On the joint spectral radius

by Vladimír Müller (Praha)

Abstract

We prove the ℓ_{p}-spectral radius formula for n-tuples of commuting Banach algebra elements. This generalizes results of some earlier papers.

Let A be a Banach algebra with the unit element denoted by 1. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of elements of A. Denote by $\sigma(a)$ the Harte spectrum of a, i.e. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \notin \sigma(a)$ if and only if there exist $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in A$ such that

$$
\sum_{j=1}^{n}\left(a_{j}-\lambda_{j}\right) u_{j}=\sum_{j=1}^{n} v_{j}\left(a_{j}-\lambda_{j}\right)=1
$$

Let $1 \leq p \leq \infty$. The (geometric) spectral radius of a is defined by

$$
r_{p}(a)=\max \left\{\|\lambda\|_{p}: \lambda \in \sigma(a)\right\}
$$

where

$$
\|\lambda\|_{p}= \begin{cases}\max _{1 \leq j \leq n}\left|\lambda_{j}\right| & (p=\infty) \\ \left(\sum_{j=1}^{n}\left|\lambda_{j}\right|^{p}\right)^{1 / p} & (1 \leq p<\infty)\end{cases}
$$

see [10], cf. also [4].
If $\sigma(a)$ is empty we put formally $r_{p}(a)=-\infty$.
Clearly, $r_{p}(a)$ depends on p. On the other hand, instead of the Harte spectrum we can take any other reasonable spectrum (e.g. the left, right, approximate point, defect, Taylor etc.) without changing the value of $r_{p}(a)$; see [4], [9].

For a single Banach algebra element the just defined spectral radius $r_{p}(a)$ does not depend on p and coincides with the ordinary spectral radius $r\left(a_{1}\right)=\max \left\{\left|\lambda_{1}\right|: \lambda_{1} \in \sigma\left(a_{1}\right)\right\}$. By the well-known spectral radius formula

[^0]Key words and phrases: Banach algebra, spectrum, spectral radius.
The research was supported by the grant No. 119106 of the Academy of Sciences of the Czech Republic.
we have in this case

$$
r\left(a_{1}\right)=\lim _{k \rightarrow \infty}\left\|a_{1}^{k}\right\|^{1 / k}=\inf _{k}\left\|a_{1}^{k}\right\|^{1 / k}
$$

The spectral radius formula for n-tuples of Banach algebra elements was studied by a number of authors, see e.g. [1], [2], [6], [7], [8]. In this paper we generalize results of [6], [7] and [10].

Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of elements of a Banach algebra A. Instead of powers of a single element it is natural to consider all possible products of a_{1}, \ldots, a_{n}.

Denote by $F(k, n)$ the set of all functions from $\{1, \ldots, k\}$ to $\{1, \ldots, n\}$. Let further

$$
s_{k, p}(a)=\left(\sum_{f \in F(k, n)}\left\|a_{f(1)} \ldots a_{f(k)}\right\|^{p}\right)^{1 / p} \quad(1 \leq p<\infty)
$$

and

$$
s_{k, \infty}(a)=\max _{f \in F(k, n)}\left\|a_{f(1)} \ldots a_{f(k)}\right\| .
$$

Lemma 1. $s_{k+l, p} \leq s_{k, p}(a) \cdot s_{l, p}(a)$.
Proof. The statement is obvious for $p=\infty$. For $p<\infty$ we have

$$
\begin{aligned}
{\left[s_{k, p}(a) \cdot s_{l, p}(a)\right]^{p} } & =\sum_{f \in F(k, n)}\left\|a_{f(1)} \ldots a_{f(k)}\right\|^{p} \cdot \sum_{g \in F(l, n)}\left\|a_{g(1)} \ldots a_{g(l)}\right\|^{p} \\
& \geq \sum_{f, g}\left\|a_{f(1)} \ldots a_{f(k)} a_{g(1)} \ldots a_{g(l)}\right\|^{p}=\left[s_{k+l, p}(a)\right]^{p} .
\end{aligned}
$$

It is well known that the above lemma implies that $\lim _{k \rightarrow \infty}\left(s_{k, p}(a)\right)^{1 / k}$ exists and it is equal to $\inf _{k}\left(s_{k, p}(a)\right)^{1 / k}$.

