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Wiener’s type regularity criteria on the complex plane

by JOzEF SicIAK (Krakéw)

Abstract. We present a number of Wiener’s type necessary and sufficient conditions
(in terms of divergence of integrals or series involving a condenser capacity) for a compact
set £ C C to be regular with respect to the Dirichlet problem. The same capacity is used
to give a simple proof of the following known theorem [2, 6]: If E is a compact subset of
C such that dt"'EN{|z —a| <1}) > const > 0 for 0 < t < 1 and a € E, where d(F)
is the logarithmic capacity of F', then the Green function of C\ E with pole at infinity is
Hoélder continuous.

Introduction. Let r and R be real numbers with 1 < r < R—2. Given
a subset F of the disk B = B(a, R) := {|z — a| < R}, let h(z) = h(z, E, B)
be defined by the formula h(z) := sup{u(z) : u is a subharmonic function in
B such that u <0 on E and u < 1 in B}.

Then h is the unique subharmonic function in B such that: 0 < h <1
in B; h is harmonic in B\ E; h = 0 quasi-almost everywhere on E; and
lim, ,ch(z) =1if [( —a| =R.

One can check (see e.g. [10]) that the set function

¢(E) = ¢(E;B(a,R),B(a,r)) :==1— sup h(z,E,B), FECB,
|z—a|=r

is a Choquet capacity with the property that a subset E of B is polar with
respect to subharmonic functions iff ¢(£)=0. The set function ¢(F) is called
a capacity of the condenser (E, B(a, R)) with respect to the disk B(a,r), or
condenser capacity of E with respect to the disks B(a, R) and B(a,r).

In the sequel E denotes a polynomially convex compact subset of C.
Given a point a of E, we define

(*)  cla,t) :=cla+t " (ENB(a,t) —a)), d(a,t):=d(ENB(a,t))

1991 Mathematics Subject Classification: 31A05, 31A15, 31A25.

Key words and phrases: subharmonic functions, logarithmic potential theory, Green
function, regular points, Hélder Continuity Property.

Research supported by KBN Grant No 2 PO3A 057 08.

[203]



204 J. Siciak

for all ¢ with 0 <t <1, where d(F") denotes the transfinite diameter (loga-
rithmic capacity) of a compact set F. Observe that a +t~*(EN B(a,t) — a)
is the portion of E contained in B(a,t) scaled ¢~! times.

If d(E) > 0, let Vg denote the Green function of the unbounded compo-
nent of C\ E with pole at co (we put Vg = 0 in the bounded components
of C\ E).

Let m and p,, be real numbers such that m > 1 and 0 < 9,11 < 0 <
00 =1(n>1). Put

(5(@, Qn) = d(E N {Qn+1 < ’Z - a‘ < Qn})
The aim of this paper is to prove the following theorems:

1. Vg is continuous at a iff

1
dt
I:= 871 = 00
0¢l1
% d(a,1)
iff .
dt
J = S 1 p— =0
0
o8 dan)
iff X
K = gc(a’t) dt = 0o
t
0
ILIf1<A<0,/0nt1 <B<oo(n>1) then Vg is continuous at a iff
> 1
S4 = Z = XX
n=1
to d(a, on)
iff o
1
S5 = Z Tgn = 0
n=1log ————
d(a, on)
iff

Sg := Zc(a, On) = 0.

n=1

II. If 1 < A < (logon+1)/(logon) < B < oo (n > 1) then Vg is
continuous at a iff

0o IOg —

S7Z: Zigln:oo

n=1 1 -
8 5(a, on)
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if
0o IOg —
Ss = Z an 09
n=1]o
| ® d(a, o)
iff )
oo IOg Q_
Sg = Z Tgn = 0
n=1lo
. (a, on)
if
e IOg Q_
Slg = Z mZ = 0
n=1 log =
, d(a, 0n)
if

> 1
Si1 = Z c(a, on)log Q— = 00.
n=1 n

IV. If d(a,t) > at (resp. c(a,t) > () (0 <t < 1), where a and [ are
positive constants, then there exist positive constants k and p such that

Ve(z) < k6", |z—a| <6 <1,

i.e. Vg is Héolder continuous at a. Moreover, k (resp. p) depends only on «
(resp. on B) and E (but not on a).

