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On strongly monotone flows
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Abstract. M. Hirsch’s famous theorem on strongly monotone flows generated by
autonomous systems u′(t) = f(u(t)) is generalized to the case where f depends also on t,
satisfies Carathéodory hypotheses and is only locally Lipschitz continuous in u. The main
result is a corresponding Comparison Theorem, where f(t, u) is quasimonotone increasing
in u; it describes precisely for which components equality or strict inequality holds.

1. Introduction. One of M. Hirsch’s theorems on monotone flows [1]
states that the flow generated by a C1-function f is strongly monotone if
the Jacobian f ′(x) = (∂fi/∂xj) is essentially positive (i.e., ∂fi/∂xj ≥ 0 for
i 6= j) and irreducible. In the language of differential equations the theorem
says that the conditions

v′ = f(v), w′ = f(w) in J = [a, b], v(a) ≤ w(a), v(a) 6= w(a)

imply the strict inequality v(t)<w(t) in J0 =(a, b]. Here, f : R
n ⊃ D → R

n

and v,w : J → R
n, while ≤ and < refer to the componentwise ordering

in R
n.

Hirsch’s original proof was subject to criticism, and other proofs have
been given by several authors. Our objective is to present a simple proof for
a more general theorem. We allow that f depends explicitly on t and satisfies
only Carathéodory hypotheses. Furthermore, we consider the case where v,
w are not necessarily solutions but satisfy differential inequalities, and finally
we assume that f(t, x) is only locally Lipschitzian in x; let us remark that
there are important applications, e.g., in nonsymmetric mechanical systems,
where f is Lipschitzian but not of class C1. Consequently, the handsome
irreducibility assumption has to be replaced by an assumption that avoids
derivatives.
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Theorem 1 deals with a system of linear differential inequalities. The
main point in this theorem is the assertion that each component of u(t) is
either strictly positive in (a, b] or vanishes in an interval [a, a + δi] and is
positive thereafter. Theorem 2, which covers the nonlinear case, is reduced
to Theorem 1 by simple, well-known means. From these results, rather weak
additional assumptions which imply strict inequalities in J0 for all compo-
nents are easily obtained.

2. The linear case. For x, y ∈ R
n we define

x ≤ y ⇔ xi ≤ yi for i ∈ N and x < y ⇔ xi < yi for i ∈ N,

where N = {1, . . . , n}. The spaces AC(J) and L(J) contain all functions
x(t) that are absolutely continuous or integrable in J , resp. Here and below,
J = [a, b], J0 = (a, b] and en = (1, . . . , 1) ∈ R

n.

Theorem 1. Let C(t) = (cij(t)) ∈ L(J) be an essentially positive n× n
matrix , i.e., cij ≥ 0 a.e. in J for i 6= j. Then u ∈ AC(J),

(1) u(a) ≥ 0, u′ ≥ Cu a.e. in J

imply u(t) ≥ 0 in J . Moreover , the index set N can be split up in two disjoint

sets α, β (α ∪ β = N , α ∩ β = ∅) such that

• for i ∈ α, ui(t) > 0 in J0,
• for j ∈ β, uj(t) = 0 in [a, a+ δj ] and uj(t) > 0 in (a+ δj , b],

where δj > 0.

P r o o f. Let |cij(t)| ≤ m(t) ∈ L(J) for i, j ∈ N and M(t) =
Tt
a
m(s) ds.

The function w(t) = eM(t)u(t) satisfies w(a) ≥ 0 and

w′ ≥ D(t)w a.e. in J, where D(t) = C(t) +m(t)I ≥ 0,

i.e., dij(t) ≥ 0 for all i, j ∈ N . The function

h(t) = (̺, . . . , ̺) with ̺(t) = e(n+1)M(t)

satisfies h(a) = en = (1, . . . , 1) and h′ ≥ Dh. Hence wε = w + εh (ε > 0)
has the properties

w′

ε ≥ Dwε a.e. in J and w(a) ≥ εen > 0.

As long as wε ≥ 0, we have w′

ε ≥ 0. It follows easily that wε(t) ≥ εen for all
t ∈ J . Since ε > 0 is arbitrary, w(t) ≥ 0 in J and also w′(t) ≥ 0 a.e. in J .

