Wiener's type regularity criteria on the complex plane

by JÓZEF SICIAK (Kraków)

Abstract. We present a number of Wiener's type necessary and sufficient conditions (in terms of divergence of integrals or series involving a condenser capacity) for a compact set $E \subset \mathbb{C}$ to be regular with respect to the Dirichlet problem. The same capacity is used to give a simple proof of the following known theorem [2, 6]: If E is a compact subset of \mathbb{C} such that $d(t^{-1}E \cap \{|z-a| \leq 1\}) \geq \text{const} > 0$ for $0 < t \leq 1$ and $a \in E$, where d(F) is the logarithmic capacity of F, then the Green function of $\mathbb{C} \setminus E$ with pole at infinity is Hölder continuous.

Introduction. Let r and R be real numbers with 1 < r < R-2. Given a subset E of the disk $B \equiv B(a, R) := \{|z - a| < R\}$, let $h(z) \equiv h(z, E, B)$ be defined by the formula $h(z) := \sup\{u(z) : u \text{ is a subharmonic function in} B$ such that $u \leq 0$ on E and u < 1 in $B\}$.

Then h is the unique subharmonic function in B such that: $0 \le h \le 1$ in B; h is harmonic in $B \setminus E$; h = 0 quasi-almost everywhere on E; and $\lim_{z\to\zeta} h(z) = 1$ if $|\zeta - a| = R$.

One can check (see e.g. [10]) that the set function

$$c(E) \equiv c(E; B(a, R), \overline{B}(a, r)) := 1 - \sup_{|z-a|=r} h(z, E, B), \quad E \subset B,$$

is a Choquet capacity with the property that a subset E of B is polar with respect to subharmonic functions iff c(E) = 0. The set function c(E) is called a *capacity of the condenser* (E, B(a, R)) with respect to the disk $\overline{B}(a, r)$, or *condenser capacity* of E with respect to the disks B(a, R) and $\overline{B}(a, r)$.

In the sequel E denotes a polynomially convex compact subset of \mathbb{C} . Given a point a of E, we define

(*)
$$c(a,t) := c(a + t^{-1}(E \cap \overline{B}(a,t) - a)), \quad d(a,t) := d(E \cap \overline{B}(a,t))$$

¹⁹⁹¹ Mathematics Subject Classification: 31A05, 31A15, 31A25.

Key words and phrases: subharmonic functions, logarithmic potential theory, Green function, regular points, Hölder Continuity Property.

Research supported by KBN Grant No 2 PO3A 057 08.

^[203]

J. Siciak

for all t with $0 \le t \le 1$, where d(F) denotes the transfinite diameter (logarithmic capacity) of a compact set F. Observe that $a + t^{-1}(E \cap \overline{B}(a, t) - a)$ is the portion of E contained in $\overline{B}(a, t)$ scaled t^{-1} times.

If d(E) > 0, let V_E denote the Green function of the unbounded component of $\mathbb{C} \setminus E$ with pole at ∞ (we put $V_E = 0$ in the bounded components of $\mathbb{C} \setminus E$).

Let m and ρ_n be real numbers such that $m \ge 1$ and $0 < \rho_{n+1} < \rho_n < \rho_0 = 1$ $(n \ge 1)$. Put

$$\delta(a, \varrho_n) := d(E \cap \{\varrho_{n+1} \le |z-a| \le \varrho_n\}).$$

The aim of this paper is to prove the following theorems:

I. V_E is continuous at a iff

$$I := \int_{0}^{1} \frac{dt}{t \log \frac{1}{d(a,t)}} = \infty$$

 $i\!f\!f$

$$J := \int_{0}^{1} \frac{dt}{t \log \frac{mt}{d(a,t)}} = \infty$$

iff

$$\mathcal{K} := \int_{0}^{1} \frac{c(a,t)}{t} \, dt = \infty.$$

II. If $1 < A \le \rho_n / \rho_{n+1} \le B < \infty$ $(n \ge 1)$ then V_E is continuous at a iff

$$S_4 := \sum_{n=1}^{\infty} \frac{1}{\log \frac{1}{d(a, \varrho_n)}} = \infty$$

iff

$$S_5 := \sum_{n=1}^{\infty} \frac{1}{\log \frac{m\varrho_n}{d(a,\varrho_n)}} = \infty$$

 $i\!f\!f$

$$S_6 := \sum_{n=1}^{\infty} c(a, \varrho_n) = \infty.$$

III. If $1 < A \leq (\log \rho_{n+1})/(\log \rho_n) \leq B < \infty$ $(n \geq 1)$ then V_E is continuous at a iff

$$S_7 := \sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{\delta(a, \varrho_n)}} = \infty$$

 $i\!f\!f$

$$S_8 := \sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{d(a,\varrho_n)}} = \infty$$

iff

$$S_9 := \sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{m\varrho_n}{\delta(a, \varrho_n)}} = \infty$$

1

 $i\!f\!f$

$$S_{10} := \sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{m\varrho_n}{d(a,\varrho_n)}} = \infty$$

iff

$$S_{11} := \sum_{n=1}^{\infty} c(a, \varrho_n) \log \frac{1}{\varrho_n} = \infty.$$

IV. If $d(a,t) \ge \alpha t$ (resp. $c(a,t) \ge \beta$) $(0 \le t \le 1)$, where α and β are positive constants, then there exist positive constants κ and μ such that

$$V_E(z) \le \kappa \delta^{\mu}, \quad |z-a| \le \delta \le 1,$$

i.e. V_E is Hölder continuous at a. Moreover, κ (resp. μ) depends only on α (resp. on β) and E (but not on a).

Let

$$w(E) := \frac{1}{\log \frac{1}{d(E)}}$$

denote the Wiener capacity of $E \subset B(a, R)$. Then the integral J can be written in the form $J = \int_0^1 w(a, t) \frac{dt}{t}$, where $w(a, t) := w(a + (mt)^{-1}(E \cap \overline{B}(a, t) - a))$ is the Wiener capacity of the portion $E \cap \overline{B}(a, t)$ of E scaled $(mt)^{-1}$ times.

The divergence of the integral I (and of each of the series S_4 , S_7 or S_8) is Wiener's well known necessary and sufficient condition for E to be regular at a (see e.g. [5]). Our proof of Theorems I–IV is based on the following estimates involving the condenser capacity c defined by (*):

$$(**) \qquad \quad \frac{\log \frac{R+1}{r-1}}{\log \frac{t(R+1)}{d(a,t)}} \le c(a,t) \le \frac{\log \frac{R-1}{r+1}}{\log \frac{t(R-1)}{d(a,t)}}, \quad 0 < t \le 1,$$

and

$$h(z, E \cap \overline{B}(a, \varrho_n), B(a, \varrho_n R)) \le e^{-c_n - \dots - c_{n+k}},$$
$$|z - a| \le r \varrho_{n+k}, \ n \ge 1, \ k \ge 0,$$

where $c_n := c(a, \varrho_n)$.