Let
w(E) =
log

d(E)
denote the Wiener capacity of E C B(a,R). Then the integral J can be

written in the form J = Séw(a,t)%, where w(a,t) := w(a + (mt)"H(E N
B(a,t) — a)) is the Wiener capacity of the portion E N B(a,t) of E scaled
(mt)~! times.

The divergence of the integral I (and of each of the series Sy, S7 or Sg) is
Wiener’s well known necessary and sufficient condition for F to be regular
at a (see e.g. [5]). Our proof of Theorems I-IV is based on the following

estimates involving the condenser capacity ¢ defined by (x):

R+1 R-1
o8 T TS
(%) L <eat)s——T— 0<t<l,
R+ 1) HR—1)

1
& " da,1)
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and

h(Z,E N E(CL, Qn),B(CL, QnR)) < e O T Otk
|z —a|l < ronik, n =1, k>0,

where ¢, := c(a, o,,).

It is well known that the regularity (resp. Holder Continuity Property,
briefly HCP) plays a very important role in the theory of multivariate poly-
nomial approximation of holomorphic (resp.C*) functions on compact sub-
sets of CV (see e.g. [18, 8]). Compact sets with HCP also appear in a natural
way in complex dynamics [2]. Therefore it is desirable to characterize com-
pact subsets of CV (resp. of R"Y) with these properties. In the case of N = 1
we have necessary and sufficient criteria for regularity expressed in terms
of capacities. The condenser capacity, given by (*), can also be defined for
compact subsets of C¥ (N > 1) , and it permits giving a sufficient Wiener’s
type condition for a compact subset E of C to be regular [13]. However,
if N > 2, unfortunately we do not know whether the condition is necessary
for local regularity.

So far we have no reasonable necessary condition (expressed in terms of
a capacity) for the Holder Continuity Property (even on the complex plane).
However, the following theorem is true.

V. If E is a Cantor set associated with a sequence {l,,} such that l,,41 <
31, (see [7] for the definition), and limy, o0 ly11/1, exists, then the following
conditions are equivalent:

(i) inf,>q1 V1, > 0;
(11) illfnzl ln+1/ln > 0;
(iif) Je>1Veepo,VeierTrer e/c < |t =1 < g
(iv) d(a,t) > at for 0 <t <1 and a € E with o = const > 0;
(V) E has HCP, i.e. Vg(z) < kd" if |z—a| <6 <1,a€E, z€C;
(vi) E has the Markov Property, i.e. for some M,o > 0,

||pi/||E§MVJ||pV||E7 V:0717"'a
where p, is any polynomial of degree < v.

Indeed, if lim,, 41 /1, exists then (i)<(ii). One can check that (ii)=-(iii)
(see e.g. [12]). By Pommerenke [9], (iii)<(iv) for every compact set E in
C. The implication (iv)=-(v) follows from IV. The implication (v)=-(vi) is
well known (it follows from Cauchy inequalities). Finally, the implication
(vi)=(i) is due to W. Plesniak [7].

COROLLARY. The classical triadic Cantor set has all the properties

(1)—(vi).
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Let us add that V. Totik [14] has recently shown that (i)<(v)<(vi)
for all Cantor sets associated with {l,,} under the only assumption that
ln+1 < %ln

I would like to thank Professor Ch. Pommerenke for having informed me
about a simple proof of HCP for uniformly perfect sets communicated to him
by José Fernandez (in his letter dated June 28, 1994). Our method of proof
of the implication (iv)=-(v) was inspired by that of Fernandez. Fernandez’s
proof was based on the Lemma of [3]. Estimates (s«*) may be considered as
a modified version of that Lemma.

1. Preliminaries

1.1. Let SH(£2) denote the set of all subharmonic functions in an open
subset 2 of C. We say that a property P holds q.a.e. (quasi-almost ev-
erywhere) on E if there exist a subset A of E and W € SH(C) such that
W = —oo on A, and the property P holds at each point of E \ A.

