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W lodzimierz Mlak in memoriam

Abstract. The following two questions as well as their relationship are studied:

(i) Is a closed linear operator in a Banach space bounded if its C∞-vectors coincide
with analytic (or semianalytic) ones?

(ii) When are the domains of two successive powers of the operator in question equal?

The affirmative answer to the first question is established in case of paranormal operators.
All these investigations are illustrated in the context of weighted shifts.

Let E be a (real or complex) Banach space. By a subspace of E we always
understand a linear subspace; all operators under consideration are assumed
to be linear.

Given an operator A in E , we set

D∞(A) =
∞⋂
n=1

D(An)

whereD(A) stands for the domain of A. The members ofD∞(A) are custom-
arily called C∞-vectors of A. We investigate some subspaces of C∞-vectors,
which play an essential role in the theory of symmetric, formally normal
and subnormal operators as well as generators of continuous semigroups in
Banach spaces, in particular. Among them there are the classes of bounded,
analytic and semianalytic vectors (see [1, 4, 6, 8, 9, 10 and 16]). Here we
work out a common framework for all of them. The problem we deal with is
as follows. It is clear that if A is a bounded operator on E , then the class of
all its C∞-vectors coincides with anyone of the above mentioned. Our main
question is the converse: is it true that a closed operator is bounded if its
C∞-vectors coincide with, say, analytic ones? It turns out that the answer
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is negative, in general. However, it is affirmative for the so called paranor-
mal operators; in the Hilbert space case they form a class which contains
hyponormal operators. This class is especially interesting from unbounded
operator point of view. We establish necessary and sufficient conditions for
paranormal operators to be bounded in terms of properly tempered bounded
vectors. This is a fair generalization of our earlier work (see [22, 23, 17, 18
and 19], for instance). Finally, we give examples of closed unbounded oper-
ators for which the C∞-vectors are the same as the bounded ones.

Preliminaries. Let us start with the definition of bounded vectors. For
a ≥ 0 set

Ba(A) = {f ∈ D∞(A) : ∃c > 0 ∀n ≥ 0, ‖Anf‖ ≤ can}

and

B(A) =
⋃
a>0

Ba(A).

Call members of B(A) bounded vectors of A. It is clear that the family
{Ba(A)}a≥0 is increasing in a and B0(A) = N (A).

Another way of looking at B(A) is to realize that it is composed of vectors
f for which

∑∞
n=0 ‖Anf‖tn < ∞ with some t = tf > 0. This observation

allows us to define the remaining subspaces in a unified way. Denote by A+

the family of germs at 0 of holomorphic functions in one complex variable
which have positive Taylor’s coefficients at 0. Let ϕ ∈ A+. We say that a
vector f ∈ D∞(A) belongs to Aϕ(A) if there exists t = tf > 0 such that

∞∑
n=0

ϕ(n)(0)
n!

‖Anf‖ tn <∞.

In particular, we have B(A) = Aϕ(A) with ϕ(z) := 1/(1 − z), |z| < 1. It
follows from the Cauchy–Hadamard formula for the radius of convergence
of power series that

(1) f ∈ Aϕ(A)⇔ lim sup
n→∞

(
ϕ(n)(0)
n!

‖Anf‖
)1/n

<∞.

Put A(A) := Aϕ(A) for ϕ(z) = ez and As(A) := Aψ(A) for ψ(z) = cosh
√
z.

Members of A(A) and As(A) are called analytic and semianalytic vectors
of A, respectively. Notice that Ba(A), B(A), A(A) and As(A) are subspaces
of D(A) which are invariant for A.

We are interested in describing circumstances under which equality in
the inclusion Aϕ(A) ⊂ D∞(A) appears. First define, for n ≥ 0, the following
graph norm:
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‖f‖A,n =
( n∑
i=0

‖Aif‖2
)1/2

, f ∈ D(An),

and set
‖f‖A = ‖f‖A,1.

This norm has the advantage of being an inner product norm when E is a
Hilbert space. Denote by τ∞(A) the locally convex topology induced by the
family {‖·‖A,n}∞n=1 of norms on D∞(A). It coincides with the locally convex
topology induced by the norms {‖ · ‖An}∞n=1.

Our first observation can be deduced straightforwardly by induction.

Proposition 1. An operator A in E is closed if and only if D(An) is
complete with respect to ‖·‖A,n for any n ≥ 1. Moreover , τ∞(A) is complete
provided A is closed.

The following two propositions are basic for our purpose.

Proposition 2. Let n ≥ 0 and s ≥ 1. Then the following conditions
are equivalent :

(i) A|D∞(A) is ‖ · ‖A,n-bounded ,
(ii) the norms ‖ · ‖A,n and ‖ · ‖A,n+1 are equivalent on D∞(A),
(iii) the norms ‖ · ‖A,n and ‖ · ‖A,n+s are equivalent on D∞(A),
(iv) τ∞(A) coincides with the topology induced by ‖ · ‖A,n,
(v) τ∞(A) coincides with the topology induced by ‖·‖A,m for any m ≥ n.