It is well known that the regularity (resp. Hölder Continuity Property, briefly HCP) plays a very important role in the theory of multivariate polynomial approximation of holomorphic (resp. \mathcal{C}^{∞}) functions on compact subsets of \mathbb{C}^N (see e.g. [18, 8]). Compact sets with HCP also appear in a natural way in complex dynamics [2]. Therefore it is desirable to characterize compact subsets of \mathbb{C}^N (resp. of \mathbb{R}^N) with these properties. In the case of N = 1we have necessary and sufficient criteria for regularity expressed in terms of capacities. The *condenser capacity*, given by (*), can also be defined for compact subsets of \mathbb{C}^N ($N \ge 1$), and it permits giving a sufficient Wiener's type condition for a compact subset E of \mathbb{C}^N to be regular [13]. However, if $N \ge 2$, unfortunately we do not know whether the condition is necessary for local regularity.

So far we have no reasonable necessary condition (expressed in terms of a capacity) for the Hölder Continuity Property (even on the complex plane). However, the following theorem is true.

V. If E is a Cantor set associated with a sequence $\{l_n\}$ such that $l_{n+1} \leq \frac{1}{2}l_n$ (see [7] for the definition), and $\lim_{n\to\infty} l_{n+1}/l_n$ exists, then the following conditions are equivalent:

- (i) $\inf_{n\geq 1} \sqrt[n]{l_n} > 0;$
- (ii) $\inf_{n\geq 1} l_{n+1}/l_n > 0;$
- (iii) $\exists_{c\geq 1} \forall_{\varepsilon\in[0,1]} \forall_{t\in E} \exists_{t'\in E} \varepsilon/c \leq |t-t'| \leq \varepsilon;$
- (iv) $d(a,t) \ge \alpha t$ for $0 \le t \le 1$ and $a \in E$ with $\alpha = \text{const} > 0$;
- (v) E has HCP, i.e. $V_E(z) \leq \kappa \delta^{\mu}$ if $|z-a| \leq \delta \leq 1, a \in E, z \in \mathbb{C}$;
- (vi) E has the Markov Property, i.e. for some $M, \sigma > 0$,

$$||p'_{\nu}||_{E} \le M \nu^{\sigma} ||p_{\nu}||_{E}, \quad \nu = 0, 1, \dots,$$

where p_{ν} is any polynomial of degree $\leq \nu$.

Indeed, if $\lim l_{n+1}/l_n$ exists then (i) \Leftrightarrow (ii). One can check that (ii) \Rightarrow (iii) (see e.g. [12]). By Pommerenke [9], (iii) \Leftrightarrow (iv) for every compact set E in \mathbb{C} . The implication (iv) \Rightarrow (v) follows from IV. The implication (v) \Rightarrow (vi) is well known (it follows from Cauchy inequalities). Finally, the implication (vi) \Rightarrow (i) is due to W. Pleśniak [7].

COROLLARY. The classical triadic Cantor set has all the properties (i)–(vi).

Let us add that V. Totik [14] has recently shown that (i) \Leftrightarrow (v) \Leftrightarrow (vi) for all Cantor sets associated with $\{l_n\}$ under the only assumption that $l_{n+1} \leq \frac{1}{2}l_n$.

I would like to thank Professor Ch. Pommerenke for having informed me about a simple proof of HCP for uniformly perfect sets communicated to him by José Fernandez (in his letter dated June 28, 1994). Our method of proof of the implication (iv) \Rightarrow (v) was inspired by that of Fernandez. Fernandez's proof was based on the Lemma of [3]. Estimates (**) may be considered as a modified version of that Lemma.

1. Preliminaries

1.1. Let $\operatorname{SH}(\Omega)$ denote the set of all subharmonic functions in an open subset Ω of \mathbb{C} . We say that a property \mathcal{P} holds q.a.e. (quasi-almost everywhere) on E if there exist a subset A of E and $W \in \operatorname{SH}(\mathbb{C})$ such that $W = -\infty$ on A, and the property \mathcal{P} holds at each point of $E \setminus A$.

1.2. Given a compact subset E of \mathbb{C} , define

$$\Phi_E(z) := \sup_{\nu \ge 1} \Phi_{\nu}^{1/\nu}(z) \equiv \lim_{\nu \to \infty} \Phi_{\nu}^{1/\nu}(z)$$

for all $z \in \mathbb{C}$, where

 $\Phi_{\nu}(z) := \sup\{|p(z)| : p \text{ is a polynomial of degree } \leq \nu \text{ with } \|p\|_E \leq 1\}.$

The following theorem is well known [10, 15]:

1.3. THEOREM. (i) $V_E(z) \equiv \log \Phi_E(z)$ for all $z \in \mathbb{C}$, where $V_E(z) := \sup\{u(z) : u \in SH(\mathbb{C}), u \leq 0 \text{ on } E, \sup_{\zeta \in \mathbb{C}}\{u(\zeta) - \log(1+|\zeta|)\} < \infty\}.$

(ii) If d(E) > 0 (where d(E) is the transfinite diameter (logarithmic capacity) of E), then V_E^* is the unique function $u \in SH(\mathbb{C})$ with the following properties:

- (1) $u(z) \ge 0$ in \mathbb{C} , u(z) = 0 q.a.e. on E;
- (2) *u* is harmonic in $\mathbb{C} \setminus E$;
- (3) $\lim_{z \to \infty} [u(z) \log |z|] = \log(1/d(E)).$

(iii) If d(E) > 0, then

$$V_E^*(z) = \int \log \frac{|z-a|}{d(E)} d\mu(a), \quad z \in \mathbb{C},$$

where μ is a positive Borel measure such that $\operatorname{supp} \mu \subset E$ and $\mu(E) = 1$ (μ is called the equilibrium measure of E).

1.4. We say that a compact set E is *regular* at a point $a \in E$ (or a is a *regular point* of E) if $V_E^*(a) = 0$. It is clear that E is regular at a if and

only if $\lim_{\delta \to 0} \omega_E(a, \delta) = 0$, where

$$\omega_E(a,\delta) := \sup_{|z-a| \le \delta} V_E(z)$$

is the modulus of continuity of E at a. In other words, E is regular at a iff V_E^* is continuous at a. In particular, if D = D(E) is the unbounded component of $\mathbb{C} \setminus E$, then by the Bouligand criterion D is regular at $a \in \partial D$ with respect to the classical Dirichlet problem if and only if E is regular at a.