This shows that u(t) ≥ 0 in J . Assume now that a component ui is
positive at t0 ∈ J . Then wi(t0) > 0 and therefore wi(t) > 0 for t > t0, which
in turn implies ui(t) > 0 for t > t0. We let α be the set of all indices i such
that ui > 0 in J0 = (a, b]. Then each uj with j 6∈ α vanishes at some point
ti ∈ J0 and therefore in [a, ti].
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3. The nonlinear, quasimonotone case. We consider the nonlinear
equation

(2) u′(t) = f(t, u(t)) a.e. in J

and assume for simplicity that f(t, x) is defined in the strip S = J ×R
n and

satisfies the following conditions: f(t, ·) is continuous in R
n for almost all

(fixed) t ∈ J , f(·, x) is measurable in J for all (fixed) x ∈ R
n, f(t, 0) ∈ L(R),

and for each constant A > 0 there is a function m(t) ∈ L(J) such that

(3) |f(t, x) − f(t, y)| ≤ m(t)|x− y| for t ∈ J and |x|, |y| ∈ A.

The defect P of a function v ∈ AC(J) with respect to equation (2) is defined
by

(Pv)(t) = v′(t) − f(t, v(t)).

The function f is said to be quasimonotone increasing in x if fi(t, x) is
(weakly) increasing in xj for all j 6= i, or equivalently, if

x ≤ y, xi = yi ⇒ fi(t, x) ≤ fi(t, y) a.e. in J (i = 1, . . . , n).

Theorem 2. Assume that the function f(t, x) satisfies the conditions

given above and is quasimonotone increasing in x, and let v,w ∈ AC(J)
satisfy

(4) v(a) ≤ w(a) and Pv ≤ Pw a.e. in J .

Then v ≤ w in J , and there exist disjoint index sets α, β with α ∪ β = N
and positive numbers δj such that

vi < wi in J0 for i ∈ α,

vj = wj in [a, a+ δj ] and vj < wj in (a+ δj , b] for j ∈ β.

P r o o f. Let |v(t)|, |w(t)| ≤ A in J and assume that (3) holds. Let u(t)=
w(t) − v(t). In the scalar case (n = 1) one can write

∆f := f(t, w(t)) − f(t, v(t)) = c(t)u(t) with |c(t)| ≤ m(t)

and c(t) ≥ 0 in case f is increasing in x (take c(t) = ∆f/u if u 6= 0 and
c(t) = 0 otherwise). In the general case n > 1, the same is accomplished by
writing ∆fi as a sum of differences ∆1, . . . ,∆n, where

∆1 = fi(t, w1, v2, . . . , vn) − fi(t, v1, v2, . . . , vn), . . .

In this way one obtains

f(t, w) − f(t, v) = C(t)u with |cij(t)| ≤ m(t)

and cij(t) ≥ 0 for i 6= j because f is quasimonotone increasing in x. Now
the theorem follows from Theorem 1.

4. Strong monotonicity. We are looking for conditions such that in
Theorems 1 and 2 the set β is empty, which means that in the conclusions
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strict inequality holds in J0. The following notation is used. A measurable
set M ⊂ J is said to be dense at a if the set M ∩ [a, a + ε] has positive
measure for every ε > 0. For measurable real-valued functions ϕ, ψ we write
ϕ < ψ at a+ if the set {t ∈ J : ϕ(t) < ψ(t)} is dense at a.

Theorem 3. Suppose u(t) and C(t) satisfy the assumptions of Theo-

rem 1, and there exists a nonempty index set α1 such that for i ∈ α1 ei-

ther ui(a) > 0 or u′i > (Cu)i at a+. If for every index set α0 ⊃ α1 with

β0 = N \ α0 6= ∅ there exist numbers k ∈ α0, j ∈ β0 such that cjk > 0 at

a+, then u > 0 in J0.

In particular , the assertion u > 0 in J0 holds under each of the following

conditions:

(i) u(a) > 0;
(ii) u′ > Cu at a+;
(iii) u(a) 6= 0 and the matrix C(t) is irreducible at a+.

Irreducibility at a+ is defined as follows: For every nonempty index set
α with β = N \ α 6= ∅ there exist indices k ∈ α, j ∈ β such that cjk > 0
at a+.

P r o o f o f T h e o r e m 3. According to Theorem 1, uα > 0 in J0 and
uβ = 0 in an interval Jδ = [a, a+δ], δ > 0. Assume β 6= ∅. Our assumptions
imply that α ⊃ α1. Putting α = α0, we find indices k ∈ α, j ∈ β such that
cij > 0 at a+, which implies

u′j = 0 ≥
∑

l

cjlul ≥ cjkuk > 0 at a+ .

This contradiction shows that β = ∅.