Thus we may define

$$
r_{p}^{\prime \prime}(a)=\lim _{k \rightarrow \infty}\left(\sum_{f \in F(k, n)}\left\|a_{f(1)} \ldots a_{f(k)}\right\|^{p}\right)^{1 /(p k)}
$$

Similarly we define

$$
\begin{equation*}
r_{p}^{\prime}(a)=\limsup _{k \rightarrow \infty}\left(\sum_{f \in F(k, n)} r^{p}\left(a_{f(1)} \ldots a_{f(k)}\right)\right)^{1 /(p k)} \tag{1}
\end{equation*}
$$

(we write briefly $r^{p}(x)$ instead of $(r(x))^{p}$).
In general, the limit in (1) does not exist. The limit exists if a_{1}, \ldots, a_{n} are mutually commuting. This can be proved analogously as in Lemma 1 by using the submultiplicativity of the spectral radius.

Theorem 2. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of elements of a Banach algebra A. Let $1 \leq p \leq \infty$. Then

$$
r_{p}(a) \leq r_{p}^{\prime}(a) \leq r_{p}^{\prime \prime}(a)
$$

Proof. The case $p=\infty$ was proved in [7], Theorem 1.
Let $p<\infty$. The second inequality is clear.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \sigma(a)$. Denote by A_{0} the closed subalgebra of A generated by the unit 1 and the elements a_{1}, \ldots, a_{n}. By [5], Proposition 2, there exists a multiplicative functional $h: A_{0} \rightarrow \mathbb{C}$ such that $h\left(a_{j}\right)=\lambda_{j}$ for $j=1, \ldots, n$. Then

$$
\begin{aligned}
\sum_{f \in F(k, n)} r^{p}\left(a_{f(1)} \ldots a_{f(k)}\right) & \geq \sum_{f \in F(k, n)} \mid h\left(\left.a_{f(1)} \ldots a_{f(k)}\right|^{p}\right. \\
& =\sum_{f \in F(k, n)}\left|\lambda_{f(1)}\right|^{p} \ldots\left|\lambda_{f(k)}\right|^{p} \\
& =\left(\left|\lambda_{1}\right|^{p}+\ldots+\left|\lambda_{n}\right|^{p}\right)^{k}=\|\left.\lambda\right|_{p} ^{p k} .
\end{aligned}
$$

Thus

$$
\sum_{f \in F(k, n)} r^{p}\left(a_{f(1)} \ldots a_{f(k)}\right) \geq r_{p}^{p k}(a)
$$

and $r_{p}^{\prime}(a) \geq r_{p}(a)$.
If $a=\left(a_{1}, \ldots, a_{n}\right)$ is an n-tuple of mutually commuting elements then a better result can be proved.

We use the standard multiindex notation. Denote by \mathbb{Z}_{+}the set of all non-negative integers. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $m \in \mathbb{Z}_{+}$define $|\alpha|=$ $\alpha_{1}+\ldots+\alpha_{n}, \alpha!=\alpha_{1}!\ldots \alpha_{n}!, a^{\alpha}=a_{1}^{\alpha_{1}} \ldots a_{n}^{\alpha_{n}}$ and $m \alpha=\left(m \alpha_{1}, \ldots, m \alpha_{n}\right)$. If k is an integer, $k \geq|\alpha|$, then let

$$
\binom{k}{\alpha}=\frac{k!}{\alpha!(k-|\alpha|)!}
$$

(for $n=1$ this definition coincides with the classical binomial coefficients).
We shall use frequently the following formula (for commuting variables x_{i}):

$$
\left(x_{1}+\ldots+x_{n}\right)^{k}=\sum_{|\alpha|=k}\binom{k}{\alpha} x^{\alpha}
$$