Put

We

$$\omega_E(\delta) := \sup\{\omega_E(a,\delta) : a \in E\}.$$

say that *E* has the *Hölder Continuity Property* (HCP) if
$$\omega_E(\delta) < \kappa \delta^{\mu}, \quad 0 < \delta < 1,$$

$$\omega_E(0) \le \kappa 0^{\circ} , \quad 0 < 0 \le 1$$

where κ and μ are positive constants.

1.5. Let F be a compact subset of the unit interval [0,1]. Let a be a point of a compact subset E of \mathbb{C} such that

$$\forall_{t \in F} \quad \{|z - a| = t\} \cap E \neq \emptyset.$$

Then

$$V_E(z) \le V_F(-|z-a|), \quad z \in \mathbb{C}.$$

(For the proof see e.g. Lemma 3.1 of [11].) Hence $\omega_E(a,\delta) \leq \omega_F(0,\delta)$. In particular, if E is a compact subset of \mathbb{C} such that for each component S of E, diam $S \geq 2r = \text{const} > 0$, then for all $a \in E$, $\omega_E(a,\delta) \leq \kappa \delta^{1/2}$, $0 < \delta \leq 1$, where $\kappa := \frac{2}{r}(1 + \sqrt{1+r})$. Therefore E has HCP with exponent $\mu = 1/2$. In particular each nontrivial continuum has HCP with exponent $\mu = 1/2$.

1.6. If E is a subset of an open bounded set Ω , we define the zero-one extremal function by the formula

 $h(z,E,\Omega):=\sup\{u(z): u\in \mathrm{SH}(\Omega),\ u\leq 0\ \mathrm{on}\ E,\ u<1\ \mathrm{in}\ \Omega\},\quad z\in\Omega.$

One can easily check (see e.g. [10]) that

(1) $h^*(z, E, \Omega) \equiv 1$ iff E is polar (i.e. $W = -\infty$ on E for some $W \in SH(\mathbb{C})$);

(2) $h^*(z, E, \Omega) = h(z, E, \Omega)$ in $\Omega \setminus E$ and h is harmonic in $\Omega \setminus E$;

(3) $h^*(z, E, \Omega) = 0$ q.a.e. on E;

(4) if F is a fixed regular compact subset of Ω then the set function

$$c(E) \equiv c(E; \Omega, F) := 1 - \sup_{z \in F} h(z, E, \Omega), \quad E \subset \Omega$$

is a Choquet capacity such that $E \subset \Omega$ is polar with respect to subharmonic functions if and only if $c(E; \Omega, F) = 0$.

1.7. LEMMA. If

$$c(a,t) := c(E \cap \overline{B}(a,t); B(a,tR), \overline{B}(a,tr)), \quad 0 \le t \le 1,$$

then

(i)
$$\frac{\log \frac{R-1}{r+1}}{\log \frac{t(R-1)}{d(a,t)}} \le c(a,t) \quad if \ 0 < r < R-2 < \infty,$$
(ii)
$$c(a,t) \le \frac{\log \frac{R+1}{r-1}}{\log \frac{t(R+1)}{d(a,t)}} \quad if \ 1 < r < R < \infty, \ 0 < t \le 1,$$

(ii)

and

(iii)
$$c(a,t) \equiv c(a+t^{-1}(E \cap \overline{B}(a,t)-a); B(a,R), \overline{B}(a,r)).$$

Proof. Put

$$m(a,t,\varrho) := \inf_{\partial B(a,t\varrho)} V_{E \cap \bar{B}(a,t)}, \quad M(a,t,\varrho) := \sup_{\bar{B}(a,t\varrho)} V_{E \cap \bar{B}(a,t)}.$$

Then

$$\frac{V_{E\cap\bar{B}(a,t)}(z)}{M(a,t,R)} \le h(z,E\cap\overline{B}(a,t),B(a,tR)) \le \frac{V_{E\cap\bar{B}(a,t)}^*(z)}{m(a,t,R)}$$

for all $z \in B(a, tR)$. Hence

$$\frac{m(a,t,r)}{M(a,t,R)} \le 1 - c(a,t) \le \frac{M(a,t,r)}{m(a,t,R)},$$

and consequently

$$\frac{m(a,t,R) - M(a,t,r)}{m(a,t,R)} \le c(a,t) \le \frac{M(a,t,R) - m(a,t,r)}{M(a,t,R)}.$$

From the integral representation of $V^*_{E \cap \bar{B}(a,t)}$ with respect to the equilibrium measure of $E \cap \overline{B}(a,t)$ (see (iii) of Theorem 1.3(iii)) one gets the following inequalities:

$$m(a,t,\varrho) \ge \log \frac{t(\varrho-1)}{d(a,t)}, \quad M(a,t,\varrho) \le \log \frac{t(\varrho+1)}{d(a,t)}, \quad 1 < \varrho \le R,$$

which imply inequalities (i) and (ii).

(iii) follows from the formula

$$h(a+t(z-a), E \cap B(a,t), B(a,tR))$$

$$\equiv h(z, a+t^{-1}(E \cap \overline{B}(a,t)-a), B(a,R)), \quad |z-a| \le R,$$

which is a direct consequence of the invariance of subharmonicity under complex linear transformations of coordinates.

1.8. PROPOSITION. For a compact set $E \subset \mathbb{C}$ the following conditions are equivalent:

(1) *E* is locally regular at *a*, i.e. for all $\rho > 0$, $E(a, \rho) := \widehat{E} \cap \{|z-a| \le \rho\}$ is regular at *a*, where \widehat{E} denotes the polynomially convex hull of *E*;

(2) E is regular at a;

(3) for every regular (with respect to the classical Dirichlet problem) open bounded set Ω containing \hat{E} one has $h^*(a, E, \Omega) = 0$;

(4) there exists a regular open bounded set Ω such that $\widehat{E} \subset \Omega$ and $h^*(a, E, \Omega) = 0$.

Proof. (1) \Rightarrow (2). It is sufficient to observe that $V_E \equiv V_{\hat{E}}$ and $V_E \leq V_{E(a,\varrho)}$.

 $(2) \Rightarrow (3)$ follows from the inequalities

(*)
$$\frac{1}{M(E,\Omega)}V_E^*(z) \le h^*(z,E,\Omega) \le \frac{1}{m(E,\Omega)}V_E^*(z), \quad z \in \Omega,$$

where $m(E, \Omega) := \inf_{\partial \Omega} V_E^*$ and $M(E, \Omega) := \sup_{\Omega} V_E^*$. In order to show (*) recall that $V_{E^{\delta}} \uparrow V_E$ in \mathbb{C} and $h(z, E^{\delta}, \omega) \uparrow h(z, E, \Omega)$ in Ω as $\delta \downarrow 0$, where $E^{\delta} := \{z : \operatorname{dist}(z, E) \leq \delta\}$. Observe that (*) is true for E^{δ} (by the maximum principle for harmonic functions in the open set $\Omega \setminus E^{\delta}$). Hence letting $\delta \downarrow 0$, we get (*).

