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Wiener’s type regularity criteria on the complex plane

by Józef Siciak (Kraków)

Abstract. We present a number of Wiener’s type necessary and sufficient conditions
(in terms of divergence of integrals or series involving a condenser capacity) for a compact
set E ⊂ C to be regular with respect to the Dirichlet problem. The same capacity is used
to give a simple proof of the following known theorem [2, 6]: If E is a compact subset of
C such that d(t−1E ∩ {|z − a| ≤ 1}) ≥ const > 0 for 0 < t ≤ 1 and a ∈ E, where d(F )
is the logarithmic capacity of F , then the Green function of C \E with pole at infinity is
Hölder continuous.

Introduction. Let r and R be real numbers with 1 < r < R− 2. Given
a subset E of the disk B ≡ B(a,R) := {|z − a| < R}, let h(z) ≡ h(z,E,B)
be defined by the formula h(z) := sup{u(z) : u is a subharmonic function in
B such that u ≤ 0 on E and u < 1 in B}.

Then h is the unique subharmonic function in B such that: 0 ≤ h ≤ 1
in B; h is harmonic in B \ E; h = 0 quasi-almost everywhere on E; and
limz→ζ h(z) = 1 if |ζ − a| = R.

One can check (see e.g. [10]) that the set function

c(E) ≡ c(E;B(a,R), B(a, r)) := 1 − sup
|z−a|=r

h(z,E,B), E ⊂ B,

is a Choquet capacity with the property that a subset E of B is polar with
respect to subharmonic functions iff c(E)=0. The set function c(E) is called
a capacity of the condenser (E,B(a,R)) with respect to the disk B(a, r), or
condenser capacity of E with respect to the disks B(a,R) and B(a, r).

In the sequel E denotes a polynomially convex compact subset of C.
Given a point a of E, we define

(∗) c(a, t) := c(a+ t−1(E ∩B(a, t) − a)), d(a, t) := d(E ∩B(a, t))
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for all t with 0 ≤ t ≤ 1, where d(F ) denotes the transfinite diameter (loga-
rithmic capacity) of a compact set F . Observe that a+ t−1(E ∩B(a, t)− a)
is the portion of E contained in B(a, t) scaled t−1 times.

If d(E) > 0, let VE denote the Green function of the unbounded compo-
nent of C \ E with pole at ∞ (we put VE = 0 in the bounded components
of C \ E).

Let m and ̺n be real numbers such that m ≥ 1 and 0 < ̺n+1 < ̺n <
̺0 = 1 (n ≥ 1). Put

δ(a, ̺n) := d(E ∩ {̺n+1 ≤ |z − a| ≤ ̺n}).
The aim of this paper is to prove the following theorems:

I. VE is continuous at a iff

I :=

1\
0

dt

t log
1

d(a, t)

= ∞

iff

J :=

1\
0

dt

t log
mt

d(a, t)

= ∞

iff

K :=

1\
0

c(a, t)

t
dt = ∞.

II. If 1 < A ≤ ̺n/̺n+1 ≤ B <∞ (n ≥ 1) then VE is continuous at a iff

S4 :=

∞∑

n=1

1

log
1

d(a, ̺n)

= ∞

iff

S5 :=

∞∑

n=1

1

log
m̺n

d(a, ̺n)

= ∞

iff

S6 :=

∞∑

n=1

c(a, ̺n) = ∞.

III. If 1 < A ≤ (log ̺n+1)/(log ̺n) ≤ B < ∞ (n ≥ 1) then VE is

continuous at a iff

S7 :=

∞∑

n=1

log
1

̺n

log
1

δ(a, ̺n)

= ∞
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iff

S8 :=
∞∑

n=1

log
1

̺n

log
1

d(a, ̺n)

= ∞

iff

S9 :=
∞∑

n=1

log
1

̺n

log
m̺n

δ(a, ̺n)

= ∞

iff

S10 :=

∞∑

n=1

log
1

̺n

log
m̺n

d(a, ̺n)

= ∞

iff

S11 :=

∞∑

n=1

c(a, ̺n) log
1

̺n
= ∞.

IV. If d(a, t) ≥ αt (resp. c(a, t) ≥ β) (0 ≤ t ≤ 1), where α and β are

positive constants, then there exist positive constants κ and µ such that

VE(z) ≤ κδµ, |z − a| ≤ δ ≤ 1,

i.e. VE is Hölder continuous at a. Moreover , κ (resp. µ) depends only on α
(resp. on β) and E (but not on a).

Let

w(E) :=
1

log
1

d(E)

denote the Wiener capacity of E ⊂ B(a,R). Then the integral J can be

written in the form J =
T1
0
w(a, t)dtt , where w(a, t) := w(a + (mt)−1(E ∩

B(a, t) − a)) is the Wiener capacity of the portion E ∩ B(a, t) of E scaled
(mt)−1 times.