P r o o f. The proof of (i)⇔(ii) is clear due to the definitions of the norms
involved.

(ii)⇒(iii). It follows from the aforesaid equivalence that A|D∞(A) is
‖ · ‖A,n-bounded. This implies that

‖Af‖2A,n+1 = ‖Af‖2 + ‖A2f‖2A,n
≤ ‖Af‖2A,n + ‖A|D∞(A)‖4A,n‖f‖2A,n
≤ (‖A|D∞(A)‖2A,n + ‖A|D∞(A)‖4A,n)‖f‖2A,n+1, f ∈ D∞(A).

Thus A|D∞(A) is ‖·‖A,n+1-bounded. Again the aforesaid equivalence implies
that the norms ‖ · ‖A,n+1 and ‖ · ‖A,n+2 are equivalent on D∞(A). Now
induction brings us to (iii).

(iii)⇒(ii) and (iii)⇒(v) come out from monotonicity of the sequence
{‖ · ‖A,i}∞i=1.

(iv)⇒(ii) and (v)⇒(iv) are obvious.

Proposition 3. Suppose A is closed and n ≥ 0. Then the following
conditions are equivalent :

(i) the norms ‖ · ‖A,n and ‖ · ‖A,n+1 are equivalent on D∞(A),
(ii) D∞(A) is ‖ · ‖A,n-closed in D(An) (⇔ D∞(A) is ‖ · ‖A,n-complete).
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P r o o f. (i)⇒(ii). Consider a sequence {fk}∞k=0⊂D∞(A) which is ‖·‖A,n-
convergent to f ∈ D(An). According to Proposition 2, {fk}∞k=0 is a Cauchy
sequence in τ∞(A). Due to Proposition 1 there is g ∈ D∞(A) such that
{fk}∞k=0 is τ∞(A)-convergent to g. Since the topologies τ∞(A) and that of
‖ · ‖A,n coincide (cf. Proposition 2), we have f = g ∈ D∞(A).

(ii)⇒(i). By Proposition 1, D∞(A) is ‖ · ‖A,n-complete. The restriction
A|D∞(A) is closed as an operator on the ‖ · ‖A,n-complete space D∞(A). By
the closed graph theorem A|D∞(A) is ‖ · ‖A,n-bounded. Now the condition
(i) follows from the equivalence (i)⇔(ii) of Proposition 2.

When D∞(A) = Aϕ(A)? This question finds its answer in the following

Theorem 4. If A is a closed operator in E and ϕ ∈ A+, then the
following conditions are equivalent :

(i) D∞(A) = Aϕ(A),
(ii) D∞(A) = Ba(A) for some a ≥ 0,
(iii) there exists n ≥ 0 such that D∞(A) is ‖ · ‖A,n-complete,
(iv) there exists n ≥ 0 such that A|D∞(A) is ‖ · ‖A,n-bounded ,
(v) there is a norm (1) ‖·‖∗ on D∞(A) such that A|D∞(A) is ‖·‖∗-bounded

and the topology induced by ‖ · ‖∗ is stronger than that induced by ‖ · ‖.

P r o o f. (i)⇒(iv). Set pk(f) = ‖Akf‖ϕ(k)(0)/k! for f ∈ D∞(A) and
k ≥ 1. It follows from (1) and from the equality D∞(A) = Aϕ(A) that

D∞(A) =
∞⋃
j=1

∞⋂
k=1

{f ∈ D∞(A) : pk(f) ≤ jk}.

Since pk is τ∞(A)-continuous on D∞(A) and D∞(A) is a Fréchet space with
respect to τ∞(A) (cf. Proposition 1), we conclude (Baire category theorem)
that there is j ≥ 1 such that the τ∞(A)-interior of

⋂∞
k=1{f ∈ D∞(A) :

pk(f) ≤ jk} is nonempty. But every pk is a seminorm, so a standard argu-
ment allows us to find n ≥ 0 and b > 0 such that pk(f) ≤ bjk‖f‖A,n for
f ∈ D∞(A) and k ≥ 1. This in turn implies that there is c > 0 such that

(2)
n+1∑
k=0

pk(f) ≤ c‖f‖A,n, f ∈ D∞(A).

Since in a finite-dimensional space the `1-norm and `2-norm are equivalent,
we can find d > 0 such that

(3) ‖f‖A,n+1 ≤ d
n+1∑
k=0

pk(f), f ∈ D∞(A).

(1) The norm can always be chosen to be complete.
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It follows from (2) and (3) that the norms ‖·‖A,n and ‖·‖A,n+1 are equivalent
on D∞(A), so by Proposition 2, A|D∞(A) is ‖ · ‖A,n-bounded.