 $(3) \Rightarrow (4)$ is obvious.

 $(4) \Rightarrow (1)$. Without loss of generality we may assume that for every $r_0 > 0$ there is $r \in (0, r_0)$ such that $E \cap \{|z - a| = r\} = \emptyset$. Given $\varrho > 0$ choose $r \in (0, \varrho)$ such that $E \cap \{|z - a| = r\} = \emptyset$ and $\overline{B}(a, r) \subset \Omega$. It is clear that $E(a, \varrho) \cap \{|z - a| = r\} = \emptyset$ and $d(E(a, \varrho)) > 0$ (otherwise $h^*(a, E, \Omega) > 0$). Now by the maximum principle

$$V^*_{E(a,\varrho)}(z) \le Mh^*(z, E, \Omega), \quad |z-a| \le r,$$

where

$$M := \sup_{|z-a|=r} V_{E(a,\varrho)}(z) / \inf_{|z-a|=r} h(z, E, \Omega).$$

Therefore $V^*_{E(a,\rho)}(a) = 0.$

1.9. PROPOSITION. Let $\{\varrho_n\}$ be a sequence of real numbers such that $0 < \varrho_{n+1} < \varrho_n < \varrho_0 = 1$ $(n \ge 1)$ and $\lim_{n\to\infty} \varrho_n = 0$. Let a be a fixed point of a compact set $E \subset \mathbb{C}$. Put

$$d(a,t) := d(E \cap \{|z-a| \le t\}), \quad 0 \le t \le 1, \\ \delta(a,\varrho_n) := d(E \cap \{\varrho_{n+1} \le |z-a| \le \varrho_n\})$$

and

$$I \quad := \int_{0}^{1} \frac{dt}{t \log \frac{1}{d(a,t)}}$$

Then the following statements are true:

(1) We have

$$\sum_{n=0}^{\infty} \frac{\log \frac{\varrho_n}{\varrho_{n+1}}}{\log \frac{1}{d(a,\varrho_{n+1})}} \le I = \sum_{n=0}^{\infty} \int_{\varrho_{n+1}}^{\varrho_n} \frac{dt}{t \log \frac{1}{d(a,t)}} \le \sum_{n=0}^{\infty} \frac{\log \frac{\varrho_n}{\varrho_{n+1}}}{\log \frac{1}{d(a,\varrho_n)}}.$$

(2) If $1 < A \le \rho_n / \rho_{n+1}$ $(n \ge 0)$, then

$$\log A \sum_{n=1}^{\infty} \frac{1}{\log \frac{1}{d(a,\varrho_n)}} \le I.$$

(3) If $1 < A \le (\log \rho_{n+1})/(\log \rho_n) \ (n \ge 0)$, then

$$\left(1-\frac{1}{A}\right)\sum_{n=1}^{\infty}\frac{\log\frac{1}{\varrho_n}}{\log\frac{1}{d(a,\varrho_n)}} \le I.$$

(4) If $\rho_n/\rho_{n+1} \leq B < \infty$ $(n \geq 0)$, then

$$I \le \log B \sum_{n=0}^{\infty} \frac{1}{\log \frac{1}{d(a,\varrho_n)}}.$$

(5) If $(\log \rho_{n+1})/(\log \rho_n) \le B < \infty$ $(n \ge 0)$ then

$$I \le \frac{\log \frac{1}{\varrho_1}}{\log \frac{1}{d(a,1)}} + (B-1) \sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{d(a,\varrho_n)}}.$$

(6) If
$$1 < A \le (\log \rho_{n+1})/(\log \rho_n)$$
 $(n \ge 1)$ and
1

$$\sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{d(a,\varrho_n)}} = \infty,$$

then

$$\sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\frac{1}{\delta(a,\varrho_n)}} = \infty.$$

(7) (Fundamental Inequality) If $0 < r < R < \infty$, R > 1 and (*) $R\varrho_{n+1} \leq r\varrho_n$, $n \geq 1$, then

(§)
$$h(z, E \cap \overline{B}(a, \varrho_n), B(a, \varrho_n R)) \leq e^{-c_n - \dots - c_{n+k}}, \quad |z - a| \leq r \varrho_{n+k},$$

for all $n \geq 1$ and $k \geq 0$, where $c_n := c(a, \varrho_n).$

Proof. Statements (1)–(5) can be easily checked. To show (6) observe that by the subadditivity of the Wiener capacity $w(E) := 1/\log(1/d(E))$ (see [5]) we have

(S)
$$\frac{1}{\log \frac{1}{d(a,\varrho_n)}} \le \frac{1}{\log \frac{1}{d(a,\varrho_{n+1})}} + \frac{1}{\log \frac{1}{\delta(a,\varrho_n)}}, \quad n \ge k,$$

where k is so large that $\rho_n < 1/2$ for $n \ge k$. It follows from (S) that

$$\frac{\log\frac{1}{\varrho_k}}{\log\frac{1}{d(a,\varrho_k)}} + \left(1 - \frac{1}{A}\right)\sum_{n=k+1}^{\infty} \frac{\log\frac{1}{\varrho_n}}{\log\frac{1}{d(a,\varrho_n)}} \le \sum_{n=k}^{\infty} \frac{\log\frac{1}{\varrho_n}}{\log\frac{1}{\delta(a,\varrho_n)}},$$

which implies (6).

Now we prove (7). If u is a subharmonic function in $B(a, \rho_n R)$ such that $u \leq 0$ on $E \cap \overline{B}(a, \rho_n)$ and $u \leq 1$ on $B(a, \rho_n R)$, then $u(z) \leq 1 - c_n \leq e^{-c_n}$ for all $z \in B(a, R\rho_{n+1})$, because $B(a, R\rho_{n+1}) \subset B(a, r\rho_n)$. Therefore

$$u(z) \le e^{-c_n} h(z, E \cap \overline{B}(a, \varrho_{n+1}), B(a, R\varrho_{n+1})), \quad |z-a| < R\varrho_{n+1},$$

as $E \cap \overline{B}(a, \varrho_{n+1}) \subset E \cap \overline{B}(a, \varrho_n)$. Since u is arbitrary, we get

$$h(z, E \cap \overline{B}(a, \varrho_n), B(a, R\varrho_n)) \le e^{-c_n} h(z, E \cap \overline{B}(a, \varrho_{n+1}), B(a, R\varrho_{n+1}))$$

for all z with $|z - a| \leq R \rho_{n+1}$, which implies

$$h(z, E \cap \overline{B}(a, \varrho_n), B(a, R\varrho_n)) \le e^{-c_n - c_{n+1}}, \quad |z - a| \le r \varrho_{n+1}.$$

Repeating this procedure k times, we get (§).

