
n(t) = n2R(n;A(t))A′(t)R(n;A(t)),

and so the mapping [0, T ] ∋ t → A′
n(t)x, x ∈ D(A), is continuous.

By (48) and (24) we get

A′
n(t)A−1

n (t)x = nR(n;A(t))[A′(t)A−1(t)]x.

Since the bounded operators nR(n;A(t)) tend to the identity operator
strongly and uniformly in t ∈ [0, T ], we have (44). Further,

A′
n(t)A−1(s)x = [A′

n(t)A−1

n (t)][An(t)A−1(t)][A(t)A−1(s)x].

Because the operators A′
n(t)A−1(t) and An(t)A−1(t) are bounded and tend

to A′(t)A−1(t) and the identity operator, respectively, by Lemmas 3.7 and
3.8 in [5, p. 151] we obtain (45); (46) follows immediately from (45).

Lemma 7. Assume (Z1)–(Z4). If the operator A(t) for t ∈ [0, T ] satisfies

inequality (23) and the mapping

(49) [0, T ] ∋ t → A(t)x, x ∈ D(A),

is of class C1, then for every n ∈ N and x ∈ D(A) the mapping

[0, T ] ∋ t → Bn(t)x

is of class C1 and

(50) B′
n(t)B−1(s)x → B′(t)B−1(s)x, x ∈ X,

uniformly in the square KT .

P r o o f. From (24) we see that if the mapping (49) is of class C1, then
so is

[0, T ] ∋ t → An(t)x, x ∈ D(A), n ∈ N.

From (39) we get

(51) Bn(t)x =
i

π

∞\
0

λ−1/2[I − λR(λ;An(t))] dλ.
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Fix x ∈ D(A). We let

I(t) :=
i

π

∞\
0

d

dt
{λ−1/2[I − λR(λ;An(t))]}x dλ

=
i

π

∞\
0

λ1/2R(λ;An(t))(−A′
n(t))R(λ;An(t))x dλ = I1(t) + I2(t),

where

I1(t) :=
i

π

1\
0

λ1/2R(λ;An(t))(−A′
n(t))R(λ;An(t))x dλ

and

I2(t) :=
i

π

∞\
1

λ1/2R(λ;An(t))(−A′
n(t))R(λ;An(t))x dλ.

From this we get

‖I1(t)‖ ≤
1

π

1\
0

λ−1/2‖λR(λ;An(t))‖(52)

× ‖A′
n(t)A−1

n (t)‖ · ‖An(t)R(λ;An(t))‖ · ‖x‖ dλ

≤
1

π
MC(M + 1)‖x‖

1\
0

λ−1/2 dλ =
2

π
M(M + 1)C‖x‖

and

‖I2(t)‖ ≤
1

π

∞\
1

λ−3/2‖λR(λ;An(t))‖2‖(53)

× ‖A′
n(t)A−1

n (t)‖ · ‖An(t)A−1(t)‖ · ‖A(t)x‖ dλ

≤
2

π
CM2C1 sup

0≤t≤T
‖A(t)x‖,

where

‖A′
n(t)A−1

n (t)‖ ≤ C, ‖An(t)A−1(t)‖ ≤ C1 and ‖λR(λ;An(t))‖ ≤ M.

From (52) and (53) it follows that for x ∈ D(A) and n ∈ N we have

(54) B′
n(t)x =

i

π

∞\
0

λ1/2R(λ;An(t))(−A′
n(t))R(λ;An(t))x dλ.

Using (52) and (53) once more, and in view of the well-known theorem on
the passing to the limit under the improper integral in (54), for x ∈ D(A)
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we obtain

(55) B′(t)x =
i

π

∞\
0

λ1/2R(λ;A(t))(−A′(t))R(λ;A(t))x dλ.

We conclude from (55) that

B′
n(t)x → B′(t)x as n → ∞ for x ∈ D(A).

The same reasoning as in the proof of Lemma 5 shows that (50) holds.
Lemma 7 is proved.

Corollary 1. Under the assumptions of Lemma 7, formula (50) implies

that there exists a constant L > 0 such that

(56) ‖B′
n(t)B−1(s)‖ ≤ L,

where L does not depend on (t, s) ∈ KT and on n ∈ N.