1.2. Given a compact subset E of C, define
Pp(z) == sup PV (z) = lim &/7(z)
VZl V—00

for all z € C, where
®,(z) :=sup{|p(z)| : p is a polynomial of degree < v with ||p[|, < 1}.
The following theorem is well known [10, 15]:
1.3. THEOREM. (i) Vg (2) =log®g(z) for all z € C, where

VE(z) :==sup{u(z) : w € SH(C), u <0 on E, igg{u(()—log(l—i—m)} < oo}

(i) If d(E) > 0 (where d(E) is the transfinite diameter (logarithmic
capacity) of E), then V} is the unique function uw € SH(C) with the following
properties:

(1) u(z) >0 in C, u(z) =0 q.a.e. on E;
(2) u is harmonic in C\ E;
(3) lim, oo [u(z) — log |z|] = log(1/d(E)).
(iii) If d(E) > 0, then
* |Z - CL|
Vi(z) = §log s
where 1 is a positive Borel measure such that suppu C E and pw(E) = 1
(1 is called the equilibrium measure of E).

du(a), z€C,

1.4. We say that a compact set E is regular at a point a € E (or a is
a reqular point of E) if Vji(a) = 0. It is clear that E is regular at a if and
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only if lims_,o wg(a,d) = 0, where

wp(a,d) == sup Vp(z)
|z—al <3

is the modulus of continuity of I/ at a. In other words, E is regular at a iff V3
is continuous at a. In particular, if D = D(F) is the unbounded component
of C\ E, then by the Bouligand criterion D is regular at a € 9D with respect
to the classical Dirichlet problem if and only if F is regular at a.

Put

wg(9) = sup{wg(a,d) : a € E}.

We say that E has the Holder Continuity Property (HCP) if
wep(d) <kd*, 0<d<1,
where x and u are positive constants.
1.5. Let F be a compact subset of the unit interval [0,1]. Let a be a
point of a compact subset E of C such that
Vier {lz—a|=t}NE#0.

Then

VE(Z) < VF(—|Z — a|), z € C.
(For the proof see e.g. Lemma 3.1 of [11].) Hence wg(a,d) < wr(0,0). In
particular, if F is a compact subset of C such that for each component S of
E, diam S > 2r = const > 0, then for all a € E, wg(a,d) < k62,0 <5 <1,

where £ := 2(1 4 /1 +r). Therefore E has HCP with exponent p = 1/2.
In particular each nontrivial continuum has HCP with exponent u = 1/2.

1.6. If F is a subset of an open bounded set {2, we define the zero-one
extremal function by the formula

h(z, E,2) :=sup{u(z) :w € SH(2), u<0on E, u<1lin 2}, ze€ .
One can easily check (see e.g. [10]) that
(1) h*(z2,E,2) = 1 iff E is polar (i.e. W = —oo on E for some W €
SH(C))
(2)
(3)
(4)

*(z,E,0) =0 q.a.e. on F;
if F'is a fixed regular compact subset of {2 then the set function

c(E)=c(E;2,F):=1—suph(z,E,2), FECI,
z€F

h*(z,E,2) = h(z,E,2) in 2\ E and h is harmonic in 2\ F;
h

is a Choquet capacity such that E C {2 is polar with respect to subharmonic
functions if and only if ¢(E; 2, F') = 0.

1.7. LEMMA. If
c(a,t) := ¢(E N B(a,t); B(a,tR), B(a,tr)), 0<t<1,
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then
R-1
log
. r+1 )
(i) ——— <c(a,t) fO0<r<R-—2<o0,
o t(R—1)
® d(a,1)
R+1
log r—1
(ii) cla,t) < ————  if l<r<R<oo, 0<t <1,
Lo HR A1)
& " d(a, 1)
and
(iii) c(a,t) = c(a +t ' (EN B(a,t) — a); B(a, R), B(a,r)).
Proof. Put
m(a,t,0):= inf Veagsn, M(a,t,0):= sup Veasas-
( 0) 9B (a.t0) ENB(a,t) ( 0) B(a,lfg) ENB(a,t)
Then
VEnB(a) (%) — VinBan(?)
— 2" < h(z, EN B(a,t),B(a,t < =
M(a,t,R) — (= (a%), Bla, tR)) < m(a,t, R)
for all z € B(a,tR). Hence
m(a,t,r) M(a,t,r)
— <1 t) < ——————=
Mo, B) =L@ S r Ry
and consequently
m(aa L, R) — M(CL, t, T) < c(a, t) < M(CL, t, R) — m(aa t, T) )
m(a,t, R) M(a,t, R)
From the integral representation of V* with respect to the equilibrium

o ENB(a,t)
measure of E'N B(a,t) (see (iii) of Theorem 1.3(iii)) one gets the following
inequalities:
t(o—1 t
m(avta Q) Z log %7 M(a>t79) é lOg

which imply inequalities (i) and (ii).