2. Sufficient conditions

2.1. LEMMA. Let $0 < r < R < \infty$, R > 1, and let $\{\varrho_n\}$ be a sequence of positive numbers such that

(*)
$$R\varrho_{n+1} \le r\varrho_n, \quad n \ge 1.$$

If a is a point of a compact set E in \mathbb{C} such that

(%)
$$\sum_{n=1}^{\infty} c(a, \varrho_n) = \infty,$$

then E is regular at a.

Proof. Given $n \ge 1$, choose M so large that

$$V_E(z) \le Mh(z, E \cap \overline{B}(a, \varrho_n), B(a, R\varrho_n)), \quad |z - a| < R\varrho_n$$

Given $\varepsilon > 0$, by (%) we can choose k so large that

$$Me^{-c_n-c_{n+1}-\ldots-c_{n+k}} < \varepsilon.$$

Therefore by the Fundamental Inequality (\S) ,

$$V_E(z) \le \varepsilon, \quad |z-a| < R\varrho_{n+k},$$

which implies that E is regular at a.

2.2. In the sequel m, r and R are real numbers with $m \ge 1$ and 1 < r < R - 2, and $\{\varrho_n\}$ denotes a sequence of real numbers such that

 $0 < \varrho_{n+1} < \varrho_n < \varrho_0 = 1 \ (n \ge 1)$ and $\lim_{n \to \infty} \varrho_n = 0.$

Given a compact set $E \subset \mathbb{C}$ and a point $a \in E$, we define

$$\begin{split} I &:= \int_{0}^{1} \frac{dt}{t \log \frac{1}{d(a,t)}}, \qquad J &:= \int_{0}^{1} \frac{dt}{t \log \frac{mt}{d(a,t)}}, \qquad \mathcal{K} &:= \int_{0}^{1} \frac{c(a,t)}{t} \, dt, \\ S_4 &:= \sum_{n=0}^{\infty} \frac{1}{\log \frac{1}{d(a,\varrho_n)}}, \quad S_5 &:= \sum_{n=0}^{\infty} \frac{1}{\log \frac{m\varrho_n}{d(a,\varrho_n)}}, \quad S_6 &:= \sum_{n=0}^{\infty} c(a,\varrho_n), \\ S_7 &:= \sum_{n=0}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{\delta(a,\varrho_n)}}, \quad S_8 &:= \sum_{n=0}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{d(a,\varrho_n)}}, \quad S_9 &:= \sum_{n=0}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{m\varrho_n}{d(a,\varrho_n)}}, \\ S_{10} &:= \sum_{n=0}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{m\varrho_n}{\delta(a,\varrho_n)}}, \quad S_{11} &:= \sum_{n=0}^{\infty} c(a,\varrho_n) \log \frac{1}{\varrho_n}. \end{split}$$

2.3. THEOREM (Sufficient conditions). (i) If $I = \infty$ (or $\mathcal{K} = \infty$, or $J = \infty$ for some $m \ge 1$) then E is regular at a.

(ii) If $1 < A \leq \rho_n / \rho_{n+1}$ $(n \geq 1)$ and $S_4 = \infty$ (or $S_6 = \infty$, or $S_5 = \infty$ for some $m \geq 1$) then E is regular at a.

(iii) If $1 < A \leq (\log \rho_{n+1})/(\log \rho_n)$ $(n \geq 1)$ and $S_7 = \infty$ (or $S_8 = \infty$, or $S_{11} = \infty$, or $S_{10} = \infty$ for some $m \geq 1$) then E is regular at a.

Proof. (i) It is sufficient to show the following implications:

 $\mathcal{K} = \infty \Rightarrow \exists_{m \ge 1} J = \infty \Rightarrow I = \infty \Rightarrow E$ is regular at a.

The first implication follows from Lemma 1.7(ii) by putting m = R + 1. In order to show the second implication fix λ with $0 < \lambda < 1$ and put $\rho_n := \lambda^{2^n}$ $(n \ge 1), \rho_0 = 1$. Then

$$\begin{split} & \infty = J = \sum_{n=0}^{\infty} \int_{\varrho_{n+1}}^{\varrho_n} \frac{dt}{t \log \frac{mt}{d(a,t)}} \leq \sum_{n=0}^{\infty} \frac{\log \frac{\varrho_n}{\varrho_{n+1}}}{\log \frac{\eta_{\ell_{n+1}}}{d(a,\varrho_n)}} \\ & = \frac{\log \frac{1}{\varrho_1}}{\log \frac{m\varrho_1}{d(a,1)}} + \sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{m\varrho_{n+1}}{d(a,\varrho_n)}} \\ & = \frac{\log \frac{1}{\varrho_1}}{\log \frac{1}{d(a,1)}} + \sum_{n=1}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{\varrho_n}} \varphi_n, \quad \text{where} \quad \varphi_n := \frac{\log \frac{1}{d(a,\varrho_n)}}{\log \frac{m\varrho_{n+1}}{d(a,\varrho_n)}} \end{split}$$

If $\sup_{n\geq 1} \varphi_n < \infty$, then $S_8 = \infty$ and consequently by Proposition 1.9(3) we get $I = \infty$. If $\sup_{n\geq 1} \varphi_n = \infty$, then there exists a subsequence ϱ_{n_k} such that $(\log \varrho_{n_{k+1}})/(\log \varrho_{n_k}) \geq 2$ $(k \geq 1)$ and $\lim_{k\to\infty} \varphi_{n_k} = \infty$. Observe that

 $d(a, \varrho_{n_k}) = (m \varrho_{n_k+1})^{\varphi_{n_k}/(\varphi_{n_k}-1)} \ge (m \varrho_{n_k+1})^2 = (m \varrho_{n_k}^2)^2, \quad k > k_0.$

Hence

$$\frac{\log \frac{1}{\varrho_{n_k}}}{\log \frac{1}{d(a, \varrho_{n_k})}} \ge \frac{1}{2\left[\frac{\log(1/m)}{\log(1/\varrho_{n_k})} + 2\right]} \ge \frac{1}{6}, \quad k > k_1,$$

which implies that $S_8 = \infty$, and consequently $I = \infty$.

In order to show the last implication put r = 2, R = 5, $\rho_n = (r/R)^n$ $(n \ge 1)$, $\rho_0 = 1$. By Lemma 1.7(i) we have

$$\frac{\log\frac{4}{3}}{\log\frac{1}{d(a,\varrho_n)}} \le \frac{\log\frac{4}{3}}{\log\frac{4\varrho_n}{d(a,\varrho_n)}} \le c(a,\varrho_n), \quad n > n_0.$$

Hence by Proposition 1.9(4) we get $S_6 = \infty$. Therefore by Lemma 2.1 the set *E* is regular at *a*.