The divergence of the integral I (and of each of the series S4, S7 or S8) is
Wiener’s well known necessary and sufficient condition for E to be regular
at a (see e.g. [5]). Our proof of Theorems I–IV is based on the following
estimates involving the condenser capacity c defined by (∗):

(∗∗)
log

R+ 1

r − 1

log
t(R+ 1)

d(a, t)

≤ c(a, t) ≤
log

R− 1

r + 1

log
t(R− 1)

d(a, t)

, 0 < t ≤ 1,
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and

h(z,E ∩B(a, ̺n), B(a, ̺nR)) ≤ e−cn−...−cn+k ,

|z − a| ≤ r̺n+k, n ≥ 1, k ≥ 0,

where cn := c(a, ̺n).

It is well known that the regularity (resp. Hölder Continuity Property,
briefly HCP) plays a very important role in the theory of multivariate poly-
nomial approximation of holomorphic (resp.C∞) functions on compact sub-
sets of C

N (see e.g. [18, 8]). Compact sets with HCP also appear in a natural
way in complex dynamics [2]. Therefore it is desirable to characterize com-
pact subsets of C

N (resp. of R
N) with these properties. In the case of N = 1

we have necessary and sufficient criteria for regularity expressed in terms
of capacities. The condenser capacity , given by (∗), can also be defined for
compact subsets of C

N (N ≥ 1) , and it permits giving a sufficient Wiener’s
type condition for a compact subset E of C

N to be regular [13]. However,
if N ≥ 2, unfortunately we do not know whether the condition is necessary
for local regularity.

So far we have no reasonable necessary condition (expressed in terms of
a capacity) for the Hölder Continuity Property (even on the complex plane).
However, the following theorem is true.

V. If E is a Cantor set associated with a sequence {ln} such that ln+1 ≤
1
2 ln (see [7] for the definition), and limn→∞ ln+1/ln exists, then the following

conditions are equivalent :

(i) infn≥1
n
√
ln > 0;

(ii) infn≥1 ln+1/ln > 0;

(iii) ∃c≥1∀ε∈[0,1]∀t∈E∃t′∈E ε/c ≤ |t− t′| ≤ ε;

(iv) d(a, t) ≥ αt for 0 ≤ t ≤ 1 and a ∈ E with α = const > 0;

(v) E has HCP , i.e. VE(z) ≤ κδµ if |z − a| ≤ δ ≤ 1, a ∈ E, z ∈ C;

(vi) E has the Markov Property , i.e. for some M,σ > 0,

‖p′ν‖E ≤Mνσ‖pν‖E , ν = 0, 1, . . . ,

where pν is any polynomial of degree ≤ ν.

Indeed, if lim ln+1/ln exists then (i)⇔(ii). One can check that (ii)⇒(iii)
(see e.g. [12]). By Pommerenke [9], (iii)⇔(iv) for every compact set E in
C. The implication (iv)⇒(v) follows from IV. The implication (v)⇒(vi) is
well known (it follows from Cauchy inequalities). Finally, the implication
(vi)⇒(i) is due to W. Pleśniak [7].

Corollary. The classical triadic Cantor set has all the properties

(i)–(vi).



Wiener’s type regularity criteria 207

Let us add that V. Totik [14] has recently shown that (i)⇔(v)⇔(vi)
for all Cantor sets associated with {ln} under the only assumption that
ln+1 ≤ 1

2 ln.
I would like to thank Professor Ch. Pommerenke for having informed me

about a simple proof of HCP for uniformly perfect sets communicated to him
by José Fernandez (in his letter dated June 28, 1994). Our method of proof
of the implication (iv)⇒(v) was inspired by that of Fernandez. Fernandez’s
proof was based on the Lemma of [3]. Estimates (∗∗) may be considered as
a modified version of that Lemma.

1. Preliminaries

1.1. Let SH(Ω) denote the set of all subharmonic functions in an open
subset Ω of C. We say that a property P holds q.a.e. (quasi-almost ev-

erywhere) on E if there exist a subset A of E and W ∈ SH(C) such that
W = −∞ on A, and the property P holds at each point of E \A.

1.2. Given a compact subset E of C, define

ΦE(z) := sup
ν≥1

Φ1/ν
ν (z) ≡ lim

ν→∞
Φ1/ν
ν (z)

for all z ∈ C, where

Φν(z) := sup{|p(z)| : p is a polynomial of degree ≤ ν with ‖p‖E ≤ 1}.
The following theorem is well known [10, 15]:

1.3. Theorem. (i) VE(z) ≡ logΦE(z) for all z ∈ C, where

VE(z) := sup{u(z) : u ∈ SH(C), u ≤ 0 on E, sup
ζ∈C

{u(ζ)−log(1+|ζ|)} <∞}.

(ii) If d(E) > 0 (where d(E) is the transfinite diameter (logarithmic

capacity) of E), then V ∗
E is the unique function u ∈ SH(C) with the following

properties:

(1) u(z) ≥ 0 in C, u(z) = 0 q.a.e. on E ;
(2) u is harmonic in C \ E;
(3) limz→∞[u(z) − log |z|] = log(1/d(E)).

(iii) If d(E) > 0, then

V ∗
E(z) =

\
log

|z − a|
d(E)

dµ(a), z ∈ C,

where µ is a positive Borel measure such that suppµ ⊂ E and µ(E) = 1
(µ is called the equilibrium measure of E ).