(iii) follows from the formula

h(a+t(z —a), EN B(a,t), B(a,tR))

=h(z,a+t"YENB(a,t) —a),B(a,R)), |z—al <R,

which is a direct consequence of the invariance of subharmonicity under
complex linear transformations of coordinates.

1<o<R,

1.8. PROPOSITION. For a compact set E C C the following conditions
are equivalent:
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(1) E is locally reqular at a, i.e. for all o> 0, E(a,0) := EN{|z—a| < o}
1s reqular at a, where E denotes the polynomially convex hull of F;

(2) E is regular at a;

(3) for every regular (with respect to the classical Dirichlet problem) open
bounded set {2 containing E one has h*(a, E, 2) = 0;

(4) there exists a regular open bounded set £2 such that E C 2 and
h*(a,E,§2) = 0.

Proof. (1)=(2). It is sufficient to observe that Vg = V; and Vg <

VE(a,0)
(2)=-(3) follows from the inequalities
1 1
———Vip(2) <h"(2,E,2) < ————Vj 2
(*) M(E, .Q) VE(Z) = (Zv ) ) = m(E, .Q) VE(Z)v z € s,

where m(E, 2) := infygo Vi and M (E, 2) := sup,, V. In order to show (x)
recall that Vs T Vi in C and h(z, E%,w) T h(z, E,£2) in 2 as § | 0, where
E% = {z : dist(z, E) < 6}. Observe that (x) is true for £° (by the maximum
principle for harmonic functions in the open set £2\ E%). Hence letting § | 0,
we get (k).

(3)=(4) is obvious.

(4)=(1). Without loss of generality we may assume that for every ro > 0
there is r € (0,7¢) such that EN{|]z —a| = r} = (. Given ¢ > 0 choose
r € (0, 0) such that EN{|z —a| =7} = 0 and B(a,r) C 2. It is clear that
E(a,0)N{|z —a| =r} =0 and d(E(a,0)) > 0 (otherwise h*(a, E, 2) > 0).
Now by the maximum principle

VE*(a,g)(Z) < Mh*(szv Q)v |Z - (1| < r
where
M := sup Vg, (z)/ inf h(z,E, ).

|z—al|=r lz—al|=r
Therefore Vi, ,(a) = 0.

1.9. PROPOSITION. Let {0,} be a sequence of real numbers such that
O0<ont1<on<oo=1(Mm=>1) andlim,_, 0, = 0. Let a be a fized point
of a compact set E C C. Put

d(a,t) :==d(EN{|z—a| <t}), 0<t<1,
(5(&, Qn) = d(E N {QnJrl < ‘Z - CL’ < Qn})
and

d(a,t)

Then the following statements are true:



Wiener’s type regularity criteria

(1) We have
On

oo On

=2 )

n=00n+1 t]og

o log

On+1
2

n=0 1 - -
o8 d(av Qn+1)

(2) Ifl <A < Qn/@n-i—l (n > 0)7 then

<I

(4) If on/0n+1 < B <00 (n >0),

d(a

7t)

IglogBi%.

n=0Jog

1
log —

r< %
lo !

& d(a,1) d(a,1)

d(a, on,)

(5) If (log 0n+1)/(log 0,,) < B < o0 (n > 0) then

1

log —

log

log

d(a, on)

(6) If 1 < A< (logont1)/(logon) (n>1) and

1
log —

>

d(a> on)

then 1
log —

On
2

n=1
é(a, on)

= OQ.