In particular, for $x_{1}=\ldots=x_{n}=1$ we have $\sum_{|\alpha|=k}\binom{k}{\alpha}=n^{k}$.
If $a=\left(a_{1}, \ldots, a_{n}\right)$ is a commuting n-tuple of elements of a Banach algebra A, then the definitions of $r_{p}^{\prime}(a)$ and $r_{p}^{\prime \prime}(a)$ assume a simpler form (for $1 \leq p<\infty$):

$$
\begin{aligned}
& r_{p}^{\prime}(a)=\lim _{k \rightarrow \infty}\left[\sum_{|\alpha|=k}\binom{k}{\alpha} r^{p}\left(a^{\alpha}\right)\right]^{1 /(p k)} \\
& r_{p}^{\prime \prime}(a)=\lim _{k \rightarrow \infty}\left[\sum_{|\alpha|=k}\binom{k}{\alpha}\left\|a^{\alpha}\right\|^{p}\right]^{1 /(p k)}
\end{aligned}
$$

THEOREM 3. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of mutually commuting elements of a Banach algebra A. Let $1 \leq p \leq \infty$. Then

$$
r_{p}(a)=r_{p}^{\prime}(a)=r_{p}^{\prime \prime}(a)
$$

Proof. For $p=\infty$ the first equality was proved in [10] and the second in [7], Theorem 2.

We assume in the following $p<\infty$.
Recall that the number of all partitions of the set $\{1, \ldots, k\}$ into n parts is equal to $\binom{k+n-1}{n-1} \leq(k+n-1)^{n-1}$.

We have

$$
\max _{|\alpha|=k}\binom{k}{\alpha}\left\|a^{\alpha}\right\|^{p} \leq \sum_{|\alpha|=k}\binom{k}{\alpha}\left\|a^{\alpha}\right\|^{p} \leq\binom{ k+n-1}{n-1} \max _{|\alpha|=k}\binom{k}{\alpha}\left\|a^{\alpha}\right\|^{p}
$$

Note that

$$
\lim _{k \rightarrow \infty}\binom{k+n-1}{n-1}^{1 / k}=1
$$

Thus

$$
r_{p}^{\prime \prime}(a)=\lim _{k \rightarrow \infty}\left[\sum_{|\alpha|=k}\binom{k}{\alpha}\left\|a^{\alpha}\right\|^{p}\right]^{1 /(k p)}=\lim _{k \rightarrow \infty} \max _{|\alpha|=k}\left[\binom{k}{\alpha}\left\|a^{\alpha}\right\|^{p}\right]^{1 /(k p)} .
$$

Similarly,

$$
r_{p}^{\prime}(a)=\lim _{k \rightarrow \infty} \max _{|\alpha|=k}\left[\binom{k}{\alpha} r^{p}\left(a^{\alpha}\right)\right]^{1 /(k p)}
$$

We now prove the inequality $r_{p}^{\prime}(a) \leq r_{p}(a)$:
Choose k and $\alpha \in \mathbb{Z}_{+}^{n},|\alpha|=k$. Let $\mu \in \sigma\left(a^{\alpha}\right)$ satisfy $|\mu|=r\left(a^{\alpha}\right)$. By the spectral mapping property there exists $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \sigma(a)$ such that $\mu=\lambda_{1}^{\alpha_{1}} \ldots \lambda_{n}^{\alpha_{n}}$. Then

$$
\begin{aligned}
\binom{k}{\alpha} r_{p}^{p}\left(a^{\alpha}\right) & =\binom{k}{\alpha}|\mu|^{p}=\binom{k}{\alpha}\left|\lambda_{1}\right|^{\alpha_{1} p} \ldots\left|\lambda_{n}\right|^{\alpha_{n} p} \\
& \leq \sum_{|\beta|=k}\binom{k}{\beta}\left|\lambda_{1}\right|^{\beta_{1} p} \ldots\left|\lambda_{n}\right|^{\beta_{n} p} \\
& =\left(\left|\lambda_{1}\right|^{p}+\ldots+\left|\lambda_{n}\right|^{p}\right)^{k}=\|\lambda\|_{p}^{p k} \leq r_{p}^{p k}(a) .
\end{aligned}
$$

Thus

$$
r_{p}^{\prime}(a)=\lim _{k \rightarrow \infty} \max _{|\alpha|=k}\left[\binom{k}{\alpha} r^{p}\left(a^{\alpha}\right)\right]^{1 /(k p)} \leq r_{p}(a)
$$

The remaining inequality $r_{p}^{\prime \prime}(a) \leq r_{p}^{\prime}(a)$ will be proved by induction on n.
For $n=1$, Theorem 3 reduces to the well-known spectral radius formula for a single element.