1.4. We say that a compact set E is regular at a point a ∈ E (or a is
a regular point of E) if V ∗

E(a) = 0. It is clear that E is regular at a if and
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only if limδ→0 ωE(a, δ) = 0, where

ωE(a, δ) := sup
|z−a|≤δ

VE(z)

is the modulus of continuity of E at a. In other words, E is regular at a iff V ∗
E

is continuous at a. In particular, if D = D(E) is the unbounded component
of C\E, then by the Bouligand criterion D is regular at a ∈ ∂D with respect
to the classical Dirichlet problem if and only if E is regular at a.

Put

ωE(δ) := sup{ωE(a, δ) : a ∈ E}.
We say that E has the Hölder Continuity Property (HCP) if

ωE(δ) ≤ κδµ, 0 < δ ≤ 1,

where κ and µ are positive constants.

1.5. Let F be a compact subset of the unit interval [0, 1]. Let a be a
point of a compact subset E of C such that

∀t∈F {|z − a| = t} ∩E 6= ∅.
Then

VE(z) ≤ VF (−|z − a|), z ∈ C.

(For the proof see e.g. Lemma 3.1 of [11].) Hence ωE(a, δ) ≤ ωF (0, δ). In
particular, if E is a compact subset of C such that for each component S of
E, diamS ≥ 2r = const > 0, then for all a ∈ E, ωE(a, δ) ≤ κδ1/2, 0 < δ ≤ 1,
where κ := 2

r (1 +
√

1 + r). Therefore E has HCP with exponent µ = 1/2.
In particular each nontrivial continuum has HCP with exponent µ = 1/2.

1.6. If E is a subset of an open bounded set Ω, we define the zero-one

extremal function by the formula

h(z,E,Ω) := sup{u(z) : u ∈ SH(Ω), u ≤ 0 on E, u < 1 in Ω}, z ∈ Ω.

One can easily check (see e.g. [10]) that

(1) h∗(z,E,Ω) ≡ 1 iff E is polar (i.e. W = −∞ on E for some W ∈
SH(C));

(2) h∗(z,E,Ω) = h(z,E,Ω) in Ω \E and h is harmonic in Ω \ E;
(3) h∗(z,E,Ω) = 0 q.a.e. on E;
(4) if F is a fixed regular compact subset of Ω then the set function

c(E) ≡ c(E;Ω,F ) := 1 − sup
z∈F

h(z,E,Ω), E ⊂ Ω,

is a Choquet capacity such that E ⊂ Ω is polar with respect to subharmonic
functions if and only if c(E;Ω,F ) = 0.

1.7. Lemma. If

c(a, t) := c(E ∩B(a, t);B(a, tR), B(a, tr)), 0 ≤ t ≤ 1,
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then

log
R− 1

r + 1

log
t(R− 1)

d(a, t)

≤ c(a, t) if 0 < r < R− 2 <∞,(i)

c(a, t) ≤
log

R+ 1

r − 1

log
t(R+ 1)

d(a, t)

if 1 < r < R <∞, 0 < t ≤ 1,(ii)

and

c(a, t) ≡ c(a+ t−1(E ∩B(a, t) − a);B(a,R), B(a, r)).(iii)

P r o o f. Put

m(a, t, ̺) := inf
∂B(a,t̺)

VE∩B̄(a,t), M(a, t, ̺) := sup
B̄(a,t̺)

VE∩B̄(a,t).

Then

VE∩B̄(a,t)(z)

M(a, t,R)
≤ h(z,E ∩B(a, t), B(a, tR)) ≤

V ∗
E∩B̄(a,t)

(z)

m(a, t,R)

for all z ∈ B(a, tR). Hence

m(a, t, r)

M(a, t,R)
≤ 1 − c(a, t) ≤ M(a, t, r)

m(a, t,R)
,

and consequently

m(a, t,R) −M(a, t, r)

m(a, t,R)
≤ c(a, t) ≤ M(a, t,R) −m(a, t, r)

M(a, t,R)
.

From the integral representation of V ∗
E∩B̄(a,t)

with respect to the equilibrium

measure of E ∩ B(a, t) (see (iii) of Theorem 1.3(iii)) one gets the following
inequalities:

m(a, t, ̺) ≥ log
t(̺− 1)

d(a, t)
, M(a, t, ̺) ≤ log

t(̺+ 1)

d(a, t)
, 1 < ̺ ≤ R,

which imply inequalities (i) and (ii).
(iii) follows from the formula

h(a+ t(z − a), E ∩B(a, t), B(a, tR))

≡ h(z, a + t−1(E ∩B(a, t) − a), B(a,R)), |z − a| ≤ R,

which is a direct consequence of the invariance of subharmonicity under
complex linear transformations of coordinates.