On
Qn—i—l

d(a Qn)

(7) (Fundamental Inequality) If 0 <r < R < oo, R> 1 and

RQn—i—l < 70n,

(%)

n>1,

211



212 J. Siciak

then
() h(zENB(a,0n), Bla,0nR)) < €™ 77k |z —a| < 1o,
for allm > 1 and k > 0, where ¢, := ¢(a, 0n)-

Proof. Statements (1)—(5) can be easily checked. To show (6) observe

that by the subadditivity of the Wiener capacity w(F) := 1/log(1/d(FE))
(see [5]) we have

1 1 1
(S) < + T n >k,

log———  log— log
. d(a> Qn) . d(av Qn-i-l) . 5((17 Qn)

where k is so large that g, < 1/2 for n > k. It follows from (S) that

1 1
log; ) oo logg— oo logg—
% (L I o S
1 1 ! < A> Zk;rl] 1 - Z;q L
(0] n= (0) n=~k lo
8 d(a> Qk) & a, Qn) 8 5(&, Qn)

which implies (6).

Now we prove (7). If u is a subharmonic function in B(a, ¢, R) such that
u<0on ENB(a,p,) and u < 1 on B(a, 0, R), then u(z) <1—¢, <e
for all z € B(a, Rop+1), because B(a, Ron+1) C B(a,roy,). Therefore

w(z) < e “"h(z, EN B(a,ony1), Bla,Rony1)), |2 —al < Rony1,
as EN B(a, 0n+1) C EN B(a, 0,). Since u is arbitrary, we get
h(z, EN B(a, 0,), B(a, Ro,)) < e “"h(z, EN B(a, 0ny1), Bla, Ront1))
for all z with |z — a| < Rop+1, which implies
h(z, EN B(a, 0,),B(a, Ro,)) < e "t |z —a| <ropi1.

Repeating this procedure k times, we get (§).

2. Sufficient conditions

2.1. LEMMA. Let 0 <r < R < oo, R> 1, and let {o,} be a sequence of
positive numbers such that

(*) Ropi1 <ron, n>1.

If a is a point of a compact set E in C such that

(%) c(a, 0n) = 0,

n=1

then E is regular at a.
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Proof. Given n > 1, choose M so large that
Ve(z) < Mh(z, EN B(a, 0,), B(a, Ro,)), |z —al < Ro,.
Given € > 0, by (%) we can choose k so large that
Me™en=enti="entk £ g,
Therefore by the Fundamental Inequality (§),
Ve(z) <e, |z—a|] < Rontk,
which implies that F is regular at a.

2.2. In the sequel m, r and R are real numbers with m > 1and 1 <r <
R — 2, and {p,} denotes a sequence of real numbers such that

O0<ont1<on<o0oo=1(n>1) and lim g, =0.

Given a compact set F¥ C C and a point a € E, we define

1 1 1
t
I:= Sdi, J = S dt , K:= Sc(a,t) dt,
Utlog; 0tlog mt o !
d(a,t) d(a,t)
S D S Y Sim Yclna)
n=0 ], n=0 10g —— n=0
o8 d(a, Qn) d(av Qn)
1
o) lOg Q_ 0o IOg Q_ o] IOg Q_
D T T
n= - n= n=0 10
% 5(a, 00) % d(a, on) d(a, on)
00 IOg Q_ 00 1
S10 = Z — mon Si1 = ZC(C% 0n) log Q_n
n=0 log n=0
é(a, 0n)

2.3. THEOREM (Sufficient conditions). (i) If I = oo (or K = oo, or
J = oo for some m > 1) then E is reqular at a.

(i) If 1 < A< 9n/0nt1 (n>1) and Sy = oo (or Sg = o0, or S5 = 00
for some m > 1) then E is regular at a.

(iii) If 1 < A < (log on+1)/(log on) (n > 1) and S7 = oo (or Ss = oo, or
S11 = 00, or S1p = oo for some m > 1) then E is reqular at a.

Proof. (i) It is sufficient to show the following implications:

K=00=3d,>1J =00=1=00= FE is regular at a.
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The first implication follows from Lemma 1.7(ii) by putting m = R + 1.
In order to show the second implication fix A with 0 < A < 1 and put
0n :=X" (n>1), oo = 1. Then

On
log
oo On o]
dt On+1
P D TR~ r e
On+1 t og d(a’t) g d(a, Qn)
1 1
log — oo log —
01 On
- log — 191 ! =1 log X@n+1
d(a,1) d(a, on)
1 1 1
log — log — log
> n d a? n
- + Z 7090", where ¢, 1= &
log SLLE S — 1 1 log Mén+1
d(a, 1) & 4a, on) d(a, on)

If sup,, >4 ¢ < 00, then Sg = oo and consequently by Proposition 1.9(3)
we get I = oo. If sup,,»; ¢, = 0o, then there exists a subsequence g, such
that (log on,,,)/(log on,) > 2 (k > 1) and limy . pn, = 00. Observe that

d(a7 an) = (mgﬂkJrl)SO"k/(@"k_l) > (mgﬂkJrl)Q = (mgik)27 k> ko.

