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Equivalence of analytic and rational functions

by J. Bochnak (Amsterdam), M. Buchner (Albuquerque, N. Mex.)
and W. Kucharz (Albuquerque, N. Mex.)

Abstract. We give a criterion for a real-analytic function defined on a compact non-
singular real algebraic set to be analytically equivalent to a rational function.

Throughout this paper M denotes a compact nonsingular algebraic sub-
set of Rn. As usual, by a polynomial function on M we mean the restriction
to M of a polynomial function from Rn into R. A function r : A → R,
defined on a subset A of M , is said to be regular on A if there exist poly-
nomial functions p : M → R and q : M → R such that q−1(0) ∩ A = ∅
and r(x) = p(x)/q(x) for all x in A (in other words, r is regular on A if it
is a rational function on M , whose denominator is nonzero at each point
of A). Of course, every polynomial function is regular, and every regular
function on M is (real-) analytic. Two analytic functions f : M → R and
g : M → R are called analytically equivalent if g = f ◦ σ for some analytic
diffeomorphism σ : M →M . In the present paper we are concerned with the
following problem: What conditions have to be imposed on an analytic func-
tion f : M → R in order for it to be analytically equivalent to a polynomial
or a regular function on M?

The reader may consult [1, 2, 5, 6] for earlier results related to this
problem. Let us consider now an analytic function f : M → R with isolated
critical points. It is known that f is not necessarily analytically equivalent to
a regular function on M [1, pp. 416, 417], and therefore one has to impose
some extra conditions (let us recall, however, that for each nonnegative
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integer k one can find a Ck diffeomorphism σ : M → M such that f ◦ σ is
a polynomial function on M [2, Theorem 8.2]). Denote by MC the smallest
complex algebraic subset of Cn containing M (we view Rn as a subset of Cn).
Obviously, every point of M is a nonsingular point of MC. Furthermore,
every analytic function g : M → R has a unique extension gC : (MC,M)→ C
to a holomorphic function-germ atM . If each critical point of f is an isolated
critical point of the holomorphic function-germ fC : (MC,M) → C, then f
is analytically equivalent to a polynomial function on M [1, Theorem 5].

We always consider M endowed with the usual metric topology induced
from Rn. Given a point x in M and a function g : U → R defined in a neigh-
borhood of x, we denote by gx the germ of g at x. Two analytic function-
germs ϕ : (M,x)→ R and ψ : (M,x)→ R are said to be analytically equiv-
alent if there exists a local analytic diffeomorphism τ : (M,x) → (M,x)
such that ψ = ϕ ◦ τ . If h : M → R is a differentiable function, then Σh will
denote the set of critical points of h.

Conjecture 1. Let f : M → R be an analytic function with isolated
critical points. Assume that for each point x in Σf the germ fx is analytically
equivalent to the germ at x of a regular function defined in a neighborhood
of x. Then f is analytically equivalent to a regular function on M.

We shall prove a somewhat weaker result than Conjecture 1, but first
we need some preparation. Denote by Ex the ring of all C∞ function-germs
(M,x) → R at a point x in M . Given ϕ in Ex, we define 4(ϕ) to be the
ideal of Ex generated by

∂ϕ

∂x1
, . . . ,

∂ϕ

∂xm
,

where m = dimM and (x1, . . . , xm) is a local C∞ coordinate system in a
neighborhood of x in M . Assume that x is a critical point of ϕ, that is,
4(ϕ) 6= Ex. Although we shall not use it later on, let us observe, in order
to motivate the definition given below, that the following conditions are
equivalent:

(a) x is an isolated critical point of ϕ;
(b) there exists λ in 4(ϕ) such that λ−1(0) = {0} as set-germs;
(c) there exists a C∞ function u : M → R such that u−1(0) = {x} and

the germ ux belongs to 4(ϕ).

Indeed, if (a) is satisfied, then so is (b) with λ =
(
∂ϕ
∂x1

)2+. . .+
(
∂ϕ
∂xm

)2. If
(b) holds, then, using partition of unity, one easily constructs a C∞ function
u : M → R such that u−1(0) = {x} and ux = λ2, which implies (c). It is
clear that (a) follows from (c).

Furthermore, if ϕ is an analytic function-germ, then, applying the the-
ory of coherent real analytic sheaves, one can prove that (a), (b), (c) are
equivalent to
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(c′) there exists an analytic function v : M → R such that v−1(0) = {x}
and the germ vx belongs to 4(ϕ).