1.8. Proposition. For a compact set E ⊂ C the following conditions

are equivalent :
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(1) E is locally regular at a, i.e. for all ̺ > 0, E(a, ̺) := Ê∩{|z−a| ≤ ̺}
is regular at a, where Ê denotes the polynomially convex hull of E;

(2) E is regular at a;
(3) for every regular (with respect to the classical Dirichlet problem) open

bounded set Ω containing Ê one has h∗(a,E,Ω) = 0;

(4) there exists a regular open bounded set Ω such that Ê ⊂ Ω and

h∗(a,E,Ω) = 0.

P r o o f. (1)⇒(2). It is sufficient to observe that VE ≡ VÊ and VE ≤
VE(a,̺).

(2)⇒(3) follows from the inequalities

(∗) 1

M(E,Ω)
V ∗
E(z) ≤ h∗(z,E,Ω) ≤ 1

m(E,Ω)
V ∗
E(z), z ∈ Ω,

where m(E,Ω) := inf∂Ω V
∗
E and M(E,Ω) := supΩ V

∗
E . In order to show (∗)

recall that VEδ ↑ VE in C and h(z,Eδ , ω) ↑ h(z,E,Ω) in Ω as δ ↓ 0, where
Eδ := {z : dist(z,E) ≤ δ}. Observe that (∗) is true for Eδ (by the maximum
principle for harmonic functions in the open set Ω\Eδ). Hence letting δ ↓ 0,
we get (∗).

(3)⇒(4) is obvious.
(4)⇒(1). Without loss of generality we may assume that for every r0 > 0

there is r ∈ (0, r0) such that E ∩ {|z − a| = r} = ∅. Given ̺ > 0 choose
r ∈ (0, ̺) such that E ∩ {|z − a| = r} = ∅ and B(a, r) ⊂ Ω. It is clear that
E(a, ̺) ∩ {|z − a| = r} = ∅ and d(E(a, ̺)) > 0 (otherwise h∗(a,E,Ω) > 0).
Now by the maximum principle

V ∗
E(a,̺)(z) ≤Mh∗(z,E,Ω), |z − a| ≤ r,

where

M := sup
|z−a|=r

VE(a,̺)(z)/ inf
|z−a|=r

h(z,E,Ω).

Therefore V ∗
E(a,̺)(a) = 0.

1.9. Proposition. Let {̺n} be a sequence of real numbers such that

0 < ̺n+1 < ̺n < ̺0 = 1 (n ≥ 1) and limn→∞ ̺n = 0. Let a be a fixed point

of a compact set E ⊂ C. Put

d(a, t) := d(E ∩ {|z − a| ≤ t}), 0 ≤ t ≤ 1,

δ(a, ̺n) := d(E ∩ {̺n+1 ≤ |z − a| ≤ ̺n})
and

I :=

1\
0

dt

t log
1

d(a, t)

.

Then the following statements are true:
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(1) We have

∞∑

n=0

log
̺n
̺n+1

log
1

d(a, ̺n+1)

≤ I =
∞∑

n=0

̺n\
̺n+1

dt

t log
1

d(a, t)

≤
∞∑

n=0

log
̺n
̺n+1

log
1

d(a, ̺n)

.

(2) If 1 < A ≤ ̺n/̺n+1 (n ≥ 0), then

logA
∞∑

n=1

1

log
1

d(a, ̺n)

≤ I.

(3) If 1 < A ≤ (log ̺n+1)/(log ̺n) (n ≥ 0), then

(
1 − 1

A

) ∞∑

n=1

log
1

̺n

log
1

d(a, ̺n)

≤ I.

(4) If ̺n/̺n+1 ≤ B <∞ (n ≥ 0), then

I ≤ logB

∞∑

n=0

1

log
1

d(a, ̺n)

.

(5) If (log ̺n+1)/(log ̺n) ≤ B <∞ (n ≥ 0) then

I ≤
log

1

̺1

log
1

d(a, 1)

+ (B − 1)

∞∑

n=1

log
1

̺n

log
1

d(a, ̺n)

.

(6) If 1 < A ≤ (log ̺n+1)/(log ̺n) (n ≥ 1) and

∞∑

n=1

log
1

̺n

log
1

d(a, ̺n)

= ∞,

then

∞∑

n=1

log
1

̺n

1

δ(a, ̺n)

= ∞.

(7) (Fundamental Inequality) If 0 < r < R <∞, R > 1 and

(∗) R̺n+1 ≤ r̺n, n ≥ 1,
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then

(§) h(z,E ∩B(a, ̺n), B(a, ̺nR)) ≤ e−cn−...−cn+k , |z − a| ≤ r̺n+k,

for all n ≥ 1 and k ≥ 0, where cn := c(a, ̺n).

P r o o f. Statements (1)–(5) can be easily checked. To show (6) observe
that by the subadditivity of the Wiener capacity w(E) := 1/ log(1/d(E))
(see [5]) we have

(S)
1

log
1

d(a, ̺n)

≤ 1

log
1

d(a, ̺n+1)

+
1

log
1

δ(a, ̺n)

, n ≥ k,

where k is so large that ̺n < 1/2 for n ≥ k. It follows from (S) that

log
1

̺k

log
1

d(a, ̺k)

+

(
1 − 1

A

) ∞∑

n=k+1

log
1

̺n

log
1

d(a, ̺n)

≤
∞∑

n=k

log
1

̺n

log
1

δ(a, ̺n)

,

which implies (6).