Hence

log

Q’I”Lk 1
= Tlog(U/m)
og(l/m
+2
d(a, 0n,) LOg(l/an) ]
which implies that Sg = oo, and consequently I = oco.

In order to show the last implication put r = 2, R = 5, g, = (r/R)"
(n>1), gp =1. By Lemma 1.7(i) we have

> ) k>k17

=2

log

4 4
log — log —
3 3
< <c(a,0n), n>no.
0 0
Sl on) Cd(a0n)

Hence by Proposition 1.9(4) we get Sg = oo. Therefore by Lemma 2.1 the
set F is regular at a.
(ii) First let us prove the following implications:
S4ZOO:>\V/m21S5 :OO:>SG :OO:>E|m21S5:OO.

The first implication is obvious, the last one (resp. the second one) is a direct
consequence of Lemma 1.7(ii) (resp. (i)). Now by (i) it remains to prove the
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implication
(0n/0n41 > A>1(n>1)& S5 =00) = I =00.
By Proposition 1.9(2),

> 1 > 1
I>logA ——— =1logA —_— Y,
- nzz:llo 1 . nzz:llogmw
& d(a, o) d(a, 0n)
where
log _MOn_
d(a, 0,)
T,Z)n = .
log
d(a, on)
Consider two cases: ¢ := inf,>11, > 0 and ¢ = 0. In the first case we

get I > (log A)Sse = oo, which implies that I = oo. In the second case
choose a subsequence {g,,} with (logon,.,)/(logon,) > 2 (k > 1) and
limg_ oo ¥p,, = 0. Then
d(a7 Q?’Lk) = (mg’nk)l/(liwnk) 2 (ank)27 k 2 kO?
whence Sg = oo, and consequently by Proposition 1.9(3), we get I = oc.
(iii) First we check the following implications:

(Oé) S7 =0 = Elleslg =0 = Ellesg =0 = Sg = 0oQ.

The first two are obvious. In order to show the third, observe that

log 2z log L log
on on d(a, 05)
mon = [P where ¢, = o,
log —2n g, L log —n
(a, 0n) d(a, 0n) d(a, on)

It is clear that if sup,,~; ¢n < 00, then Sg = co. If limg ., ¢on, = 00, then
d(a, 0n,) = (moy, )7/~ > (moy, )%, k> ko,
which again implies that Sg = co.
By Lemma 1.7(ii),
(B) S11 =00 = 3,>159 = o0.
By Proposition 1.9(3) we get the implication

log 0.,
™) (B2t 4ot 02 D= o0) =T =ox

Statement (iii) now follows from («), (3), (7) and (i). The proof of Theo-
rem 2.3 is complete.
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2.4. COROLLARY. If liminf;|od(a,t)/t > 0, or liminf, o c(a,t) > 0, or
limsup, ot~ %d(a,t) > 0 for some q¢ > 0, or limsup, | c(a,t)log(1/t) > 0,
then E is regular at a.

In the first two cases, we get I = oo (resp. K = o0), so by (i), E
is regular at a. In the remaining two cases we can find € > 0 and {o,}
such that (logon+1)/(loge,) > 2 (n > 1) and g, %(a,0,) > € (resp.
c(a, on)log(1/0n) > €) (n > 1). Hence Sg = oo (resp. S11 = 00), which
by (iii) implies the regularity of E at a.

3. Necessary conditions

3.1. LEMMA [4, 16]. If a polynomially convex compact subset E of C is
reqular at a and
1
log on

then S; = cc.