4. Second order initial value problem. Similarly to Section 2, we now
consider the homogeneous differential equation corresponding to problem
(7), i.e.

(57)
d2u

dt2
= A(t)u, t ∈ [0, T ],

where A(t) is the operator defined in the introduction and satisfying as-
sumption (Z1) and inequality (23). It follows that, for each t ∈ [0, T ], there
is a linear operator B(t) : X → X such that

(58) B2(t)x = A(t)x for x ∈ D(A), t ∈ [0, T ].

We assume that the operator B(t) satisfies (Z3) and (Z4).

Definition 6 (cf. [6]). A family S of bounded operators S(t, s) : X →
X, t, s ∈ [0, T ], is said to be the fundamental solution for equation (57) if:

(D1) For each x ∈ X the mapping KT ∋ (t, s) → S(t, s)x ∈ X is of class
C1 and
(a) for each t ∈ [0, T ], S(t, t) = 0,
(b) for all t, s ∈ [0, T ] and each x ∈ X,

∂

∂t
S(t, s)

∣∣∣∣
t=s

x = x,
∂

∂s
S(t, s)

∣∣∣∣
t=s

x = −x.

(D2) For all t, s ∈ [0, T ], if x ∈ D(B) then S(t, s)x ∈ D(A) and the
mapping [0, T ] ∋ t → S(t, s)x ∈ X is of class C2; moreover,

∂2

∂t2
S(t, s)x = A(t)S(t, s)x,(a)

∂2

∂s∂t
S(t, s)

∣∣∣∣
t=s

x = 0,(b)
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while for x ∈ D(A) the mapping KT ∋ (t, s) → S(t, s)x ∈ X is of
class C2 and

∂2

∂s2
S(t, s)x = S(t, s)A(s)x.(c)

(D3) For all t, s ∈ [0, T ], if x ∈ D(A) then ∂
∂sS(t, s)x ∈ D(A), the deriva-

tives ∂3

∂t2∂sS(t, s)x, ∂3

∂s2∂tS(t, s)x exist and

∂3

∂t2∂s
S(t, s)x = A(t)

∂

∂s
S(t, s)x,(a)

∂3

∂s2∂t
S(t, s)x =

∂

∂t
S(t, s)A(s)x,(b)

and the mapping KT ∋ (t, s) → A(t) ∂
∂sS(t, s)x is continuous.

(D4) For all t, s, r ∈ [0, T ],

S(t, s) = S(t, r)
∂

∂r
S(r, s) −

∂

∂r
S(t, r)S(r, s).

Under assumptions (Z1)–(Z4) we denote by Y the linear space D(B) with
the norm ‖ · ‖Y given by

(59) ‖y‖Y := ‖y‖ + ‖B(0)y‖, y ∈ D(B).

Let A(t), t ∈ [0, T ], be a linear operator such that A(t) : Y × X → Y × X,
where

(60) A(t) :=

[
0 I

A(t) 0

]
, t ∈ [0, T ],

with domain D(A)×D(B). We define the sequence {An(t)} of linear oper-
ators acting from Y × X into itself by

(61) An(t) :=

[
0 I

An(t) 0

]
for t ∈ [0, T ], n ∈ N,

where An(t) is defined by formula (24).

Theorem 2. Under assumptions (Z1) and (Z3), if the mapping [0, T ]
∋ t → A(t)x, for x ∈ D(A) is of class C1 and inequality (23) holds, then

the sequence {An(t)} satisfies the following conditions:

1◦ for each n ∈ N, the operator An(t), t ∈ [0, T ], is bounded ;
2◦ the mapping [0, T ] ∋ t → An(t) is strongly continuously differentiable;
3◦ the operator An(t) is invertible for each t ∈ [0, T ] and

(62) ‖A−1

n (t)‖ ≤ C (C does not depend on n ∈ N and t);

4◦ the sequence {A′
n(t)A−1

n (t)} is strongly and uniformly convergent to

a bounded operator G(t);
5◦ limn→∞

{
sup0≤t≤T

∥∥[An(t)−A(t)]A−1(t)
[

y
x

]∥∥}
= 0, (y, x) ∈ Y ×X.
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P r o o f. 1◦ Let us remark that for each t ∈ [0, T ], we have

(63) An(t) :=

[
B−1

n (t) 0
0 I

] [
0 Bn(t)