Now we prove (7). If u is a subharmonic function in B(a, ̺nR) such that
u ≤ 0 on E ∩ B(a, ̺n) and u ≤ 1 on B(a, ̺nR), then u(z) ≤ 1 − cn ≤ e−cn

for all z ∈ B(a,R̺n+1), because B(a,R̺n+1) ⊂ B(a, r̺n). Therefore

u(z) ≤ e−cnh(z,E ∩B(a, ̺n+1), B(a,R̺n+1)), |z − a| < R̺n+1,

as E ∩B(a, ̺n+1) ⊂ E ∩B(a, ̺n). Since u is arbitrary, we get

h(z,E ∩B(a, ̺n), B(a,R̺n)) ≤ e−cnh(z,E ∩B(a, ̺n+1), B(a,R̺n+1))

for all z with |z − a| ≤ R̺n+1, which implies

h(z,E ∩B(a, ̺n), B(a,R̺n)) ≤ e−cn−cn+1 , |z − a| ≤ r̺n+1.

Repeating this procedure k times, we get (§).

2. Sufficient conditions

2.1. Lemma. Let 0 < r < R <∞, R > 1, and let {̺n} be a sequence of

positive numbers such that

(∗) R̺n+1 ≤ r̺n, n ≥ 1.

If a is a point of a compact set E in C such that

(%)
∞∑

n=1

c(a, ̺n) = ∞,

then E is regular at a.
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P r o o f. Given n ≥ 1, choose M so large that

VE(z) ≤Mh(z,E ∩B(a, ̺n), B(a,R̺n)), |z − a| < R̺n.

Given ε > 0, by (%) we can choose k so large that

Me−cn−cn+1−...−cn+k < ε.

Therefore by the Fundamental Inequality (§),
VE(z) ≤ ε, |z − a| < R̺n+k,

which implies that E is regular at a.

2.2. In the sequel m, r and R are real numbers with m ≥ 1 and 1 < r <
R− 2, and {̺n} denotes a sequence of real numbers such that

0 < ̺n+1 < ̺n < ̺0 = 1 (n ≥ 1) and lim
n→∞

̺n = 0.

Given a compact set E ⊂ C and a point a ∈ E, we define

I :=

1\
0

dt

t log
1

d(a, t)

, J :=

1\
0

dt

t log
mt

d(a, t)

, K :=

1\
0

c(a, t)

t
dt,

S4 :=
∞∑

n=0

1

log
1

d(a, ̺n)

, S5 :=
∞∑

n=0

1

log
m̺n

d(a, ̺n)

, S6 :=
∞∑

n=0

c(a, ̺n),

S7 :=

∞∑

n=0

log
1

̺n

log
1

δ(a, ̺n)

, S8 :=

∞∑

n=0

log
1

̺n

log
1

d(a, ̺n)

, S9 :=

∞∑

n=0

log
1

̺n

log
m̺n

d(a, ̺n)

,

S10 :=

∞∑

n=0

log
1

̺n

log
m̺n

δ(a, ̺n)

, S11 :=

∞∑

n=0

c(a, ̺n) log
1

̺n
.

2.3. Theorem (Sufficient conditions). (i) If I = ∞ (or K = ∞, or

J = ∞ for some m ≥ 1) then E is regular at a.

(ii) If 1 < A ≤ ̺n/̺n+1 (n ≥ 1) and S4 = ∞ (or S6 = ∞, or S5 = ∞
for some m ≥ 1) then E is regular at a.

(iii) If 1 < A ≤ (log ̺n+1)/(log ̺n) (n ≥ 1) and S7 = ∞ (or S8 = ∞, or

S11 = ∞, or S10 = ∞ for some m ≥ 1) then E is regular at a.

P r o o f. (i) It is sufficient to show the following implications:

K = ∞ ⇒ ∃m≥1J = ∞ ⇒ I = ∞ ⇒ E is regular at a.



214 J. Siciak

The first implication follows from Lemma 1.7(ii) by putting m = R+ 1.
In order to show the second implication fix λ with 0 < λ < 1 and put
̺n := λ2n

(n ≥ 1), ̺0 = 1. Then

∞ = J =
∞∑

n=0

̺n\
̺n+1

dt

t log
mt

d(a, t)

≤
∞∑

n=0

log
̺n
̺n+1

log
m̺n+1

d(a, ̺n)

=

log
1

̺1

log
m̺1

d(a, 1)

+

∞∑

n=1

log
1

̺n

log
m̺n+1

d(a, ̺n)

=

log
1

̺1

log
m̺1

d(a, 1)

+

∞∑

n=1

log
1

̺n

log
1

d(a, ̺n)

ϕn, where ϕn :=

log
1

d(a, ̺n)

log
m̺n+1

d(a, ̺n)

.