(ii) First let us prove the following implications:

$$S_4 = \infty \Rightarrow \forall_{m \ge 1} S_5 = \infty \Rightarrow S_6 = \infty \Rightarrow \exists_{m \ge 1} S_5 = \infty.$$

The first implication is obvious, the last one (resp. the second one) is a direct consequence of Lemma 1.7(ii) (resp. (i)). Now by (i) it remains to prove the

implication

$$(\varrho_n/\varrho_{n+1} \ge A > 1 \ (n \ge 1) \& S_5 = \infty) \Rightarrow I = \infty.$$

By Proposition 1.9(2),

$$I \ge \log A \sum_{n=1}^{\infty} \frac{1}{\log \frac{1}{d(a,\varrho_n)}} = \log A \sum_{n=1}^{\infty} \frac{1}{\log \frac{m\varrho_n}{d(a,\varrho_n)}} \psi_n,$$

where

$$\psi_n := \frac{\log \frac{m\varrho_n}{d(a,\varrho_n)}}{\log \frac{1}{d(a,\varrho_n)}}.$$

Consider two cases: $\varepsilon := \inf_{n \ge 1} \psi_n > 0$ and $\varepsilon = 0$. In the first case we get $I \ge (\log A)S_5\varepsilon = \infty$, which implies that $I = \infty$. In the second case choose a subsequence $\{\varrho_{n_k}\}$ with $(\log \varrho_{n_{k+1}})/(\log \varrho_{n_k}) \ge 2$ $(k \ge 1)$ and $\lim_{k \to \infty} \psi_{n_k} = 0$. Then

$$d(a, \varrho_{n_k}) = (m \varrho_{n_k})^{1/(1-\psi_{n_k})} \ge (m \varrho_{n_k})^2, \quad k \ge k_0,$$

whence $S_8 = \infty$, and consequently by Proposition 1.9(3), we get $I = \infty$. (iii) First we check the following implications:

(
$$\alpha$$
) $S_7 = \infty \Rightarrow \exists_{m \ge 1} S_{10} = \infty \Rightarrow \exists_{m \ge 1} S_9 = \infty \Rightarrow S_8 = \infty$

The first two are obvious. In order to show the third, observe that

$$\frac{\log \frac{1}{\varrho_n}}{\log \frac{m\varrho_n}{d(a,\varrho_n)}} = \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{d(a,\varrho_n)}}\varphi_n, \quad \text{where} \quad \varphi_n := \frac{\log \frac{1}{d(a,\varrho_n)}}{\log \frac{m\varrho_n}{d(a,\varrho_n)}}.$$

It is clear that if $\sup_{n>1} \varphi_n < \infty$, then $S_8 = \infty$. If $\lim_{k\to\infty} \varphi_{n_k} = \infty$, then

$$d(a,\varrho_{n_k}) = (m\varrho_{n_k})^{\varphi_{n_k}/(\varphi_{n_k}-1)} \ge (m\varrho_{n_k})^2, \quad k > k_0,$$

which again implies that $S_8 = \infty$.

By Lemma 1.7(ii),

$$(\beta) S_{11} = \infty \Rightarrow \exists_{m \ge 1} S_9 = \infty.$$

By Proposition 1.9(3) we get the implication

(
$$\gamma$$
) $\left(\frac{\log \varrho_{n+1}}{\log \varrho_n} \ge A > 1 \ (n \ge 1) \& S_8 = \infty\right) \Rightarrow I = \infty.$

Statement (iii) now follows from (α) , (β) , (γ) and (i). The proof of Theorem 2.3 is complete.

2.4. COROLLARY. If $\liminf_{t\downarrow 0} d(a,t)/t > 0$, or $\liminf_{t\downarrow 0} c(a,t) > 0$, or $\limsup_{t\downarrow 0} t^{-q} d(a,t) > 0$ for some q > 0, or $\limsup_{t\downarrow 0} c(a,t) \log(1/t) > 0$, then E is regular at a.

In the first two cases, we get $I = \infty$ (resp. $\mathcal{K} = \infty$), so by (i), Eis regular at a. In the remaining two cases we can find $\varepsilon > 0$ and $\{\varrho_n\}$ such that $(\log \varrho_{n+1})/(\log \varrho_n) \ge 2$ $(n \ge 1)$ and $\varrho_n^{-q}d(a, \varrho_n) \ge \varepsilon$ (resp. $c(a, \varrho_n)\log(1/\varrho_n) \ge \varepsilon$) $(n \ge 1)$. Hence $S_8 = \infty$ (resp. $S_{11} = \infty$), which by (iii) implies the regularity of E at a.

3. Necessary conditions

3.1. LEMMA [4, 16]. If a polynomially convex compact subset E of \mathbb{C} is regular at a and

$$\frac{\log \varrho_{n+1}}{\log \varrho_n} \le B < \infty \quad (n \ge 1)$$

then $S_7 = \infty$.

Proof. Put $E_n := E \cap \{\varrho_{n+1} \leq |z-a| \leq \varrho_n\}$ and $E^n := E \cap \{|z-a| \leq \varrho_n\}$. By Proposition 1.8 it is enough to show that if the series S_7 is convergent then E^N is not regular at a for all N sufficiently large. Put $\beta_n := \sup_D V_{E_n}^*$, where $D := \{|z-a| < 1/2\}$. Fix $N \geq 1$ so large that $E^N \subset D$. The function

$$u_N(z) := 1 + \sum_{n=N}^{\infty} \frac{V_{E_n}^*(z) - \beta_n}{\beta_n}$$

is either subharmonic or identically $-\infty$ in D, because each term of the last series is a nonpositive subharmonic function in D. But it easily follows from Theorem 1.3(iii) that

$$u_N(a) \ge 1 - \sum_{n=N}^{\infty} \frac{\log \frac{1}{\varrho_{n+1}}}{\log \frac{1}{d(E_n)}} \ge 1 - B \sum_{n=N}^{\infty} \frac{\log \frac{1}{\varrho_n}}{\log \frac{1}{d(E_n)}} > -\infty,$$

as $V_{E_n}^*(a) \ge \log(\rho_{n+1}/d(E_n))$ and $\beta_n \le \log(1/d(E_n))$. Therefore u_N is subharmonic in D. Moreover, $u_N(z) \le 0$ q.a.e. on E_n for all $n \ge N$.

It is also clear that $u_N(z) \leq 1$ in D. Hence $u_N(z) \leq h^*(z, E^N, D)$ for all $z \in D$. In particular,

$$h^*(a, E^N, D) \ge 1 - \varepsilon_N$$
, where $\varepsilon_N := B \sum_{n=N}^{\infty} \frac{\log \frac{1}{\rho_n}}{\log \frac{1}{d(E_n)}}$

which implies that $h^*(a, E^N, D) > 1/2$ if N is sufficiently large. Therefore E^N is not regular at a, and consequently E is not regular at a.