Bn(t) 0

] [
Bn(t) 0

0 I

]
,

where[
B−1

n (t) 0
0 I

]
: X × X → Y × X,

[
Bn(t) 0

0 I

]
: Y × X → X × X,

[
0 Bn(t)

Bn(t) 0

]
: X × X → X × X

(cf. [10]). It is easy to prove that each operator on the right-hand side of
(63) is bounded. Indeed,∥∥∥∥

[
B−1

n (t) 0
0 I

] [
y
x

] ∥∥∥∥ =

∥∥∥∥
[

B−1

n (t)y
x

] ∥∥∥∥
= ‖B−1

n (t)y‖ + ‖B(0)B−1

n (t)y‖ + ‖x‖

≤ α‖y‖ + β‖y‖ + ‖x‖

≤ γ(‖y‖ + ‖x‖) = γ

∥∥∥∥
[

y
x

] ∥∥∥∥,

where γ = max(α + β, 1) and the existence of the constants α and β follows
from Lemma 5. Thus

(64)

∥∥∥∥
[

B−1

n (t) 0
0 I

] ∥∥∥∥ ≤ γ.

Further,∥∥∥∥
[

Bn(t) 0
0 I

] [
y
x

] ∥∥∥∥ =

∥∥∥∥
[

Bn(t)y
x

] ∥∥∥∥ = ‖Bn(t)y‖ + ‖x‖

= ‖Bn(t)B−1(0)B(0)y‖ + ‖x‖

≤ ‖Bn(t)B−1(0)‖ · ‖B(0)y‖ + ‖x‖

≤ a‖B(0)y‖ + ‖x‖ ≤ a(‖y‖ + ‖B(0)y‖) + ‖x‖

≤ b(‖y‖ + ‖B(0)y‖ + ‖x‖) = b

∥∥∥∥
[

y
x

] ∥∥∥∥,

where b = max(a, 1) and the existence of the constant a follows from
Lemma 5. Thus

(65)

∥∥∥∥
[

Bn(t) 0
0 I

] ∥∥∥∥ ≤ b.

Since

(66)

∥∥∥∥
[

0 Bn(t)
Bn(t) 0

] ∥∥∥∥ = 2‖Bn(t)‖,

part 1◦ is proved.
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2◦ follows imediately from the assumptions.
3◦ From (63) we get

(67) A−1

n (t) =

[
B−1

n (t) 0
0 I

] [
0 B−1

n (t)
B−1

n (t) 0

] [
Bn(t) 0

0 I

]
.

Hence

‖A−1

n (t)‖ ≤

∥∥∥∥
[

B−1

n (t) 0
0 I

] ∥∥∥∥
∥∥∥∥

[
0 B−1

n (t)
B−1

n (t) 0

] ∥∥∥∥
∥∥∥∥

[
Bn(t) 0

0 I

] ∥∥∥∥
≤ γ2‖B−1

n (t)‖b ≤ 2αγb := C,

where C does not dependend on t ∈ [0, T ] and n ∈ N.
4◦ An easy computation shows that

A′
n(t)A−1

n (t) =

[
0 0
0 A′

n(t)A−1
n (t)

]
.

From this, by formula (44) of Lemma 6, we get 4◦, where the operator G(t)
is given by

(68) G(t) =

[
0 0
0 A′(t)A−1(t)

]
.

It is evident that G(t) is bounded and

(69) ‖G(t)‖ ≤ ‖A′(t)A−1(t)‖.

5◦ It is easy to check that∥∥∥∥[An(t) −A(t)]A−1(t)

[
y
x

] ∥∥∥∥ = ‖ [An(t) − A(t)]A−1(t)x‖, x ∈ X, y ∈ Y.

This and (15) imply 5◦, and the proof is complete.

For each t ∈ [0, T ] and n ∈ N let us denote by Bn(t) the linear operator
from X × X into itself given by

(70) Bn(t) =

[
0 Bn(t)

Bn(t) 0

]
.