If supn≥1 ϕn <∞, then S8 = ∞ and consequently by Proposition 1.9(3)
we get I = ∞. If supn≥1 ϕn = ∞, then there exists a subsequence ̺nk

such
that (log ̺nk+1

)/(log ̺nk
) ≥ 2 (k ≥ 1) and limk→∞ ϕnk

= ∞. Observe that

d(a, ̺nk
) = (m̺nk+1)

ϕnk
/(ϕnk

−1) ≥ (m̺nk+1)
2 = (m̺2

nk
)2, k > k0.

Hence

log
1

̺nk

log
1

d(a, ̺nk
)

≥ 1

2

[
log(1/m)

log(1/̺nk
)

+ 2

] ≥ 1

6
, k > k1,

which implies that S8 = ∞, and consequently I = ∞.
In order to show the last implication put r = 2, R = 5, ̺n = (r/R)n

(n ≥ 1), ̺0 = 1. By Lemma 1.7(i) we have

log
4

3

log
1

d(a, ̺n)

≤
log

4

3

log
4̺n

d(a, ̺n)

≤ c(a, ̺n), n > n0.

Hence by Proposition 1.9(4) we get S6 = ∞. Therefore by Lemma 2.1 the
set E is regular at a.

(ii) First let us prove the following implications:

S4 = ∞ ⇒ ∀m≥1S5 = ∞ ⇒ S6 = ∞ ⇒ ∃m≥1S5 = ∞.

The first implication is obvious, the last one (resp. the second one) is a direct
consequence of Lemma 1.7(ii) (resp. (i)). Now by (i) it remains to prove the
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implication

(̺n/̺n+1 ≥ A > 1 (n ≥ 1) & S5 = ∞) ⇒ I = ∞.

By Proposition 1.9(2),

I ≥ logA
∞∑

n=1

1

log
1

d(a, ̺n)

= logA
∞∑

n=1

1

log
m̺n

d(a, ̺n)

ψn,

where

ψn :=

log
m̺n

d(a, ̺n)

log
1

d(a, ̺n)

.

Consider two cases: ε := infn≥1 ψn > 0 and ε = 0. In the first case we
get I ≥ (logA)S5ε = ∞, which implies that I = ∞. In the second case
choose a subsequence {̺nk

} with (log ̺nk+1
)/(log ̺nk

) ≥ 2 (k ≥ 1) and
limk→∞ ψnk

= 0. Then

d(a, ̺nk
) = (m̺nk

)1/(1−ψnk
) ≥ (m̺nk

)2, k ≥ k0,

whence S8 = ∞, and consequently by Proposition 1.9(3), we get I = ∞.

(iii) First we check the following implications:

(α) S7 = ∞ ⇒ ∃m≥1S10 = ∞ ⇒ ∃m≥1S9 = ∞ ⇒ S8 = ∞.

The first two are obvious. In order to show the third, observe that

log
1

̺n

log
m̺n

d(a, ̺n)

=

log
1

̺n

log
1

d(a, ̺n)

ϕn, where ϕn :=

log
1

d(a, ̺n)

log
m̺n

d(a, ̺n)

.

It is clear that if supn≥1 ϕn <∞, then S8 = ∞. If limk→∞ ϕnk
= ∞, then

d(a, ̺nk
) = (m̺nk

)ϕnk
/(ϕnk

−1) ≥ (m̺nk
)2, k > k0,

which again implies that S8 = ∞.

By Lemma 1.7(ii),

(β) S11 = ∞ ⇒ ∃m≥1S9 = ∞.

By Proposition 1.9(3) we get the implication

(γ)

(
log ̺n+1

log ̺n
≥ A > 1 (n ≥ 1) & S8 = ∞

)
⇒ I = ∞.

Statement (iii) now follows from (α), (β), (γ) and (i). The proof of Theo-
rem 2.3 is complete.
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2.4. Corollary. If lim inft↓0 d(a, t)/t > 0, or lim inft↓0 c(a, t) > 0, or

lim supt↓0 t
−qd(a, t) > 0 for some q > 0, or lim supt↓0 c(a, t) log(1/t) > 0,

then E is regular at a.

In the first two cases, we get I = ∞ (resp. K = ∞), so by (i), E
is regular at a. In the remaining two cases we can find ε > 0 and {̺n}
such that (log ̺n+1)/(log ̺n) ≥ 2 (n ≥ 1) and ̺−qn d(a, ̺n) ≥ ε (resp.
c(a, ̺n) log(1/̺n) ≥ ε) (n ≥ 1). Hence S8 = ∞ (resp. S11 = ∞), which
by (iii) implies the regularity of E at a.

3. Necessary conditions

3.1. Lemma [4, 16]. If a polynomially convex compact subset E of C is

regular at a and

log ̺n+1

log ̺n
≤ B <∞ (n ≥ 1)

then S7 = ∞.