Definition 2. We say that the critical point x of ϕ is algebraically iso-
lated in M if there exists a regular (or, equivalently, a polynomial) function
r : M → R such that r−1(0) = {x} and the germ rx belongs to 4(ϕ).

Denote by E(M) the ring of all C∞ functions on M . Let X1, . . . , Xd be
C∞ vector fields on M generating the E(M)-module of all C∞ vector fields
on M . Given a C∞ function f : M → R, we denote by 4(f) the ideal
of E(M) generated by X1f, . . . ,Xdf ; clearly, 4(f) does not depend on the
choice of the generators X1, . . . , Xd. By construction, for each point x in M ,
we have 4(f)Ex = 4(fx).

We shall need the following fact.

Example 3. Let g : M → R be a regular function on M . Assume that
Σg ∩ g−1(g(x)) = {x} for some point x in M . We claim that x is a critical
point of gx algebraically isolated inM . In order to prove the claim, we choose
polynomial vector fields X1, . . . , Xd on M generating the E(M)-module of
all C∞ vector fields on M , and set

r = (X1g)2 + . . .+ (Xdg)2 + (g − g(x))2m,

where m = dimM (a vector field X on M is said to be a polynomial vector
field if Xp is a polynomial function on M for every polynomial function
p : M → R). Obviously, r is a regular function on M . Since Σg is equal to
the set of zeros of s = (X1g)2 + . . .+(Xdg)2 and since Σg∩g−1(g(x)) = {x},
we obtain r−1(0) = {x}. It is clear that s belongs to 4(g). By [3], the germ
(gx−g(x))m is in 4(gx), and therefore rx belongs to 4(gx). Thus the claim
is proved.

Recall that a local C1 diffeomorphism τ : (M,x)→ (M,x) is said to be
orientation preserving if det(Dxτ) > 0, where Dxτ : TxM → TxM is the
derivative of τ at x.

Example 4. Let ϕ : (M,x) → R be an analytic function-germ and let
ϕC : (MC, x) → C be the unique extension of ϕ to a holomorphic function-
germ. Assume that x is an isolated critical point of ϕC. It is well known
that there exists a local orientation preserving analytic diffeomorphism τ :
(M,x) → (M,x) such that ϕ ◦ τ is the germ at x of a polynomial function
on M [7, p. 170, Proposition 4.2, p. 59, Théorème 4.2].

We assert that x is a critical point of both ϕ and ϕ ◦ τ algebraically
isolated in M . Of course, it suffices to prove the assertion for ϕ. Denote by
m(Ex) the unique maximal ideal of Ex; obviously,

m(Ex) = {λ ∈ Ex | λ(x) = 0}.
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Since x is an isolated critical point of ϕC, it follows that some power of
m(Ex), say m(Ex)l, is contained in 4(ϕ) [7, p. 170, Proposition 4.2 and its
proof]. Choose a regular function s : M → R such that s−1(0) = {x} and
set r = sl. Then r−1(0) = {x} and rx belongs to 4(ϕ), which implies our
assertion.

Theorem 5. Let f : M → R be an analytic function with isolated critical
points. Assume that for each point x in Σf , there exists a local orientation
preserving analytic diffeomorphism σx : (M,x) → (M,x) such that fx ◦ σx
is the germ at x of a regular function defined in a neighborhood of x , and x
is a critical point of fx ◦σx algebraically isolated in M. Then f is analytically
equivalent to a regular function on M.

For the proof of Theorem 5 we shall need the following.

Lemma 6. Let x be a point in M and let ψ : (M,x) → R be the germ
at x of a regular function defined in a neighborhood of x. Assume that x is
a critical point of ψ algebraically isolated in M. Then there exist a regular
function g : M → R and a local orientation preserving analytic diffeomor-
phism τ : (M,x)→ (M,x) such that Σg ∩ g−1(g(x)) = {x} and ψ ◦ τ = gx.

P r o o f. Let r : M → R be a regular function such that r−1(0) = {x} and
rx belongs to 4(ψ). Pick polynomial functions p : M → R and q : M → R
such that q(x) 6= 0 and ψ = px/qx. Note that the function

u =
pq + r4

q2 + r4

is regular on M .
An obvious modification of [2, Lemma 3.2] implies the existence of a C∞

function f : M → R such that Σf∩f−1(f(x)) = {x}, fx = ψ, and f |M \{x}
has only nondegenerate critical points. Note that

fx − ux = ψ − ux = r4x
px − qx

qx(q2x + r4x)
.