(iii)⇔(iv) is a consequence of Propositions 2 and 3. (iv)⇒(v) is obvious.
(v)⇒(ii). If a := ‖A|D∞(A)‖∗, then

‖Anf‖ ≤ c‖Anf‖∗ ≤ anc‖f‖∗, f ∈ D∞(A), n ≥ 0,

for some c > 0. This shows that D∞(A) = Ba(A).
The implication (ii)⇒(i), which completes the proof, is straightforward.

In fact, we have proved that if ϕ ∈ A+ andAϕ(A) 6= D∞(A), thenAϕ(A)
is of the first Baire category (with respect to τ∞(A)) in D∞(A). On the
other hand, the equality Aϕ(A) = D∞(A) holds for every ϕ ∈ A+ provided
it does for at least one. If this happens, then there is a smallest nonnegative
integer n such that D∞(A) is ‖ · ‖A,n-complete (and, by Propositions 2 and
3, D∞(A) is ‖ · ‖A,k-complete for every k ≥ n). This n depends on A but
not on ϕ (see Example 22).

There are two classes of unbounded operators relevant here. A densely
defined operator A in E is said to be nilpotent or idempotent if A2 = 0|D(A)

or A2 = A, respectively. Notice that, referring to Theorem 4, closed idem-
potents and nilpotents satisfy D(A) = D∞(A) = B1(A), though they may
not be bounded (cf. [12, 13]). They are always ‖ · ‖A,n-bounded for n ≥ 1.

Note also that if A is a closed unbounded operator in E such that
D∞(A) = Aϕ(A) for some ϕ ∈ A+, then its restriction to D∞(A) is the gen-
erator of an analytic group over (C,+) of unbounded operators in D∞(A).
Indeed, according to Theorem 4 there is n ≥ 0 such that D∞(A) is ‖ · ‖A,n-
complete and the operator A∞ := A|D∞(A) is ‖·‖A,n-bounded. Thus we can
define the required group as

T (z) =
∞∑
k=0

Ak∞
zk

k!
, z ∈ C,

where the series is ‖·‖A,n-convergent. Since the topology induced by ‖·‖A,n
is stronger than that induced by ‖ ·‖, the group T (·) is analytic with respect
to ‖ · ‖ (i.e. the function C 3 z 7→ T (z)f ∈ E is entire for every f ∈ D∞(A))
and its generator calculated with respect to ‖ · ‖ is the same as the one
calculated with respect to ‖·‖A,n, the latter being equal to A∞. To illustrate
this phenomenon, consider an unbounded closed idempotent A in E . Then
clearly T (z) = I + (ez − 1)A for z ∈ C. In case A is an unbounded closed
nilpotent we have T (z) = I + zA for z ∈ C.

Paranormal operators. Following [5] we call an operator A in E para-
normal if

(4) ‖Af‖2 ≤ ‖f‖ · ‖A2f‖, f ∈ D(A2).
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Though the definition of paranormality is rather simple it has far reach-
ing consequences. We begin with some inequalities that have been proved
in [24].

Proposition 5. If A is a paranormal operator in E and n ≥ 0, then for
any f ∈ D(An+1) the following inequalities hold :

‖Anf‖ ≤ ‖f‖1/(n+1)‖An+1f‖n/(n+1),(5)
‖Af‖ ≤ ‖f‖n/(n+1)‖An+1f‖1/(n+1).(6)

The following result is a consequence of the above inequalities.

Proposition 6. If A is a paranormal operator in E and n ≥ 0, then

(i) An is paranormal ,
(ii) A−1 is paranormal provided the kernel of A is trivial ,
(iii) the norms ‖ · ‖A,n and ‖ · ‖An are equivalent ,
(iv) An is closed provided A is closed.

P r o o f. (i) Notice first that paranormality is equivalent to

‖Af‖
‖f‖

≤ ‖A
2f‖

‖Af‖
, f ∈ D(A2), Af 6= 0.

Replacing in the above f by Af and using an induction argument we get

(7)
‖Af‖
‖f‖

≤ ‖A
2f‖

‖Af‖
≤ . . . ≤ ‖Anf‖

‖An−1f‖
, f ∈ D(An), An−1f 6= 0.

By the inequality (6), we have, for j ≥ 1,

(8) f ∈ D(Aj), Ajf = 0 ⇒ Af = 0.

Take f ∈ D(A2n) such that Anf 6= 0. By (8) we have Ajf 6= 0 for j =
0, . . . , 2n− 1. This and (7) give us

‖Anf‖
‖f‖

=
‖Anf‖
‖An−1f‖

· . . . · ‖Af‖
‖f‖

≤ ‖A2nf‖
‖A2n−1f‖

· . . . · ‖A
n+1f‖
‖Anf‖

=
‖A2nf‖
‖Anf‖

,

so An is paranormal.
(ii) Suppose A is invertible. Take g ∈ D(A−2) and put f = A−2g in (4).