Proof. Put E, := EN{opn+1 < |z—a| < p,} and E" := EN{|]z — q
< on}. By Proposition 1.8 it is enough to show that if the series S7 is
convergent then EV is not regular at a for all N sufficiently large. Put
B = supp Vj , where D := {|z —a| < 1/2}. Fix N > 1 so large that
EN C D. The function

un(z) =1+ Z
n=N

is either subharmonic or identically —oo in D, because each term of the last
series is a nonpositive subharmonic function in D. But it easily follows from
Theorem 1.3(iii) that

B

1 1
~ log o log—
(@ z1- 3 e py s
n=N ] n=N ]
() 5 A(E,)

as Vi (a) > log(ont1/d(Ey)) and 3, < log(1/d(E,)). Therefore uy is sub-
harmonic in D. Moreover, uy(z) < 0 q.a.e. on E, for all n > N.

It is also clear that ux(z) < 1in D. Hence uy(z) < h*(z, EN, D) for all
z € D. In particular,

o} lOg —
h*(a,EN,D)>1—cy, where ey:=B ) 791"7
n=N log

d(En)
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which implies that h*(a, EY, D) > 1/2 if N is sufficiently large. Therefore
EY is not regular at a, and consequently E is not regular at a.

3.2. THEOREM (Necessary conditions). Let E be a polynomially convex
compact set reqular at a. Then:

(I) I =00, K=o00, and J = oo for all m > 1.
(IT) If on/0n+1 < B < 00 (n > 1), then the series S4—S¢ are divergent.
(II) If (log on+1)/(log 0n) < B < o0 (n = 1) then the series S7-Si1 are
divergent.

Proof. (I) It is sufficient to show the following implications:
E is regular at a = I = 00 = Vp,>1J = 00 = K = o0.

The first is a direct consequence of Lemma 3.1 and of Proposition 1.9(3).
The second is obvious, and the third follows from Lemma 1.7(i).

(IT) We know by (I) that I = oo. Hence by Proposition 1.9(4) we get
Sy = oo. It is clear that Sy = 00 = V,,>155 = co. Finally, the implication
Sy = 00 = Sg = oo follows from Lemma 1.7(i).

(III) By Lemma 3.1 the series S7 is divergent, which implies that so are Sg
and Sy, Sio (for all m > 1). Finally, if Sg is divergent then by Lemma 1.7(i)
the series Sy is divergent for all m > 1.

4. Holder Continuity Property

4.1. THEOREM (Capacity Scale Condition). Let 1 <r < R < oo and let
{on} be a sequence of real numbers such that 0 < o, < 1 and

r On+1

<B<oo, n>1.

If a is a point of a compact subset E of C such that c(a,0,) > m > 0,
(n > 1), then for every o > 0 the function Vgnp 0 s Holder continuous
at a with exponent p = m/log B:

VinBae)(2) < M&™188 if |z —a| <6 < 1,
where M = M (o,r, R,m, B) depends only on o, r, R, m and B.
Proof. Given g > 0 take n so large that g, < p. By Proposition 1.9(7),
(2)  h(z,ENB(a,0,),B(a,Ro,)) <e ™ D 2 —a| <ropyp, k> 1.

Given ¢ with 0 < 6 < min{1,rg,1}, choose k such that ro,;r+1 < <
70n+x. Then B~F~lrp, < ¢ and consequently —(k + 1)log B < log -2

whence e
5 m/log B
—m(k+1) <log <—> ,
TOn
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which by (2) gives

m/log B
(2a) h(z,E N B(a, 0,), B(a, Ro,)) < (L) sm/log B

T0n
for all z with |z —a|] < 0 < min{l,70,41}. There is My = My(r,R,0) > 0
such that
VEOB(a,g) (Z) < Mlh(z7 EnN E(aa Qn)v B(a> Rgn))v |Z - CL| < Ron,
which by (2a) gives the required result.

4.2. COROLLARY. (i) (Capacity Scale Condition) If info<i<i c(a,t) > 0,
then E has local HCP at a.

(ii) (Uniform Capacity Scale Condition I) If there exists a positive con-
stant m such that

cla,t) >m, a€lE, 0<t<1,
then E has HCP with exponent

3 =
(3) I 7
log —

,

(iii) (Uniform Capacity Scale Condition II) Let {o,} be a sequence sat-
isfying (1). If there exists a positive constant m such that

cla,0n)>m, a€E n>1,

then E has HCP with exponent pn = m/log B.
(iv) (Uniform Logarithmic Capacity Scale Condition) If E is uniformly
perfect in the sense of Pommerenke [9], i.e.

t~d(a,t) =d(t ' EN B(a,t)) >m =const >0, 0<t<1, a€E,
then E has HCP.