Now assume that the assumptions of Theorem 2 hold and that the set β
in the conclusion is not empty. We write x=(xα, xβ), v(t)=(vα(t), vβ(t)), . . .
with an obvious meaning. Let δ = min{δj : j ∈ β}. Then vβ = wβ in
Jδ = [a, a+ δ], and Pv ≤ Pw implies

fβ(t, vα, vβ) ≥ fβ(t, wα, wβ).

But from quasimonotonicity and v ≤ w we get fβ(t, vα, vβ) ≤ fβ(t, wα, vβ)
and hence

(5) fβ(t, vα, vβ) = fβ(t, wα, vβ) and vα < wα in Jδ = (a, a+ δ],

which implies, by the way, that Pβv = Pβw in Jδ . So, in order to obtain
β = ∅, we must add an assumption which is incompatible with (5).

Theorem 4. Suppose v(t), w(t) and f satisfy the assumptions of Theo-

rem 2. Each of the following conditions is sufficient for the strong inequality

v < w in J0:
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(i) v(a) < w(a);

(ii) Pv < Pw at a+;

(iii) For every pair (α, β) of nonempty , disjoint index sets with α∪β = N
there are j ∈ β, k ∈ α such that fj(t, x) is strictly increasing in xk for t ∈M ,
x ∈ U , where M ⊂ J is dense at a and U is a neighborhood of v(a).

P r o o f. It is obvious that β is empty in cases (i), (ii). In case (iii) we
use the notation x = (xk, x̃k) with x̃k ∈ R

n−1. There is δ > 0 such that for
a < t ≤ δ and 0 < s < δ,

v(t) ∈ U, vs(t) := (vk(t) + s, ṽk(t)) ∈ U

and vk(t) + s ≤ wk(t), which implies vs(t) ≤ w(t). It follows from quasi-
monotonicity of f and the strict monotonicity of fj that

fj(t, v(t)) < fj(t, v
s(t)) ≤ fj(t, w(t)) for t ∈M.

This is a contradiction to (5).

R e m a r k s. 1. If f(t, x) is of class C1 with respect to x, then (iii) follows
from

(iii′) The Jacobian ∂f(t, x)/∂x is irreducible for t ∈M , x ∈ U(v(a)).

2. In Theorem 3 it was assumed that f is defined in J×R
n. If f is only

defined in a set G = J × D, where D ⊂ R
n is open, then it is naturally

assumed that graph v, graphw ⊂ G. But in the representation of ∆f =
f(t, w(t)) − f(t, v(t)) as a sum of differences (cf. the proof of Theorem 2),
the auxiliary points must also belong to G. This is the case if D is an open
n-dimensional interval. Yet convexity of D suffices.The proof runs as follows.
Let x, y ∈ D, h = (y − x)/p and xk = x + kh (k = 0, . . . , p), in particular
x0 = x, xp = y. Then f(t, y) − f(t, x) =

∑p
k=1[f(t, xk) − f(t, xk−1)], and

each of those differences can be treated as in the proof of Theorem 2 (the
line segment xy has positive distance to the boundary of D, and for large p
all auxiliary points are close to xy).

3. The two definitions of quasimonotonicity in Section 3 are not always
equivalent if f is only defined in G = J ×D. This fact was first observed by
Ważewski [4] in 1950. He introduced two conditions (H) and (K): Condition
(H) is the one given above by means of inequalities, Condition (K) requires
that fi(t, x) is (weakly) increasing in xj for i 6= j. Obviously (H) implies
(K), but (K) implies (H) only if the set D has a certain property P which is
described in [4]. For example, convex sets have this property. What is really
needed in inequalities is always the form (H) first introduced by Ważewski.
Let us remark that the general quasimonotonicity condition for differential
equations in ordered Banach spaces (or topological vector spaces), which
was given by Volkmann [2], is also of the (H) type.
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4. We denote the solution of y′ = f(t, y), y(a) = η by y(t, η). Under
the assumptions of Remark 1 the Jacobian Z(t, η) = ∂y(t, η)/∂η satisfies
Zij(t, η) > 0 for t ≥ a and all i, j ∈ N . This follows from Theorems 1 and 3,
since Z(t, η) is a solution to the linear system

Z ′ = C(t)Z, Z(0) = I, where C(t) =
∂f

∂x
(t, y(t, η));

cf. [3], Theorem 13.X. The matrix C(t) is essentially positive and irreducible.
Note that the columns zi = ∂y(t, η)/∂ηi satisfy z′i = C(t)zi, zi(0) 6= 0 and
hence are positive in J0. This is a simple proof of Theorem 1.1 in [1].
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