What we get is just (4) for A−1.
(iii) It is clear that

‖f‖2An ≤ ‖f‖2A,n, f ∈ D(An).

Consider {fk}∞k=0 ⊂ D(An) such that ‖fk‖An → 0 as k →∞. In particular,
‖Anfk‖ → 0 as k →∞. It follows from (5) that ‖An−1fk‖ → 0 as k →∞.
Repeating the argument we deduce that ‖Ajfk‖ → 0 as k → ∞ for j =
n, n− 1, . . . , 1 or, equivalently, ‖fk‖A,n → 0 as k →∞.

Finally, the condition (iv) follows from Proposition 1 and (iii).
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We are now in a position to formulate a version of Theorem 4 for para-
normal operators.

Theorem 7. If A is a closed paranormal operator in E and ϕ ∈ A+,
then the following conditions are equivalent :

(i) D∞(A) = Aϕ(A),
(ii) D∞(A) = Ba(A) for some a ≥ 0,
(iii) D∞(A) is closed in E ,
(iv) A|D∞(A) is a bounded operator in E.

P r o o f. (i)⇒(iii). According to Theorem 4, there is n such that D∞(A) is
‖·‖A,n-complete. By Proposition 6(iii), D∞(A) is also ‖·‖An -complete. Thus
An = An|D∞(A) is a closed operator in E . It follows from Proposition 6(i)
that An is paranormal and consequently so is An. Applying Theorem 1 of
[11] to An, we get the required closedness.

(iii)⇒(iv). This comes out from the closed graph theorem applied to
A|D∞(A). The implications (iv)⇒(ii) (with a = ‖A|D∞(A)‖) and (ii)⇒(i) are
clear.

The following result provides us with a description of bounded vectors
for paranormal operators.

Lemma 8. Let A be a paranormal operator in E and let a ≥ 0. Then

(a) limn→∞ ‖Anf‖1/n exists in [0,∞] for any f ∈ D∞(A),
(b) Ba(A) = {f ∈ D∞(A) : limn→∞ ‖Anf‖1/n ≤ a},
(c) ‖Af‖ ≤ a‖f‖ for any f ∈ Ba(A),
(d) the space Ba(A) is closed and A|Ba(A) is a bounded paranormal op-

erator provided A is closed.

P r o o f. (a) Take f ∈ D∞(A) and put an = ‖Anf‖ for n ≥ 0. Replacing
f in (4) by An−1f we get

a2
n ≤ an−1an+1, n ≥ 1.

This implies that the limit αA(f) := limn→∞ a
1/n
n exists.

(b)&(c). Suppose that αA(f) is finite. By (6), we have

(9) ‖Af‖ ≤ αA(f) ‖f‖.
It follows from (a) that αAn(f) = αA(f)n for n ≥ 0. Since by Proposi-
tion 6(i) the operator An is paranormal, we conclude from (9) that

‖Anf‖ ≤ αAn(f) ‖f‖ = αA(f)n‖f‖, n ≥ 0.

This means that f is in BαA(f)(A), implying immediately (b) and, conse-
quently, (c).

(d) From (c) we see that the operator Aa = A|Ba(A) is bounded and
‖Aa‖ ≤ a. Since A is closed, we have Aa ⊂ A and, consequently, Aa =
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A|Ba(A)
. This, in turn, implies that Ba(A)⊂Ba(A), which shows that Ba(A)

is closed. It is clear that Aa is bounded and paranormal.

Corollary 9. Let A be a closable paranormal operator in E. Then
D∞(A) ∩ Ba(A) = Ba(A) for any a ≥ 0.

P r o o f. Put B = (A|Ba(A))−. By Lemma 8(c), B is bounded on Ba(A)
and ‖B‖≤a. This implies that the subspace L = D∞(A)∩Ba(A) is invariant
for A and A|L ⊂ B (because B ⊂ A). Take now f ∈ L. Then ‖Anf‖ =
‖Bnf‖ ≤ ‖B‖n‖f‖ ≤ an‖f‖ for n ≥ 0, so f ∈ Ba(A).

Bounded vectors play an essential role in the following criterion for the
boundedness of paranormal operators.

Theorem 10. Let A be a paranormal operator in E.

1o If D(A) = lin{Anf : f ∈ X , n ≥ 0} for some subset X of D∞(A),
then A is bounded if and only if sup{limn→∞ ‖Anf‖1/n : f ∈ X} is finite.
If this happens, then

(10) ‖A‖ = sup{ lim
n→∞

‖Anf‖1/n : f ∈ X}.

2o If A ∈ B(E), then the spectral radius of A is equal to ‖A‖ and

(11) ‖A‖ = max{ lim
n→∞

‖Anf‖1/n : f ∈ E}.