Applying this and the equality r−1(0) = {x}, we can find a C∞ function
α : M → R satisfying

(7) f = u+ r4α.

Let V be a neighborhood of 0 in the C∞ topology on E(M) and let β : M →
R be a polynomial function such that β − α is in V and j1y(β) = j1y(α) for
all y in Σf \ {x}, where j1y(−) stands for the 1-jet at y (β exists in view of
[1, Corollary 1]). Then

(8) g = u+ r4β

is a regular function on M .
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By construction, r2x belongs to4(f)2Ex = 4(ψ)2. Furthermore, for each
y in Σf\{x}, we have 4(f)Ey = m(Ey), and hence βy − αy belongs to
4(f)2Ey. Since Σf is precisely the set of zeros of the ideal 4(f), using (1),
(2), and partition of unity, we get

g − f = r4(β − α) ∈ r24(f)2.

It also follows from the observations recorded in this paragraph and from
[7, p. 119, Corollaire 1.6] that 4(f)2 is a closed ideal (in the C∞ topology)
of E(M). Taking V sufficiently small and applying [2, Theorem 2.1] (with
G = {1} = the trivial subgroup of R\{0}), we obtain a C∞ diffeomorphism
σ : M → M isotopic to the identity and such that g = f ◦ σ, σ(x) = x.
Hence Σg ∩g−1(g(x)) = {x} and gx = fx ◦σx = ψ ◦σx. So, by construction,
σx : (M,x) → (M,x) is a local orientation preserving C∞ diffeomorphism.
By [7, p. 59, Théorème 4.2], there also exists a local analytic diffeomorphism
τ : (M,x) → (M,x) such that gx = ψ ◦ τ and j1x(τ) = j1x(σx). It follows
from the last equality that τ is orientation preserving. Thus the lemma is
proved.

P r o o f o f T h e o r e m 5. Let Σf = {x1, . . . , xk}. By Lemma 6, for
each i = 1, . . . , k there exist a regular function gi : M → R and a local
orientation preserving analytic diffeomorphism τi : (M,xi) → (M,xi) such
that Σgi

∩ g−1
i (gi(xi)) = {xi} and fxi

◦ τi = gixi
. Let σ : M →M be a C∞

diffeomorphism satisfying σxi
= τi for all i = 1, . . . , k. Then f ◦ σ = gi in a

neighborhood of xi.
Choose a regular function ri : M → R such that r−1

i (0) = {xi} and rixi

belongs to 4(gixi
) (cf. Example 3). Then s = r21 . . . r

2
k is a regular function

on M, s−1(0) = Σf = Σf◦σ, and s belongs to 4(f ◦ σ)2 (the last property
follows by applying partition of unity). Note that

u =
( k∑
i=1

(∏
j 6=i

r2j

)
gi

)/( k∑
i=1

(∏
j 6=i

r2j

))
is a regular function on M and

(f ◦ σ)xl
− uxl

= glxl
− uxl

= sxl
vl,

where vl is the germ at xl of the regular function( k∑
i=1

( ∏
j 6=i
j 6=l

r2j

)
(gl − gi)

)/(( k∑
i=1

∏
j 6=i

r2j

)(∏
j 6=l

r2j

))

on (M \ {x1, . . . , xk}) ∪ {xl}. It follows that we can find a C∞ function
α : M → R satisfying f ◦ σ = u+ sα. Let β : M → R be a regular function
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and let g = u+ sβ. Then

g − f ◦ τ = (β − α)s ∈ 4(f ◦ σ)2.

Let σ∗ : E(M) → E(M) be the ring isomorphism defined by σ∗(h) = h ◦ σ
for h in E(M). Clearly, 4(f ◦ σ)2 = σ∗(4(f)2), and therefore, in view of
[7, p. 119, Corollaire 1.6], the ideal 4(f ◦ σ)2 of E(M) is closed in the C∞

topology on E(M). By [2, Theorem 2.1], if β is sufficiently close to α in the
C∞ topology, then there exists a C∞ diffeomorphism η : M →M such that
g = f ◦ σ ◦ η. It follows from the last equality and [4, Theorem 8.4] that f
and g are analytically equivalent. Since g is a regular function on M , the
proof is complete.
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