3.2. THEOREM (Necessary conditions). Let E be a polynomially convex compact set regular at a. Then:

(I) $I = \infty$, $\mathcal{K} = \infty$, and $J = \infty$ for all $m \ge 1$.

(II) If $\rho_n/\rho_{n+1} \leq B < \infty$ $(n \geq 1)$, then the series $S_4 - S_6$ are divergent.

(III) If $(\log \rho_{n+1})/(\log \rho_n) \le B < \infty$ $(n \ge 1)$ then the series $S_7 - S_{11}$ are divergent.

Proof. (I) It is sufficient to show the following implications:

E is regular at $a \Rightarrow I = \infty \Rightarrow \forall_{m \ge 1} J = \infty \Rightarrow \mathcal{K} = \infty$.

The first is a direct consequence of Lemma 3.1 and of Proposition 1.9(3). The second is obvious, and the third follows from Lemma 1.7(i).

(II) We know by (I) that $I = \infty$. Hence by Proposition 1.9(4) we get $S_4 = \infty$. It is clear that $S_4 = \infty \Rightarrow \forall_{m \ge 1} S_5 = \infty$. Finally, the implication $S_4 = \infty \Rightarrow S_6 = \infty$ follows from Lemma 1.7(i).

(III) By Lemma 3.1 the series S_7 is divergent, which implies that so are S_8 and S_9 , S_{10} (for all $m \ge 1$). Finally, if S_8 is divergent then by Lemma 1.7(i) the series S_{11} is divergent for all $m \ge 1$.

4. Hölder Continuity Property

4.1. THEOREM (Capacity Scale Condition). Let $1 \le r < R < \infty$ and let $\{\varrho_n\}$ be a sequence of real numbers such that $0 < \varrho_n < 1$ and

(1)
$$\frac{R}{r} \le \frac{\varrho_n}{\varrho_{n+1}} \le B < \infty, \quad n \ge 1.$$

If a is a point of a compact subset E of \mathbb{C} such that $c(a, \varrho_n) \geq m > 0$, $(n \geq 1)$, then for every $\varrho > 0$ the function $V_{E \cap \overline{B}(a,\varrho)}$ is Hölder continuous at a with exponent $\mu = m/\log B$:

$$W_{E \cap \bar{B}(a,\rho)}(z) \le M \delta^{m/\log B} \quad \text{if } |z-a| \le \delta \le 1,$$

where $M = M(\varrho, r, R, m, B)$ depends only on ϱ, r, R, m and B.

Proof. Given $\rho > 0$ take n so large that $\rho_n \leq \rho$. By Proposition 1.9(7),

(2)
$$h(z, E \cap \overline{B}(a, \varrho_n), B(a, R\varrho_n)) \le e^{-m(k+1)}, \quad |z-a| \le r\varrho_{n+k}, \ k \ge 1.$$

Given δ with $0 < \delta \leq \min\{1, r\varrho_{n+1}\}$, choose k such that $r\varrho_{n+k+1} \leq \delta \leq r\varrho_{n+k}$. Then $B^{-k-1}r\varrho_n \leq \delta$ and consequently $-(k+1)\log B \leq \log \frac{\delta}{r\varrho_n}$, whence

$$-m(k+1) \le \log\left(\frac{\delta}{r\varrho_n}\right)^{m/\log B}$$

which by (2) gives

(2a)
$$h(z, E \cap \overline{B}(a, \varrho_n), B(a, R\varrho_n)) \le \left(\frac{1}{r\varrho_n}\right)^{m/\log B} \delta^{m/\log B}$$

for all z with $|z - a| \leq \delta \leq \min\{1, r\varrho_{n+1}\}$. There is $M_1 = M_1(r, R, \varrho) > 0$ such that

$$V_{E \cap \overline{B}(a,\varrho)}(z) \le M_1 h(z, E \cap \overline{B}(a,\varrho_n), B(a, R\varrho_n)), \quad |z-a| < R\varrho_n$$

which by (2a) gives the required result.

4.2. COROLLARY. (i) (Capacity Scale Condition) If $\inf_{0 \le t \le 1} c(a, t) > 0$, then E has local HCP at a.

(ii) (Uniform Capacity Scale Condition I) If there exists a positive constant m such that

$$e(a,t) \ge m, \quad a \in E, \ 0 < t \le 1$$

then E has HCP with exponent

(3)
$$\mu = \frac{m}{\log \frac{R}{r}}.$$

(

(iii) (Uniform Capacity Scale Condition II) Let $\{\varrho_n\}$ be a sequence satisfying (1). If there exists a positive constant m such that

$$c(a, \varrho_n) \ge m, \quad a \in E, \ n \ge 1,$$

then E has HCP with exponent $\mu = m/\log B$.

(iv) (Uniform Logarithmic Capacity Scale Condition) If E is uniformly perfect in the sense of Pommerenke [9], i.e.

 $t^{-1}d(a,t) \equiv d(t^{-1}E \cap \overline{B}(a,t)) \ge m = \text{const} > 0, \quad 0 \le t \le 1, \ a \in E,$

then E has HCP.

Observe that by Lemma 1.7 a compact set E is uniformly perfect if and only if $c(a,t) \ge m > 0$ for $a \in E$ and $0 < t \le 1$. We assume here that 1 < r < R - 2.

4.3. Remark. The condition of (ii) (resp. (iii)) of Corollary 4.2 means that for each t (resp. for each n) the portion of E contained in the disk $\overline{B}(a,t)$ (resp. in the disk $\overline{B}(a, \varrho_n)$) scaled 1/t times (resp. $1/\varrho_n$ times) has the condenser capacity with respect to the balls B(a, R) and $\overline{B}(a, r)$ (see Lemma 1.7(iii)) larger than a positive constant m. From the point of view of the condenser capacity a compact set satisfying the Uniform Capacity Scale Condition is "self-similar" at each of its points. Analogously, from the point of view of the transfinite diameter (equivalently: Wiener capacity) a compact set E is uniformly perfect iff it is self-similar at each of its points.