P r o o f. Put En := E ∩ {̺n+1 ≤ |z − a| ≤ ̺n} and En := E ∩ {|z − a|
≤ ̺n}. By Proposition 1.8 it is enough to show that if the series S7 is
convergent then EN is not regular at a for all N sufficiently large. Put
βn := supD V

∗
En

, where D := {|z − a| < 1/2}. Fix N ≥ 1 so large that

EN ⊂ D. The function

uN (z) := 1 +
∞∑

n=N

V ∗
En

(z) − βn

βn

is either subharmonic or identically −∞ in D, because each term of the last
series is a nonpositive subharmonic function in D. But it easily follows from
Theorem 1.3(iii) that

uN (a) ≥ 1 −
∞∑

n=N

log
1

̺n+1

log
1

d(En)

≥ 1 −B

∞∑

n=N

log
1

̺n

log
1

d(En)

> −∞,

as V ∗
En

(a) ≥ log(̺n+1/d(En)) and βn ≤ log(1/d(En)). Therefore uN is sub-
harmonic in D. Moreover, uN (z) ≤ 0 q.a.e. on En for all n ≥ N .

It is also clear that uN (z) ≤ 1 in D. Hence uN (z) ≤ h∗(z,EN ,D) for all
z ∈ D. In particular,

h∗(a,EN ,D) ≥ 1 − εN , where εN := B

∞∑

n=N

log
1

̺n

log
1

d(En)

,
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which implies that h∗(a,EN ,D) > 1/2 if N is sufficiently large. Therefore
EN is not regular at a, and consequently E is not regular at a.

3.2. Theorem (Necessary conditions). Let E be a polynomially convex

compact set regular at a. Then:

(I) I = ∞, K = ∞, and J = ∞ for all m ≥ 1.

(II) If ̺n/̺n+1 ≤ B <∞ (n ≥ 1), then the series S4–S6 are divergent.

(III) If (log ̺n+1)/(log ̺n) ≤ B < ∞ (n ≥ 1) then the series S7–S11 are

divergent.

P r o o f. (I) It is sufficient to show the following implications:

E is regular at a⇒ I = ∞ ⇒ ∀m≥1J = ∞ ⇒ K = ∞.

The first is a direct consequence of Lemma 3.1 and of Proposition 1.9(3).
The second is obvious, and the third follows from Lemma 1.7(i).

(II) We know by (I) that I = ∞. Hence by Proposition 1.9(4) we get
S4 = ∞. It is clear that S4 = ∞ ⇒ ∀m≥1S5 = ∞. Finally, the implication
S4 = ∞ ⇒ S6 = ∞ follows from Lemma 1.7(i).

(III) By Lemma 3.1 the series S7 is divergent, which implies that so are S8

and S9, S10 (for all m ≥ 1). Finally, if S8 is divergent then by Lemma 1.7(i)
the series S11 is divergent for all m ≥ 1.

4. Hölder Continuity Property

4.1. Theorem (Capacity Scale Condition). Let 1 ≤ r < R <∞ and let

{̺n} be a sequence of real numbers such that 0 < ̺n < 1 and

(1)
R

r
≤ ̺n
̺n+1

≤ B <∞, n ≥ 1.

If a is a point of a compact subset E of C such that c(a, ̺n) ≥ m > 0,
(n ≥ 1), then for every ̺ > 0 the function VE∩B̄(a,̺) is Hölder continuous

at a with exponent µ = m/logB:

VE∩B̄(a,̺)(z) ≤Mδm/logB if |z − a| ≤ δ ≤ 1,

where M = M(̺, r,R,m,B) depends only on ̺, r, R, m and B.

P r o o f. Given ̺ > 0 take n so large that ̺n ≤ ̺. By Proposition 1.9(7),

(2) h(z,E ∩B(a, ̺n), B(a,R̺n)) ≤ e−m(k+1), |z − a| ≤ r̺n+k, k ≥ 1.

Given δ with 0 < δ ≤ min{1, r̺n+1}, choose k such that r̺n+k+1 ≤ δ ≤
r̺n+k. Then B−k−1r̺n ≤ δ and consequently −(k + 1) logB ≤ log δ

r̺n
,

whence

−m(k + 1) ≤ log

(
δ

r̺n

)m/logB
,
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which by (2) gives

(2a) h(z,E ∩B(a, ̺n), B(a,R̺n)) ≤
(

1

r̺n

)m/logB
δm/logB

for all z with |z − a| ≤ δ ≤ min{1, r̺n+1}. There is M1 = M1(r,R, ̺) > 0
such that

VE∩B̄(a,̺)(z) ≤M1h(z,E ∩B(a, ̺n), B(a,R̺n)), |z − a| < R̺n,

which by (2a) gives the required result.

4.2. Corollary. (i) (Capacity Scale Condition) If inf0<t≤1 c(a, t) > 0,
then E has local HCP at a.

(ii) (Uniform Capacity Scale Condition I) If there exists a positive con-

stant m such that

c(a, t) ≥ m, a ∈ E, 0 < t ≤ 1,

then E has HCP with exponent

(3) µ =
m

log
R

r

.

(iii) (Uniform Capacity Scale Condition II) Let {̺n} be a sequence sat-

isfying (1). If there exists a positive constant m such that

c(a, ̺n) ≥ m, a ∈ E, n ≥ 1,

then E has HCP with exponent µ = m/logB.

(iv) (Uniform Logarithmic Capacity Scale Condition) If E is uniformly

perfect in the sense of Pommerenke [9], i.e.

t−1d(a, t) ≡ d(t−1E ∩B(a, t)) ≥ m = const > 0, 0 ≤ t ≤ 1, a ∈ E,

then E has HCP.