Let $n \geq 2$ and suppose that the inequality $r_{p}^{\prime \prime} \leq r_{p}^{\prime}$ is true for all commuting ($n-1$)-tuples.

For each k there is $\alpha \in \mathbb{Z}_{+}^{n},|\alpha|=k$, such that

$$
\binom{k}{\alpha}\left\|a^{\alpha}\right\|^{p}=\max _{|\beta|=k}\binom{k}{\beta}\left\|a^{\beta}\right\|^{p} .
$$

Using the compactness of $[0,1]^{n}$ we can choose a sequence

$$
\{\alpha(i)\}_{i=1}^{\infty}=\left\{\left(\alpha_{1}(i), \ldots, \alpha_{n}(i)\right)\right\}_{i=1}^{\infty} \subset \mathbb{Z}_{+}^{n}
$$

such that $\lim _{i \rightarrow \infty}|\alpha(i)|=\infty$,

$$
\begin{equation*}
\binom{|\alpha(i)|}{\alpha(i)}\left\|a^{\alpha(i)}\right\|^{p}=\max _{|\beta|=|\alpha(i)|}\binom{|\alpha(i)|}{\beta}\left\|a^{\beta}\right\|^{p} \quad(i=1,2, \ldots) \tag{2}
\end{equation*}
$$

and the sequences $\left\{\alpha_{j}(i) /|\alpha(i)|\right\}_{i=1}^{\infty}$ are convergent for $j=1, \ldots, n$. Define $k(i)=|\alpha(i)|$ and

$$
t_{j}=\lim _{i \rightarrow \infty} \frac{\alpha_{j}(i)}{k(i)} \in[0,1] \quad(j=1, \ldots, n)
$$

By (2) we have

$$
r_{p}^{\prime \prime p}(a)=\lim _{i \rightarrow \infty}\left[\binom{k(i)}{\alpha(i)}\left\|a^{\alpha(i)}\right\|^{p}\right]^{1 /(k(i) p)}
$$

We distinguish two cases:
(a) $t_{j}=0$ for some $j, 1 \leq j \leq n$. Without loss of generality we may assume that $t_{n}=0$. Define $a^{\prime}=\left(a_{1}, \ldots, a_{n-1}\right), \alpha^{\prime}(i)=\left(\alpha_{1}(i), \ldots, \alpha_{n-1}(i)\right)$ $\in \mathbb{Z}_{+}^{n-1}$ and $k^{\prime}(i)=\left|\alpha^{\prime}(i)\right|=k(i)-\alpha_{n}(i)$. Clearly $\lim _{i \rightarrow \infty} k^{\prime}(i) / k(i)=1$. We have $\left\|a^{\alpha(i)}\right\| \leq\left\|a^{\prime \alpha^{\prime}(i)}\right\| \cdot\left\|a_{n}\right\|^{\alpha_{n}(i)}$. Then

$$
r_{p}^{\prime \prime p}\left(a^{\prime}\right) \geq \limsup _{i \rightarrow \infty}\left[\binom{k^{\prime}(i)}{\alpha^{\prime}(i)}\left\|a^{\prime \alpha^{\prime}(i)}\right\|^{p}\right]^{1 / k^{\prime}(i)} \geq L_{1} \cdot L_{2} \cdot L_{3}
$$

where

$$
\begin{aligned}
& L_{1}=\limsup _{i \rightarrow \infty}\left[\binom{k^{\prime}(i)}{\alpha^{\prime}(i)} /\binom{k(i)}{\alpha(i)}\right]^{1 / k^{\prime}(i)}, \\
& L_{2}=\lim _{i \rightarrow \infty}\left[\binom{k(i)}{\alpha(i)}\left\|a^{\alpha(i)}\right\|^{p}\right]^{1 / k^{\prime}(i)}
\end{aligned}
$$

and

$$
L_{3}=\lim _{i \rightarrow \infty}\left\|a_{n}\right\|^{-\alpha_{n}(i) p / k^{\prime}(i)} .
$$

Since $\lim _{i \rightarrow \infty} \alpha_{n}(i) / k^{\prime}(i)=0$, we have $L_{3}=1$.