P r o o f. 1o The inequality “≥” in (10) is obvious. Denote by a the right
hand side of (10) and suppose a < ∞. It follows from Lemma 8(b) that
X ⊂ Ba(A). However, Ba(A) is invariant for A, so D(A) = lin{Anf : f ∈
X , n ≥ 0} ⊂ Ba(A). Now, by Lemma 8(c), we have ‖A‖ ≤ a.

2o It follows from (10) with X = E and the Gelfand formula that the
spectral radius of A is equal to ‖A‖. The equality (11) follows from [3] and
Lemma 8(a).

R e m a r k. In general it is not true that in (10) “sup” can be replaced
by “max”, as in (11). Take for example the restriction of the multiplication
operator by the independent variable on L2([0, 1]) to the dense subspace
X of L2([0, 1]) composed of all continuous functions with closed support in
[0, 1).

On the other hand, the boundedness criterion 1o in Theorem 10 is no
longer true for operators which are not paranormal, even if X = D(A), A is
closed and the limit limn→∞ ‖Anf‖1/n exists for each f ∈ D(A). Indeed, all
these conditions are satisfied by unbounded closed nilpotents and idempo-
tents, because in the first case limn→∞ ‖Anf‖1/n = 0, f ∈ D(A), and in the
other limn→∞ ‖Anf‖1/n = 0 or 1 depending on whether Af = 0 or Af 6= 0.

Call an operator A cyclic with a cyclic vector f0 ∈ D∞(A) if

lin{Anf0 : n ≥ 0} = {p(A)f0 : p ∈ C[Z]} = D(A).
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Corollary 11. If A is a cyclic paranormal operator in E with a cyclic
vector f0, then A is bounded if and only if f0 ∈ B(A). Moreover ,

‖A‖ = lim
n→∞

‖Anf0‖1/n.

P r o o f. Apply Theorem 10 to X = {f0}.

Formally normal operators. In this section we deal with a Hilbert
space H instead of E . Recall that a densely defined operator N in H is said
to be formally normal if D(N) ⊂ D(N∗) and ‖Nf‖ = ‖N∗f‖ for f ∈ D(N).
Set

D∞(N,N∗) =
∞⋂
n=1

{D(A1 · · ·An) : Ak = N or Ak = N∗ for k = 1, . . . , n} .

The space D∞(N,N∗) is the largest subspace of D(N) ∩ D(N∗) which is
invariant for both N and N∗. Our question here is when D∞(N,N∗) is
equal to Aϕ(N). The answer is in the following

Theorem 12. Suppose N is a closed formally normal operator in H. If
ϕ ∈ A+, then the following conditions are equivalent :

(i) D∞(N,N∗) ⊂ Aϕ(N);
(ii) D∞(N,N∗) ⊂ Ba(N) for some a ≥ 0;
(iii) D∞(N,N∗) is closed in H;
(iv) N |D∞(N,N∗) is a bounded operator in H;
(v) N = N∞ ⊕N0, where N∞ is a bounded normal operator and N0 is

a closed formally normal operator with D∞(N0, N
∗
0 ) = {0}.

Inclusion in (i) becomes equality if and only if the operator N0 in (v)
satisfies additionally Aϕ(N0) = {0}.

P r o o f. First we prove that the space D∞(N,N∗) is τ∞(N)-closed in
D∞(N). Take {fn}∞n=0 ⊂ D∞(N,N∗) converging to f ∈ D∞(N) in τ∞(N).
Applying induction we show that for every k ≥ 1,

(Ck) A1, . . . , Ak ∈ {N,N∗} ⇒ f ∈ D(Ak · · ·A1)
& lim
n→∞

Ak · · ·A1fn = Ak · · ·A1f,

which will force that f ∈ D∞(N,N∗).
Since the proof of (C1) is similar to that of (Ck)⇒(Ck+1), k ≥ 1, we

restrict ourselves to the latter. Take A1, . . . , Ak+1 ∈ {N,N∗}. It follows
from (Ck) that limn→∞Ak · · ·A1fn = Ak · · ·A1f . One can check, using the
formal normality of N , that NN∗g = N∗Ng for all g ∈ D∞(N,N∗). Thus,
by the τ∞(N)-convergence of the sequence {fn}∞n=0, we have

‖Ak+1Ak · · ·A1(fn − fm)‖ = ‖Nk+1(fn − fm)‖ → 0 as m,n→∞.
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Hence, there is g such that g = limn→∞Ak+1(Ak · · ·A1fn). Since Ak+1 is
closed, Ak · · ·A1f ∈ D(Ak+1) and g = Ak+1(Ak · · ·A1f), which means that
(Ck+1) holds.

Now, since N is paranormal, the proof of equivalence of (i)–(iv) is the
same as that of Theorem 7 after replacing D∞(N) by D∞(N,N∗).

(v)⇒(i) in both versions. This follows from

D∞(N,N∗) = D∞(N∞, N∗∞)⊕ {0}

= Aϕ(N∞)⊕ {0}
{
⊂ Aϕ(N),
= Aϕ(N) provided Aϕ(N0) = {0}.