Observe that by Lemma 1.7 a compact set E is uniformly perfect if and
only if c(a, t) ≥ m > 0 for a ∈ E and 0 < t ≤ 1. We assume here that
1 < r < R− 2.

4.3. R em a r k. The condition of (ii) (resp. (iii)) of Corollary 4.2 means
that for each t (resp. for each n) the portion of E contained in the disk
B(a, t) (resp. in the disk B(a, ̺n)) scaled 1/t times (resp. 1/̺n times) has
the condenser capacity with respect to the balls B(a,R) and B(a, r) (see
Lemma 1.7(iii)) larger than a positive constant m. From the point of view
of the condenser capacity a compact set satisfying the Uniform Capacity
Scale Condition is “self-similar” at each of its points. Analogously, from the
point of view of the transfinite diameter (equivalently: Wiener capacity) a
compact set E is uniformly perfect iff it is self-similar at each of its points.
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4.4. Given a compact set E in C, consider the following conditions:

(a) E satisfies the Local Markov Inequality , i.e. for every ν ≥ 1 there
exists cν such that

‖p′ν‖E∩B̄(a,δ) ≤
cν
δ
‖pν‖E∩B̄(a,δ), a ∈ E, 0 < δ ≤ 1,

where pν is any polynomial of degree ≤ ν;

(b) E is uniformly perfect , i.e. ∃c≥1∀ε∈(0,1]∀z∈E∃z′∈E ε/c ≤ |z − z′| ≤ ε;

(c) E satisfies the Uniform Logarithmic Capacity Scale Condition, i.e.

d(t−1E ∩ {|z − a| ≤ t}) ≥ m = const > 0, a ∈ E, 0 < t ≤ 1;

(d) E has the Hölder Continuity Property , i.e. for some κ, µ > 0,

VE(z) ≤ κ|z − a|µ, a ∈ E, z ∈ C, |z − a| ≤ 1;

(e) E satisfies the Markov Inequality , i.e. for some M,σ > 0,

‖p′ν‖E ≤Mνσ‖pν‖E , ν ≥ 1.

It is known that

(a)⇔(b)⇔(c)⇒(d)⇒(e).

The equivalence (a)⇔(b) is due to Wallin and Wingren [17 ](see also [6]).
The equivalence (b)⇔(c) is due to Pommerenke [9]. As already observed
in 4.2 the implication (c)⇒(d) follows from Theorem 4.1. Other proofs of
this implication were earlier given by Lithner [6] and José Fernandez (in a
letter dated June 28, 1994). The present author does not know who was the
first to prove the implication (c)⇒(d). In the book [2] (pages 64 and 138)
this implication is stated without proof as if it were well known.

The last implication (d)⇒(e) is known since a long time; it follows from
the Cauchy integral formula (or from the Cauchy inequalities).

As already mentioned in the introduction, for Cantor sets associated
with a sequence {ln} such that ln+1 ≤ 1

2
ln and the limit limn→∞ ln+1/ln

exists, all the above conditions are equivalent.

Question. Which (if any) of the implications (e)⇒(d), (e)⇒(c), or
(d)⇒(c) is true for all compact sets E in C?

4.5. Example. Let {ln} be a sequence of positive real numbers with
ln+1 ≤ 1

2 ln (n ≥ 0), l0 = 1. Put F := {0} ∪ ⋃∞
n=0[ln − ln+1, ln].

(i) If
∑∞
n=0

1
log(1/ln)

= ∞ (or lim supn→∞ l−qn ln+1 > 0 for some q > 0),

then F is regular.

(ii) If

inf
n≥1

ln+1/ln ≥ α = const > 0,
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then

d(a, t) := d(F ∩ {|z − a| ≤ t}) ≥ α2

8
t, 0 ≤ t ≤ 1, a ∈ F.

P r o o f. (i) follows from Theorem 2.3(ii) (resp. from Corollary 2.4).
(ii) First we shall show that

(∗) d(0, t) ≥ α2

4
t, 0 ≤ t ≤ 1.

Indeed, given t with 0 ≤ t ≤ 1, there exists n such that ln+1 < t ≤ ln.
Therefore

d(0, t) ≥ d(0, ln+1) ≥
1

4
ln+2 ≥ α2

4
ln ≥ α2

4
t.

Given a ∈ F , there exists n such that a ∈ [ln − ln+1, ln]. It is clear
that d(a, t) ≥ t

4
, when 0 ≤ t ≤ 1

2
ln+1. If 1

2
ln+1 < t ≤ ln, then d(a, t) ≥

d
(
a, 1

2
ln+1

)
≥ 1

8
ln+1 ≥ α

8
ln ≥ α

8
t. Finally, if ln < t ≤ 1, then d(a, t) ≥

d(0, t), which by (∗) gives d(a, t) ≥ α2

4 t. It is clear that α ≤ 1
2 . Therefore

d(a, t) ≥ α2

8 t for a ∈ F and 0 < t ≤ 1.
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