Further,

$$
L_{2}=\lim _{i \rightarrow \infty}\left[\left[\binom{k(i)}{\alpha(i)}\left\|a^{\alpha(i)}\right\|^{p}\right]^{1 / k(i)}\right]^{k(i) / k^{\prime}(i)}=r_{p}^{\prime p}(a)
$$

Finally,

$$
\begin{aligned}
L_{1} & =\limsup _{i \rightarrow \infty}\left[\frac{k^{\prime}(i)!\cdot \alpha_{n}(i)!}{k(i)!}\right]^{1 / k^{\prime}(i)} \geq \limsup _{i \rightarrow \infty}\left[\frac{\left(\alpha_{n}(i) / 3\right)^{\alpha_{n}(i)}}{k(i)^{\alpha_{n}(i)}}\right]^{1 / k^{\prime}(i)} \\
& =\limsup _{i \rightarrow \infty}\left(\frac{\alpha_{n}(i)}{3 k(i)}\right)^{\left(\alpha_{n}(i) / k(i)\right) \cdot\left(k(i) / k^{\prime}(i)\right)}=1
\end{aligned}
$$

since $\lim _{i \rightarrow \infty} k(i) / k^{\prime}(i)=1$ and

$$
\lim _{i \rightarrow \infty}\left(\frac{\alpha_{n}(i)}{3 k(i)}\right)^{\alpha_{n}(i) / k(i)}=\lim _{x \rightarrow 0_{+}}\left(\frac{x}{3}\right)^{x}=\lim _{x \rightarrow 0_{+}} x^{x}=\lim _{x \rightarrow 0_{+}} e^{x \ln x}=1
$$

Thus $r_{p}^{\prime \prime}\left(a^{\prime}\right) \geq r_{p}^{\prime \prime}(a)$.
By the induction assumption $r_{p}^{\prime \prime}\left(a^{\prime}\right)=r_{p}^{\prime}\left(a^{\prime}\right)=r_{p}\left(a^{\prime}\right)$ and by the definition $r_{p}\left(a^{\prime}\right) \leq r_{p}(a)=r_{p}^{\prime}(a)$. Hence $r_{p}^{\prime \prime}(a) \leq r_{p}^{\prime}(a)$.
(b) There remains the case $t_{j}>0(j=1, \ldots, n)$, with $t_{j}=$ $\lim _{i \rightarrow \infty} \alpha_{j}(i) / k(i)$. Choose $\varepsilon>0, \varepsilon<\min _{1 \leq j \leq n} t_{j} / n$. For i sufficiently large we have

$$
t_{j}-\frac{\varepsilon}{4} \leq \frac{\alpha_{j}(i)}{k(i)} \leq t_{j}+\frac{\varepsilon}{4}
$$

We approximate t_{1}, \ldots, t_{n} by rational numbers. Fix positive integers c_{1}, \ldots, c_{n}, d such that

$$
t_{j}-\frac{\varepsilon}{2} \leq \frac{c_{j}}{d} \leq t_{j}-\frac{\varepsilon}{4} \quad(j=1, \ldots, n)
$$

Let $\gamma=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $u=a^{\gamma}=a_{1}^{c_{1}} \ldots a_{n}^{c_{n}}$. For each i write $k(i)=m(i) d+z(i)$, where $0 \leq z(i) \leq d-1$. So, for i sufficiently large, we have

$$
\frac{c_{j}}{d} \leq \frac{\alpha_{j}(i)}{k(i)}, \quad \frac{\alpha_{j}(i)}{k(i)}-\frac{c_{j}}{d} \leq \frac{3 \varepsilon}{4}
$$

and

$$
\alpha_{j}(i)-m(i) c_{j}=\alpha_{j}(i)-\frac{k(i)-z(i)}{d} \cdot c_{j}=k(i)\left[\frac{\alpha_{j}(i)}{k(i)}-\frac{c_{j}}{d}\right]+\frac{z(i) c_{j}}{d}
$$