(i)⇒(v) in both versions. Employing the implications (i)⇒(iii) and
(i)⇒(iv) as well as the fact that N∞ := N |D∞(N,N∗) is formally normal,
we see that N∞ is a bounded normal operator on D∞(N,N∗). According to
Corollary 1 of [20], D∞(N,N∗) reduces N . Set N0 = N |H	D∞(N,N∗). Since
D∞(N0, N

∗
0 ) ⊂ D∞(N,N∗)∩ (H	D∞(N,N∗)), we must have D∞(N0, N

∗
0 )

= {0}. If D∞(N,N∗) = Aϕ(N), then Aϕ(N∞) ⊕ Aϕ(N0) = Aϕ(N) =
D∞(N,N∗) = D∞(N∞, N∗∞)⊕ {0} = Aϕ(N∞)⊕ {0}, so Aϕ(N0) = {0}.

Thus, if N is normal, the spectral theorem implies that D∞(N,N∗) =
D∞(N) and, consequently, D∞(N) = Aϕ(N) if and only if N is bounded.

Corollary 13. If A is a closed symmetric operator in H and ϕ ∈ A+,
then D∞(A) = Aϕ(A) if and only if A = A∞⊕A0, where A∞ is a bounded
selfadjoint operator and A0 is a closed symmetric operator with D∞(A0) =
{0}.

Note that there are closed symmetric operators having D∞(A) = {0}
(cf. [2]).

Equality of successive domains. In this section we give necessary and
sufficient conditions for the domains of two successive powers of an operator
to be equal. Let us start with an observation which is true in a more general
setting.

Proposition 14. If n ≥ 0 and s ≥ 1, then the following conditions are
equivalent :

(i) D(An) = D(An+s),
(ii) AsD(An) ⊂ D(An),
(iii) D(An) = D(An+1),
(iv) D(An) = D∞(A).

P r o o f. (i)⇒(ii). If f ∈ D(An) = D(An+s), then Asf ∈ D(An).
(ii)⇒(i). If f ∈ D(An), then Asf ∈ D(An) and, consequently, f ∈

D(An+s).
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(iii)⇒(iv). Since (i)⇒(ii) for s = 1, we get AD(An) ⊂ D(An) and, conse-
quently, AiD(An) ⊂ D(An), i ≥ 1. Since (ii)⇒(i), we get D(An) = D(Am)
for any m ≥ n and, consequently, (iv) holds.

(i)⇒(iii) and (iv)⇒(i) are trivial.

Notice that if A is closed, then, by Proposition 1 and the closed graph
theorem, D(An) = D(An+1) if and only if the norms ‖ · ‖A,n and ‖ · ‖A,n+1

are equivalent on D(An+1) and D(An+1) is ‖ · ‖A,n-dense in D(An). This
fact can be strengthened as follows:

Proposition 15. Let A be a closed operator in E and let n ≥ 0. If
D(Ai+1) is ‖ · ‖A,i-dense in D(Ai) for every i ≥ n, then the following con-
ditions are equivalent :

(i) D(An) = D(An+1),
(ii) the norms ‖ · ‖A,n and ‖ · ‖A,n+1 are equivalent on D∞(A),
(iii) τ∞(A) coincides with the topology induced by ‖ · ‖A,n,
(iv) D∞(A) is ‖ · ‖A,n-complete.

P r o o f. (i)⇒(ii). Applying Proposition 1, under our circumstances, we
infer that the spaces (D(An), ‖ · ‖A,n) and (D(An), ‖ · ‖A,n+1) are complete.
So, by the closed graph theorem, the norms ‖ · ‖A,n and ‖ · ‖A,n+1 are
equivalent.

(ii)⇔(iii). This is a direct consequence of Proposition 2.
(ii)⇒(iv). This is a consequence of Proposition 3.
(iv)⇒(i). The Mittag-Leffler approximation theorem [15, Lemma 1.1.2]

implies that D∞(A) is ‖·‖A,n-dense in D(An). Since D∞(A) is ‖·‖A,n-closed,
the condition (i) holds.

As the next result shows, equality of the domains of two successive pow-
ers of a closed operator always implies that D∞(A) = B(A). It would be
interesting to know whether the converse implication holds.

Corollary 16. If A is a closed operator in E and ϕ ∈ A+, then the
following conditions are equivalent :

(i) D(Ak) = D(Ak+1) for some k ≥ 0,
(ii) D∞(A) = Aϕ(A) and there exists m ≥ 0 such that D(Aj+1) is ‖·‖A,j-

dense in D(Aj) for every j ≥ m.