Using Lemma 2.4 of [6] and our Lemma 2 we get

Lemma 8. Under the assumptions of Lemma 2, the family {Bn(t)}, t ∈
[0, T ], n ∈ N, is uniformly stable with stability constants M = 2M and

ω = 0, i.e., the following inequalities hold :

‖(λ − Bn(tk))−1(λ − Bn(tk−1))
−1 . . . (λ − Bn(t1))

−1‖ ≤ 2M |λ|−k(71)

and

‖(λ − Bn(t1))
−1(λ − Bn(t2))

−1 . . . (λ −Bn(tk))−1‖ ≤ 2M |λ|−k.(72)

Theorem 3. Let assumptions (Z1)–(Z4) hold. If the family of generators

{A(t)}, t ∈ [0, T ], is stable with stability constants M ≥ 1 and ω = 0 (cf.
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Lemma 2), and the mapping [0, T ] ∋ t → A(t)x, x ∈ D(A), is continuously

differentiable, then the family {An(t)}, t ∈ [0, T ], n ∈ N, is uniformly stable,
i.e., the following inequalities hold :

‖(λ −An(tk))−1(λ −An(tk−1))
−1 . . . (λ −An(t1))

−1‖ ≤ M̃λ−k(73)

for λ > 0, and

‖(λ −An(t1))
−1(λ −An(t2))

−1 . . . (λ −An(tk))−1‖ ≤ M̃(−λ)−k(74)

for λ < 0, for any finite sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ T , k, n ∈ N,
where M̃ ≥ 1 is a constant independent of n.

P r o o f. The proof of this theorem is an analogue of that of Lemma 2.5
in [6] as well as Theorem 2.4 in [8, p. 133]. If λ belongs to the resolvent set
of the operator An(t), then it is easily seen that

(75) (λ −An(t))−1 =

[
B−1

n (t) 0
0 I

]
(λ − Bn(t))−1

[
Bn(t) 0

0 I

]

for t ∈ [0, T ], n ∈ N. By (70), for λ > 0 we obtain

(76)

k∏

j=1

(λ−An(tj))
−1 =

k∏

j=1

[
B−1

n (tj) 0
0 I

]
(λ−Bn(tj))

−1

[
Bn(tj) 0

0 I

]
.

Letting, for j = 2, . . . , k,

Pn,j :=

([
Bn(tj) 0

0 I

]
−

[
Bn(tj−1) 0

0 I

])[
B−1

n (tj−1) 0
0 I

]
,

we get [
Bn(tj) 0

0 I

] [
B−1

n (tj−1) 0
0 I

]
= Ĩ + Pn,j ,

where

Ĩ :=

[
I 0
0 I

]

is the unit matrix in X × X.
From this we get

(77)

k∏

j=1

(λ −An(tj))
−1 =

[
B−1

n (tk) 0
0 I

]
{(λ − Bn(tk))−1(Ĩ + Pn,k) . . .

. . . (λ − Bn(t2))
−1(Ĩ + Pn,2)(λ − Bn(t1))

−1}

[
Bn(t1) 0

0 I

]
.

Using the uniform stability of the family {Bn(t)} (cf. Lemma 8), the norm
of the expression in curly brackets in formula (77) may be estimated by

(78) 2Mλ−k
k∏

j=2

(1 + 2M‖Pn,j‖).
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Let us remark that

(79) ‖Pn,j‖ ≤

∥∥∥∥
[

Bn(tj) 0
0 I

]
−

[
Bn(tj−1) 0

0 I

] ∥∥∥∥
∥∥∥∥

[
B−1

n (tj−1) 0
0 I

] ∥∥∥∥.

Now we estimate the norms of the matrices in (79). We have
∥∥∥∥
([

Bn(tj) 0
0 I

]
−

[
Bn(tj−1) 0

0 I

])[
y
x

] ∥∥∥∥
= ‖[Bn(tj) − Bn(tj−1)]y‖

≤ ‖[Bn(tj) − Bn(tj−1)]B
−1(0)‖ · ‖B(0)y‖

≤ sup
0≤t≤T

[‖B′
n(t)B−1(0)‖](tj − tj−1)‖y‖Y .