Thus $\alpha_{j}(i)-m(i) c_{j} \geq 0(1 \leq j \leq n)$ and

$$
k(i)-m(i)|\gamma|=\sum_{j=1}^{n}\left(\alpha_{j}(i)-m(i) c_{j}\right) \leq k(i) \cdot \frac{3 \varepsilon n}{4}+\sum_{j=1}^{n} \frac{z(i) c_{j}}{d} \leq \varepsilon n k(i)
$$

for i large enough. We have

$$
\begin{aligned}
\left\|a^{\alpha(i)}\right\| & \leq\left\|a_{1}^{m(i) c_{1}} \ldots a_{n}^{m(i) c_{n}}\right\| \cdot\left\|a_{1}\right\|^{\alpha_{1}(i)-m(i) c_{1}} \ldots\left\|a_{n}\right\|^{\alpha_{n}(i)-m(i) c_{n}} \\
& \leq\left\|u^{m(i)}\right\| \cdot K^{n \varepsilon k(i)},
\end{aligned}
$$

where $K=\max \left\{1,\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right\}$. Then, since $\binom{m(i)|\gamma|}{m(i) \gamma}^{1 /(m(i)|\gamma|)} \leq n$, we have

$$
\begin{aligned}
r_{p}^{\prime p}(a) & \geq \limsup _{i \rightarrow \infty}\left[\binom{m(i)|\gamma|}{m(i) \gamma} r^{p}\left(a^{m(i) \gamma}\right)\right]^{1 /(m(i)|\gamma|)} \\
& =\limsup _{i \rightarrow \infty}\binom{m(i)|\gamma|}{m(i) \gamma}^{1 /(m(i)|\gamma|)} \cdot r(u)^{p /|\gamma|} \\
& =\limsup _{i \rightarrow \infty}\left[\binom{m(i)|\gamma|}{m(i) \gamma}\left\|u^{m(i)}\right\|^{p}\right]^{1 /(m(i)|\gamma|)} \geq L_{1} \cdot L_{2} \cdot L_{3},
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{1}=\liminf _{i \rightarrow \infty}\left[\binom{m(i)|\gamma|}{m(i) \gamma} /\binom{k(i)}{\alpha(i)}\right]^{1 /(m(i)|\gamma|)}, \\
& L_{2}=\liminf _{i \rightarrow \infty}\left[\binom{k(i)}{\alpha(i)}\left\|a^{\alpha(i)}\right\|^{p}\right]^{1 /(m(i)|\gamma|)}
\end{aligned}
$$

and

$$
L_{3}=\liminf _{i \rightarrow \infty} K^{-n \varepsilon p k(i) /(m(i)|\gamma|)} .
$$

Since

$$
1 \leq \frac{k(i)}{m(i)|\gamma|} \leq \frac{1}{1-n \varepsilon}
$$

for i sufficiently large, we have $L_{3} \geq K^{-n \varepsilon p /(1-n \varepsilon)}$.
Since

$$
\lim _{i \rightarrow \infty}\left[\binom{k(i)}{\alpha(i)}\left\|a^{\alpha(i)}\right\|^{p}\right]^{1 / k(i)}=r_{p}^{\prime \prime p}(a)
$$

we have $L_{2} \geq \min \left\{r_{p}^{\prime \prime p}(a),\left(r_{p}^{\prime \prime p}(a)\right)^{1 /(1-n \varepsilon)}\right\}$.
To estimate L_{1}, we use the well-known Stirling formula

$$
l!=l^{l} e^{-l} \sqrt{2 \pi l}(1+o(l))
$$

We have

$$
\begin{aligned}
(1-\varepsilon)\left(\frac{\alpha_{j}(i)}{e}\right)^{\alpha_{j}(i) /(m(i)|\gamma|)} & \leq\left(\alpha_{j}(i)!\right)^{1 /(m(i)|\gamma|)} \\
& \leq(1+\varepsilon)\left(\frac{\alpha_{j}(i)}{e}\right)^{\alpha_{j}(i) /(m(i)|\gamma|)}
\end{aligned}
$$