Observe that by Lemma 1.7 a compact set E is uniformly perfect if and
only if c¢(a,t) > m > 0 for a € E and 0 < t < 1. We assume here that
l<r<R-2

4.3. Remark. The condition of (ii) (resp. (iii)) of Corollary 4.2 means
that for each ¢ (resp. for each n) the portion of E contained in the disk
B(a,t) (resp. in the disk B(a, 0,)) scaled 1/t times (resp. 1/g, times) has
the condenser capacity with respect to the balls B(a, R) and B(a,r) (see
Lemma 1.7(iii)) larger than a positive constant m. From the point of view
of the condenser capacity a compact set satisfying the Uniform Capacity
Scale Condition is “self-similar” at each of its points. Analogously, from the
point of view of the transfinite diameter (equivalently: Wiener capacity) a
compact set F is uniformly perfect iff it is self-similar at each of its points.
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4.4. Given a compact set F/ in C, consider the following conditions:

(a) E satisfies the Local Markov Inequality, i.e. for every v > 1 there
exists ¢, such that

C
170 BB ays) < ngpuHEmB(a,ay ackE, 0<d<1,

where p,, is any polynomial of degree < v;
(b) E is uniformly perfect, i.e. 3e>1Vec(0,1)Veep3zrepe/c < |z — 2| <&
(c) E satisfies the Uniform Logarithmic Capacity Scale Condition, i.e.

dtT'En{lz—a|<t})>m=const >0, a€cE, 0<t<I;
(d) E has the Holder Continuity Property, i.e. for some k, pu > 0,
Ve(z) <klz—alt, a€FE, z€C, |z—a|<];
(e) E satisfies the Markov Inequality, i.e. for some M,o > 0,
Il < Mv2llpully, v =1

It is known that
(a)e(b)e(c)=(d)=(e).

The equivalence (a)<(b) is due to Wallin and Wingren [17 |(see also [6]).
The equivalence (b)<(c) is due to Pommerenke [9]. As already observed
in 4.2 the implication (¢)=-(d) follows from Theorem 4.1. Other proofs of
this implication were earlier given by Lithner [6] and José Fernandez (in a
letter dated June 28, 1994). The present author does not know who was the
first to prove the implication (c¢)=-(d). In the book [2] (pages 64 and 138)
this implication is stated without proof as if it were well known.

The last implication (d)=-(e) is known since a long time; it follows from
the Cauchy integral formula (or from the Cauchy inequalities).

As already mentioned in the introduction, for Cantor sets associated
with a sequence {I,} such that l,,;; < %[, and the limit lim,, oo i1 /ln

2
exists, all the above conditions are equivalent.

QUESTION. Which (if any) of the implications (e)=-(d), (e)=(c), or
(d)=-(c) is true for all compact sets E in C?

4.5. ExaMPLE. Let {l,,} be a sequence of positive real numbers with
ln+1 S %ln (’I’L Z 0), lo =1. Put F = {0} U quoz[][ln — ln+1,ln].

(1) I Y, m = oo (or limsup,,_, ., {,, 4p+1 > 0 for some g > 0),
then F' is regular.

(i) If

inf 1, 41/l, > o = const > 0,
n>1
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then

oo|@w

d(a,t) :==d(FN{lz —a| <t}) > —=t, 0<t<1, ack

Proof. (i) follows from Theorem 2.3(ii) (resp. from Corollary 2.4).
(i) First we shall show that

042

(%) d0,t) > -t 0<t<1.
Indeed, given t with 0 < t < 1, there exists n such that [,,41 <t < [,.

Therefore

a? o?
—l, > —t.
4 4

Given a € F, there exists n such that a € [l,, — l,11,0,]. It is clear
that d(a,t) > %i’ when 0 <t < 20,44, If 11,41 <t <, then d(a,t) >
d(a,ilny1) > glogyr = 21, > 2t Finally, if I, < ¢ < 1, then d(a,t) >
d(0,t), which by (x) gives d(a,t) > %Zt. It is clear that o < 1. Therefore
d(a,t

)2%tf0ra€FandO<t§1-

d(ovt) > d(oaln-i-l) > %ln—iﬂ >
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