P r o o f. (i)⇒(ii). Combine Propositions 14, 15 and Theorem 4.
(ii)⇒(i). It follows from Theorem 4 that D∞(A) is ‖ · ‖A,n-complete for

some n ≥ 0. Combining Propositions 1–3 we conclude that it is ‖ · ‖A,j-
complete for j ≥ n. Now Proposition 15 implies (i) with k = max{m,n}.
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The proof of the next corollary follows essentially the same lines as that
of Corollary 16 with one exception: we use Theorem 7 instead of Theorem
4 in the proof of (ii)⇒(i).

Corollary 17. If A is a closed paranormal operator in E , ϕ ∈ A+ and
k ≥ 0, then the following conditions are equivalent :

(i) D(Ak) = D(Ak+1),
(ii) D∞(A) = Aϕ(A) and D(Aj+1) is ‖ · ‖A,j-dense in D(Aj) for any

j ≥ k.

Proposition 6(iii) implies that D(Aj+1) is ‖ · ‖A,j-dense in D(Aj) if and
only if D(Aj+1) is a core of Aj . In this connection, notice that Theorem 4.5
of [14] provides us with a possibility of constructing a closed symmetric
operator (which is apparently paranormal) for which the domains of its
higher powers may or may not be a core for lower ones, depending on our
wish in a sense.

Boundedness of closed paranormal operators can also be described in
terms of their successive domains as follows.

Corollary 18. Let A be a closed paranormal operator in E and let
n ≥ 2 be such that D(An) is dense in D(A). Then the following conditions
are equivalent :

(i) D(An) = D(An+1),
(ii) D(A) = D∞(A),
(iii) A is bounded.

P r o o f. (i)⇒(iii). Due to Proposition 14, we have A(D(An)) ⊂ D(An).
By Proposition 6, An is paranormal and closed. According to Theorem 1 of
[11], the space D(An) is closed. It follows from the denseness of D(An) in
D(A) that D(A) = D(An) and, consequently, the space D(A) is closed as
well. Hence, due to the closed graph theorem, A is bounded.

(iii)⇒(ii). It follows from Proposition 6(iv) that D(An) is closed in H,
so by the denseness of D(An) in D(A), we conclude that D(A) = D(An).
Applying Proposition 14 we get (ii). The implication (ii)⇒(i) is clear.

Concluding this section we show how our considerations imply a criterion
for boundedness of symmetric operators. Consider a closed symmetric oper-
ator A having one of its defect indices finite. According to Theorem 1.9 of
[14], D∞(A) is a core for An, n ≥ 0. Applying Corollary 17 (or Corollary 13)
we arrive at the following

Corollary 19. Suppose ϕ ∈ A+. A closed symmetric Hilbert space
operator A is bounded if and only if one of its defect indices is finite and
D∞(A) = Aϕ(A).
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Illustrating by weighted shifts. From now on E is a separable Hilbert
space H with inner product 〈· ,−〉. Let {en}∞n=0 be an orthonormal basis in
H and let {λn}∞n=0 be a sequence of positive numbers. The operator S in H
defined by

D(S) =
{
f ∈ H :

∞∑
k=0

|〈f, ek〉|2λ2
k <∞

}
,

Sf =
∞∑
k=0

〈f, ek〉λkek+1, f ∈ D(S),

is called a weighted shift with weights {λn}∞n=0. The operator so defined
is closed and D := lin{en}∞n=0 is its core, that is, S = (S|D)− (cf. [7,
21]). Notice that a weighted shift S is paranormal if and only if the se-
quence {λn}∞n=0 is increasing. This, in turn, is equivalent to S being hy-
ponormal.

Our first observation is that never D = D∞(S) (indeed, otherwise D∞(S)
would be a Fréchet space with respect to τ∞(S) having a countable basis)
though always D ⊂ D∞(S). The domains of powers of S and the graph
norms of S can be described explicitly as follows (2):

D(Sn) =
{
f ∈ H :

n∑
j=1

∞∑
k=0

|〈f, ek〉|2λ2
k · · ·λ2

k+j−1 <∞
}
,(12)

‖f‖2S,n =
n∑
j=0

∞∑
k=0

|〈f, ek〉|2λ2
k · · ·λ2

k+j−1, f ∈ D(Sn), n ≥ 1.(13)

This immediately implies that

lim
k→∞

‖f − Pkf‖S,n = 0, f ∈ D(Sn), n ≥ 0,

where Pk is the orthogonal projection of H onto lin{e0, . . . , ek}. Conse-
quently, for any n ≥ 0, D(Sn+1) is ‖·‖S,n-dense in D(Sn). Hence, by Propo-
sition 15, Theorem 4 and Corollary 17, we have

Proposition 20. If ϕ ∈ A+, then the following conditions are equiva-
lent :

(i) D∞(S) = Aϕ(S),
(ii) D∞(S) = Ba(S) for some a > 0,
(iii) D(Sn) = D(Sn+1) for some n ≥ 0.

Moreover , if S is paranormal , then D∞(S) = Aϕ(S) if and only if S is
bounded.