for $j=1, \ldots, n$ and for i sufficiently large. Similar estimates can be used for $\left(m(i) c_{j}\right)!,(m(i)|\gamma|)!$ and $|\alpha(i)|!$. Thus, for i sufficiently large, we have (to
simplify the expressions we write m, k and α instead of $m(i), k(i)$ and $\alpha(i))$

$$
\begin{aligned}
& {\left[\binom{m|\gamma|}{m \gamma} /\binom{k}{\alpha}\right]^{1 /(m|\gamma|)}=\left[\frac{(m|\gamma|)!\alpha_{1}!\ldots \alpha_{n}!}{k!\left(m c_{1}\right)!\ldots\left(m c_{n}\right)!}\right]^{1 /(m|\gamma|)} } \\
& \quad \geq\left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n+1} \\
& \times \frac{m|\gamma| \cdot \alpha_{1}^{\alpha_{1} /(m|\gamma|)} \ldots \alpha_{n}^{\alpha_{n} /(m|\gamma|)} \cdot e^{k /(m|\gamma|)} \cdot e^{c_{1} /|\gamma|} \ldots e^{c_{n} /|\gamma|}}{e \cdot e^{\alpha_{1} /(m|\gamma|)} \ldots e^{\alpha_{n} /(m|\gamma|) \cdot k^{k /(m|\gamma|)} \cdot\left(m c_{1}\right)^{c_{1} /|\gamma|} \ldots\left(m c_{n}\right)^{c_{n} /|\gamma|}}} \\
&=\left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n+1}\left(\frac{\alpha_{1}}{m c_{1}}\right)^{c_{1} /|\gamma|} \ldots\left(\frac{\alpha_{n}}{m c_{n}}\right)^{c_{n} /|\gamma|} \\
& \times \alpha_{1}^{\left(\alpha_{1}-m c_{1}\right) /(m|\gamma|)} \ldots \alpha_{n}^{\left(\alpha_{n}-m c_{n}\right) /(m|\gamma|)} \cdot \frac{m|\gamma|}{k^{k /(m|\gamma|)}} \\
& \geq\left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n+1} \cdot\left(\frac{\alpha_{1}}{k}\right)^{\left(\alpha_{1}-m c_{1}\right) /(m|\gamma|)} \ldots\left(\frac{\alpha_{n}}{k}\right)^{\left(\alpha_{n}-m c_{n}\right) /(m|\gamma|)} \cdot \frac{m|\gamma|}{k}
\end{aligned}
$$

Then

$$
L_{1} \geq\left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n+1}(1-n \varepsilon)\left(t_{1} \ldots t_{n}\right)^{\varepsilon /(1-n \varepsilon)}
$$

Hence

$$
\begin{aligned}
r_{p}^{\prime p}(a) \geq & \left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n+1}(1-n \varepsilon)\left(t_{1} \ldots t_{n}\right)^{\varepsilon /(1-n \varepsilon)} \\
& \times K^{-n \varepsilon p /(1-n \varepsilon)} \cdot \min \left\{r_{p}^{\prime \prime p}(a),\left(r_{p}^{\prime \prime p}(a)\right)^{1 /(1-n \varepsilon)}\right\}
\end{aligned}
$$

Since ε was an arbitrary positive number, we conclude that $r_{p}^{\prime}(a) \geq r_{p}^{\prime \prime}(a)$.
Theorem 3 is proved.
We now apply the previous result to the case of n-tuples of operators.
Let $T=\left(T_{1}, \ldots, T_{n}\right)$ be an n-tuple of bounded operators in a Banach space X. Define

$$
\|T\|_{p}=\sup _{\substack{x \in X \\\|x\|=1}}\left(\sum_{j=1}^{n}\left\|T_{j} x\right\|^{p}\right)^{1 / p}
$$