4.4. Given a compact set E in \mathbb{C} , consider the following conditions:

(a) E satisfies the Local Markov Inequality, i.e. for every $\nu \geq 1$ there exists c_{ν} such that

$$\|p'_{\nu}\|_{E\cap\bar{B}(a,\delta)} \le \frac{c_{\nu}}{\delta} \|p_{\nu}\|_{E\cap\bar{B}(a,\delta)}, \quad a \in E, \ 0 < \delta \le 1,$$

where p_{ν} is any polynomial of degree $\leq \nu$;

- (b) *E* is uniformly perfect, i.e. $\exists_{c\geq 1}\forall_{\varepsilon\in(0,1]}\forall_{z\in E}\exists_{z'\in E}\varepsilon/c\leq |z-z'|\leq\varepsilon;$
- (c) E satisfies the $\mathit{Uniform}\ \mathit{Logarithmic}\ \mathit{Capacity}\ \mathit{Scale}\ \mathit{Condition},$ i.e.
 - $d(t^{-1}E \cap \{|z a| \le t\}) \ge m = \text{const} > 0, \quad a \in E, \ 0 < t \le 1;$
- (d) E has the Hölder Continuity Property, i.e. for some $\kappa, \mu > 0$,

$$V_E(z) \le \kappa |z-a|^{\mu}, \quad a \in E, \ z \in \mathbb{C}, \ |z-a| \le 1;$$

(e) E satisfies the Markov Inequality, i.e. for some $M, \sigma > 0$,

$$||p'_{\nu}||_{E} \le M\nu^{\sigma} ||p_{\nu}||_{E}, \quad \nu \ge 1.$$

It is known that

$$(a) \Leftrightarrow (b) \Leftrightarrow (c) \Rightarrow (d) \Rightarrow (e).$$

The equivalence (a) \Leftrightarrow (b) is due to Wallin and Wingren [17] (see also [6]). The equivalence (b) \Leftrightarrow (c) is due to Pommerenke [9]. As already observed in 4.2 the implication (c) \Rightarrow (d) follows from Theorem 4.1. Other proofs of this implication were earlier given by Lithner [6] and José Fernandez (in a letter dated June 28, 1994). The present author does not know who was the first to prove the implication (c) \Rightarrow (d). In the book [2] (pages 64 and 138) this implication is stated without proof as if it were well known.

The last implication $(d) \Rightarrow (e)$ is known since a long time; it follows from the Cauchy integral formula (or from the Cauchy inequalities).

As already mentioned in the introduction, for Cantor sets associated with a sequence $\{l_n\}$ such that $l_{n+1} \leq \frac{1}{2}l_n$ and the limit $\lim_{n\to\infty} l_{n+1}/l_n$ exists, all the above conditions are equivalent.

QUESTION. Which (if any) of the implications (e) \Rightarrow (d), (e) \Rightarrow (c), or (d) \Rightarrow (c) is true for all compact sets *E* in \mathbb{C} ?

4.5. EXAMPLE. Let $\{l_n\}$ be a sequence of positive real numbers with $l_{n+1} \leq \frac{1}{2}l_n \ (n \geq 0), \ l_0 = 1$. Put $F := \{0\} \cup \bigcup_{n=0}^{\infty} [l_n - l_{n+1}, l_n]$.

(i) If $\sum_{n=0}^{\infty} \frac{1}{\log(1/l_n)} = \infty$ (or $\limsup_{n\to\infty} l_n^{-q} l_{n+1} > 0$ for some q > 0), then F is regular.

(ii) If

$$\inf_{n\geq 1} l_{n+1}/l_n \geq \alpha = \text{const} > 0,$$

then

$$d(a,t) := d(F \cap \{|z-a| \le t\}) \ge \frac{\alpha^2}{8}t, \quad 0 \le t \le 1, \ a \in F.$$

Proof. (i) follows from Theorem 2.3(ii) (resp. from Corollary 2.4). (ii) First we shall show that

$$(*) d(0,t) \ge \frac{\alpha^2}{4}t, \quad 0 \le t \le 1$$

Indeed, given t with $0 \le t \le 1$, there exists n such that $l_{n+1} < t \le l_n$. Therefore

$$d(0,t) \ge d(0,l_{n+1}) \ge \frac{1}{4}l_{n+2} \ge \frac{\alpha^2}{4}l_n \ge \frac{\alpha^2}{4}t.$$

Given $a \in F$, there exists n such that $a \in [l_n - l_{n+1}, l_n]$. It is clear that $d(a,t) \geq \frac{t}{4}$, when $0 \leq t \leq \frac{1}{2}l_{n+1}$. If $\frac{1}{2}l_{n+1} < t \leq l_n$, then $d(a,t) \geq d(a, \frac{1}{2}l_{n+1}) \geq \frac{1}{8}l_{n+1} \geq \frac{\alpha}{8}l_n \geq \frac{\alpha}{8}t$. Finally, if $l_n < t \leq 1$, then $d(a,t) \geq d(0,t)$, which by (*) gives $d(a,t) \geq \frac{\alpha^2}{4}t$. It is clear that $\alpha \leq \frac{1}{2}$. Therefore $d(a,t) \geq \frac{\alpha^2}{8}t$ for $a \in F$ and $0 < t \leq 1$.

References

- L. Białas and A. Volberg, Markov's property of the Cantor ternary set, Studia Math. 104 (1993), 259–268.
- [2] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, 1993.
- [3] W. Hayman and Ch. Pommereneke, On analytic functions of bounded mean oscillation, Bull. London Math. Soc. 10 (1978), 219–224.
- [4] O. D. Kellogg and F. Vasilesco, A contribution to the theory of capacity, Amer. J. Math. 51 (1929), 515–526.
- [5] N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966.
- [6] J. Lithner, Comparing two versions of Markov's inequality on compact sets, J. Approx. Theory 77 (1994), 202–211.
- W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269–274.
- [8] —, Markov's inequality and the existence of an extension operator for C^{∞} functions, J. Approx. Theory 61 (1990), 106–117.
- Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel) 32 (1980), 192–199.
- [10] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in Cⁿ, Sophia Kokyuroku in Math. 14, Sophia University, Tokyo, 1982.
- [11] —, Rapid polynomial approximation on compact sets in \mathbb{C}^N , Univ. Iagel. Acta Math. 30 (1993), 145–154.
- [12] —, Compact sets in \mathbb{R}^n admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441–448.
- [13] —, Wiener's type sufficient conditions in \mathbb{C}^N , to appear.
- [14] V. Totik, Markoff constants for Cantor sets, to appear.
- [15] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

- [16] C. de la Vallée-Poussin, Points irréguliers. Détermination des masses par les potentiels, Bull. Cl. Sci. Bruxelles (5) 24 (1938), 672–689.
- [17] H. Wallin and P. Wingren, Dimension and geometry of sets defined by polynomial inequalities, J. Approx. Theory 69 (1992), 231–249.
- [18] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20, Amer. Math. Soc., Providence, R.I., 1935. Third edition, 1960.
- [19] N. Wiener, The Dirichlet problem, J. Math. Phys. Mass. Inst. Techn. 3 (1924), 127–146.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: siciak@im.uj.edu.pl

Reçu par la Rédaction le 10.10.1995