By Lemma 5, from the above it follows that
∥∥∥∥

[
Bn(tj) 0

0 I

]
−

[
Bn(tj−1) 0

0 I

] ∥∥∥∥ ≤ L(tj − tj−1),

where L := sup{‖B′
n(t)B−1(0)‖ : t ∈ [0, T ], n ∈ N} is a constant indepen-

dent of t ∈ [0, T ] and of n ∈ N (cf. (56)).
Since the second factor on the right-hand side of (79) is, by virtue of

(64), estimated by γ, which does not depend on n either, we get

(80) ‖Pn,j‖ ≤ K(tj − tj−1), j = 2, . . . , k,

where K = Lγ.
Using the estimates (64), (65), (80) and the elementary inequality 1+x ≤

ex for x ≥ 0, from (77) we obtain

∥∥∥
k∏

j=1

(λ −An(tj))
−1

∥∥∥ ≤ 2Mbγ|λ|−k
k∏

j=2

exp(2MK(tj − tj−1))

≤ 2Mbγ exp(2MKT )|λ|−k.

Therefore

(81)
∥∥∥

k∏

j=1

(λ −An(tj))
−1

∥∥∥ ≤ M̃ |λ|−k,

where M̃ = 2Mbγ exp(2MKT ) is a constant independent of n ∈ N.
Analogously we can prove the estimate (74).

Because the stability constants M̃ and ω = 0 do not depend on n ∈ N,
this implies that the sequence {An(t)} is uniformly stable (see [1]).Moreover,
each operator An(t) for fixed t ∈ [0, T ] and n ∈ N is the infinitesimal
generator of a strongly continuous group.

Now we can prove the following important theorem.
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Theorem 4. Let assumptions (Z1)–(Z4) hold. If {A(t)}, t ∈ [0, T ], is a

stable family with stability constants M ≥ 1 and ω = 0, and the mapping

[0, T ] ∋ t → A(t)x, x ∈ D(A), is continuously differentiable, then the condi-

tions of Theorem 1 are satisfied for the operator A(t) given by (60) and the

operators An(t) constructed according to formula (61).

P r o o f. The stability of {A(t)} yields the estimate (23), and so, by The-
orem 2, we get assumptions 1◦ and 2◦ of Theorem 1. Let Vn(t, s) denote
the evolution operator (fundamental solution) corresponding to the operator
An(t). From Lemmas 2 and 8 and Theorem 3 it follows that the approxi-

mating sequence {An(t)} is uniformly stable with stability constants M̃ and
ω = 0 (see (81)). By Theorem 1 of [1] we obtain

(82) ‖Vn(t, s)‖ ≤ M̃ for t, s ∈ [0, T ], n ∈ N.

Basing on the estimate (82), analogously to the proof of Theorem 3.11 in [7,
p. 208] we can prove that {Vn(t, s)} is strongly and uniformly convergent to
V(t, s) in KT = [0, T ] × [0, T ]. We omit the details.

From this we have, as a consequence of Theorem 1, the following corol-
lary.

Corollary 2. Under the assumptions of Theorem 4 the Cauchy problem

for the equation

(83)
dw

dt
= A(t)w, t ∈ [0, T ],

is uniformly correct and V(t, s) is the evolution operator corresponding to it.

By definition, A(t) for each t ∈ [0, T ] is a linear operator acting from
Y × X into itself, where Y is the space D(B) with graph norm (see (59)).
Therefore, the evolution operator V(t, s) may be written as

(84) V(t, s) =

[
C(t, s) S(t, s)
b(t, s) a(t, s)

]
.

Let us define (cf. [10] and [6]) the operator

(85) S(t, s)x := Π1V(t, s)

[
0
x

]
for every x ∈ X,

where Π1

[
y
x

]
:= y for y ∈ Y , x ∈ X. Using Definition 3 and formula (85)

one can prove that S(t, s) is the evolution operator (fundamental solution)
for equation (57). For details see [6].

Summing up, we can formulate the main result of this paper.

Theorem 5. If the assumptions of Theorem 4 are satisfied , then the

Cauchy problem for equation (57) is uniformly correct and the S(t, s) defined

by formula (85) is the evolution operator corresponding to it.
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If the fundamental solution S(t, s) for (57) is known and if the function
f : [0, T ] → X satisfies certain conditions, and if u0, u1 ∈ D(A), then the
problem (7) has the unique solution u given by

(86) u(t) = −
∂

∂s
S(t, s)

∣∣∣∣
s=0

u0 + S(t, 0)u1 +

t\
0

S(t, s)f(s) ds

(see for example [6] and [11]).
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Reçu par la Rédaction le 25.7.1995