Equivalently, $\|T\|_{p}$ is the norm of the operator $\widetilde{T}: X \rightarrow X_{p}^{n}$, where X_{p}^{n} is the direct sum of n copies of X endowed with the ℓ_{p}-norm, $\left\|x_{1} \oplus \ldots \oplus x_{n}\right\|=$ $\left(\sum_{j=1}^{n}\left\|x_{j}\right\|^{p}\right)^{1 / p}$, and $\widetilde{T} x=T_{1} x \oplus \ldots \oplus T_{n} x$ (for $p=\infty$ the definitions are changed in the obvious way). Let $T=\left(T_{1}, \ldots, T_{n}\right) \in B(X)^{n}$ and $S=$ $\left(S_{1}, \ldots, S_{m}\right) \in B(X)^{m}$. Denote by $T S$ the $m n$-tuple

$$
T S=\left(T_{1} S_{1}, \ldots, T_{1} S_{m}, T_{2} S_{1}, \ldots, T_{2} S_{m}, \ldots, T_{n} S_{1}, \ldots, T_{n} S_{m}\right)
$$

Further, let $T^{2}=T T$ and $T^{k+1}=T \cdot T^{k}$. With this notation we can state the spectral radius formula in the familiar way:

Theorem 4. Let $T=\left(T_{1}, \ldots, T_{n}\right)$ be an n-tuple of mutually commuting operators in a Banach space X, and let $1 \leq p \leq \infty$. Then

$$
r_{p}(T)=\lim _{k \rightarrow \infty}\left\|T^{k}\right\|_{p}^{1 / k}
$$

Proof. We have

$$
\left\|T^{k}\right\|_{p}=\sup _{\|x\|=1}\left[\sum_{|\alpha|=k}\binom{k}{\alpha}\left\|T^{\alpha} x\right\|^{p}\right]^{1 / p}
$$

and

$$
\begin{aligned}
r_{p}(T) & =\lim _{k \rightarrow \infty}\left[\sum_{|\alpha|=k}\binom{k}{\alpha}\left\|T^{\alpha}\right\|^{p}\right]^{1 /(k p)}=\lim _{k \rightarrow \infty} \max _{|\alpha|=k}\left[\binom{k}{\alpha}\left\|T^{\alpha}\right\|^{p}\right]^{1 /(k p)} \\
& =\lim _{k \rightarrow \infty} \max _{|\alpha|=k} \sup _{\|x\|=1}\left[\binom{k}{\alpha}\left\|T^{\alpha} x\right\|^{p}\right]^{1 /(k p)} \\
& =\lim _{k \rightarrow \infty} \sup _{\|x\|=1} \max _{|\alpha|=k}\left[\binom{k}{\alpha}\left\|T^{\alpha} x\right\|^{p}\right]^{1 /(k p)} \\
& =\lim _{k \rightarrow \infty} \sup _{\|x\|=1}\left[\sum_{|\alpha|=k}\binom{k}{\alpha}\left\|T^{\alpha} x\right\|^{p}\right]^{1 /(k p)}=\lim _{k \rightarrow \infty}\left\|T^{k}\right\|_{p}^{1 / k}
\end{aligned}
$$

Remark. For $p=2$ and Hilbert space operators the previous result was proved in [6]; cf. also [3].

References

[1] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27.
[2] J. W. Bunce, Models for n-tuples of non-commuting operators, J. Funct. Anal. 57 (1984), 21-30.
[3] M. Cho and T. Huruya, On the spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44.
[4] M. Cho and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258.
[5] C.-K. Fong and A. Sołtysiak, Existence of a multiplicative linear functional and joint spectra, Studia Math. 81 (1985), 213-220.
[6] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, ibid. 103 (1992), 329-333.
[7] P. Rosenthal and A. Sołtysiak, Formulas for the joint spectral radius of noncommuting Banach algebra elements, Proc. Amer. Math. Soc. 123 (1995), 27052708.
[8] G.-C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381.
[9] A. Sołtysiak, On a certain class of subspectra, Comment. Math. Univ. Carolin. 32 (1991), 715-721.
[10] -, On the joint spectral radii of commuting Banach algebra elements, Studia Math. 105 (1993), 93-99.

Mathematical Institute
Academy of Sciences of the Czech Republic
Žitná 25
11567 Praha 1, Czech Republic
E-mail: vmuller@mbox.cesnet.cz

[^0]: 1991 Mathematics Subject Classification: Primary 46H05, 46J05.