(2) We set λ2k · · ·λ
2
k+j−1 := 1 for j = 0 and k ≥ 0.
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Proposition 15 can be strengthened in case of weighted shifts as follows:

Proposition 21. If n ≥ 0, then the following conditions are equivalent :

(i) D(Sn) = D(Sn+1),
(ii) there is c > 0 such that

λ2
k · · ·λ2

k+n ≤ c
n∑
j=0

λ2
k · · ·λ2

k+j−1, k ≥ 0,

(iii) τ∞(S) coincides with the topology induced by ‖ · ‖S,n on D.

P r o o f. According to (12) and (13), the norms ‖ · ‖S,n and ‖ · ‖S,n+1

are equivalent on D∞(S) if and only if (ii) holds. On the other hand, if the
topology τ∞(S) coincides with that induced by the norm ‖ · ‖S,n on D, then
the norms ‖·‖S,n and ‖·‖S,n+1 are equivalent on D, which implies (ii). Thus
the conclusion follows from Proposition 15.

We are now in a position to state two examples related to the main
question of the paper.

Example 22. For any m ≥ 0, we construct a weighted shift S such that
D(Sn) = D(Sn+1) for n ≥ m + 1 and D(Sn) 6= D(Sn+1) for n ≤ m. For
ϑ > 1 we set

λ2
j(m+2)+l =

{
ϑj , 0 ≤ l ≤ m,
ϑ−j(m+1), l = m+ 1,

j ≥ 0.

One can check that for all j ≥ 0 and 0 ≤ l ≤ m+ 1,

λ2
k · · ·λ2

k+m+1 = ϑl ≤ ϑl
m+1∑
j=0

λ2
k · · ·λ2

k+j−1, k = j(m+ 2) + l.

Thus, by Proposition 21, we have D(Sm+1) = D(Sm+2). Consequently,
D(Sn) = D(Sn+1) for n ≥ m + 1 (cf. Proposition 14). On the other hand,
the following inequalities hold for j ≥ 0:

λ2
k · · ·λ2

k+m∑m
j=0 λ

2
k · · ·λ2

k+j−1

≥ ϑj(m+1)

λ2
k · · ·λ2

k+m−1

= ϑj , k = j(m+ 2).

Hence, once more by Proposition 21, we get D(Sm) 6= D(Sm+1), which in
turn implies D(Sn) 6= D(Sn+1) for n ≤ m (cf. Proposition 14).

Example 23. We construct a weighted shift S such that Ba(S) = H for
some a > 0 and Bb(S) 6= D∞(S) for every b > 0 (consequently, S must be
unbounded and Aϕ(S) 6= D∞(S) for every ϕ ∈ A+). Note that this could
not happen for closable paranormal operators (cf. Corollary 9). Set

λn =
{

1, n 6∈ {m! : m ≥ 1},
m, n = m!, m ≥ 1,

n ≥ 0.
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Since ‖Sne0‖ = λ0 · · ·λn−1 for n ≥ 1, we get

1 ≤ ‖Sne0‖1/n = (m!)1/n ≤ (m!)1/m!, m! + 1 ≤ n < (m+ 1)! + 1, m ≥ 1,

so limn→∞ ‖Sne0‖1/n = 1. This implies that (3) e0 ∈ B2(S) and, conse-
quently, D = lin{Sne0 : n ≥ 0} ⊂ B2(S), which in turn yields B2(S) = H.
We claim that Bb(S) 6= D∞(S) for every b > 0. Otherwise, by Proposi-
tion 20, D(Sn) = D(Sn+1) for some n ≥ 0. It follows from Proposition 21
that there is c > 0 such that

(14) λ2
k · · ·λ2

k+n ≤ c
n∑
j=0

λ2
k · · ·λ2

k+j−1, k ≥ 0.

Let m0 ≥ 1 be such that m0!m0 > n. Take m ≥ m0. Then there is k ≥ 1
such thatm! < k, k+1, . . . , k+n = (m+1)!. Hence we have λ2

k · · ·λ2
k+j−1 = 1

for j = 0, . . . , n and λ2
k · · ·λ2

k+n = (m+ 1)2, which contradicts (14).

We conclude the paper with an example of a paranormal (in fact subnor-
mal) weighted shift S for which As(S) = {0}. Take the weighted shift S with
weights λn = exp(n · n!). Then e0 6∈ As(S), so by Proposition 5 of [21] we
have As(S) = {0}; in this particular case even the space of Stieltjes vectors
of S is trivial (Proposition 5 of [21] is easily seen to be true for semianalytic
as well as for Stieltjes vectors).

References

[1] P. R. Chernof f, Some remarks on quasi-analytic vectors, Trans. Amer. Math. Soc.
167 (1972), 105–113.

[2] —, A semibounded closed symmetric operator whose square has trivial domain, Proc.
Amer. Math. Soc. 89 (1983), 289–290.
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