Holomorphic bijections of algebraic sets

by SLAWOMIR CYNK and KAMIL RUSEK (Kraków)

Włodzimierz Mlak in memoriam

Abstract. We prove that every holomorphic bijection of a quasi-projective algebraic set onto itself is a biholomorphism. This solves the problem posed in [CR].

1. Introduction. It is well known that every injective endomorphism of an algebraic space over an algebraically closed field is an automorphism (see [CR] for the case of affine varieties and [N] for the general case). On the other hand, the authors proved in [CR] that there exists an analytic curve in \mathbb{C}^6 and its holomorphic bijection which is not biholomorphic.

In this context the question formulated in [CR] whether each holomorphic bijective self-transformation of an algebraic set has a holomorphic inverse seems to be interesting.

The aim of this paper is to answer this question. This is given by

THEOREM 1. Let X be a quasi-projective complex algebraic set and let $f: X \to X$ be a holomorphic bijection. Then the mapping $f^{-1}: X \to X$ is holomorphic.

Our proof is essentially based on the recent result of the first author on singularities of weakly holomorphic (w-holomorphic) functions [C, Thm. 5.1]. We summarize here all the necessary information on those functions.

Let Y be a complex space. A complex-valued function g is said to be *w*-holomorphic on Y if there exists a nowhere dense analytic subset Z of Y such that g is defined and holomorphic on $Y \setminus Z$ and locally bounded near the set Z (for details see [W, Sect. 4.3]).

The set $S_g := \{x \in Y : g \text{ is not holomorphic at } x\}$ is called the *singular* set of g.

¹⁹⁹¹ Mathematics Subject Classification: Primary 32S05; Secondary 14B05, 32B15. Key words and phrases: quasi-projective algebraic set, w-holomorphic mapping. Supported by KBN Grant P03A 061 08.

If Y_1 , Y_2 are complex spaces then by a *w*-holomorphic mapping from Y_1 into Y_2 we mean a holomorphic mapping $f: Y_1 \setminus Z \to Y_2$, where Z is a nowhere dense analytic subset, such that the closure \overline{f} in $Y_1 \times Y_2$ of the graph of f is analytic and the projection of \overline{f} onto Y_1 is a finite map (i.e. a proper map with finite fibers). It is easy to see that if Y_2 is an analytic subset of \mathbb{C}^n then a mapping $f: Y_1 \setminus Z \to Y_2$ is *w*-holomorphic iff the components of f are w-holomorphic functions on Y_1 . The notion of the singular set of a w-holomorphic mapping is defined in the same way as in the case of w-holomorphic functions.

Besides standard facts in analytic and algebraic geometry, the main points in the proof of Theorem 1 are Proposition 2.1 and the above-announced result from [C], which may be formulated as follows:

THEOREM 2. Let X be a quasi-projective complex algebraic set. Then there exist algebraic subsets V_1, \ldots, V_p of X such that for every w-holomorphic function g on X we have $S_g = V_i$.

2. Local ring of an analytic subvariety. Let X be a complex space and let $V \subset X$ be an irreducible nowhere dense analytic subset of X. We shall denote by $\mathcal{O}_{X,V}$ the ring of all functions which are holomorphic on $X \setminus W$, where W is a nowhere dense analytic subset of X not containing V. We shall call $\mathcal{O}_{X,V}$ the local ring of X along V.

The ring $\mathcal{O}_{X,V}$ is local with the maximal ideal $\{f \in \mathcal{O}_{X,V} : f | V = 0\}$.

Let us point out that for $x_0 \in X$ the ring $\mathcal{O}_{X,\{x_0\}}$ does not coincide with the ring \mathcal{O}_{X,x_0} of holomorphic germs at x_0 .

PROPOSITION 2.1. If X is locally a Stein space in the (analytic) Zariski topology then the ring $\mathcal{O}_{X,V}$ is noetherian.

Proof. Suppose that the ring $\mathcal{O}_{X,V}$ is not noetherian and choose a sequence $(f_n)_{n\in\mathbb{N}}\subset\mathcal{O}_{X,V}$ such that $f_{i+1}\notin(f_1,\ldots,f_i), i=1,2,\ldots$ Let W_i be an analytic subset of X not containing V and such that the function f_i is holomorphic on $X\setminus W_i$.

Observe that $V \not\subset \bigcup_{i=1}^{\infty} W_i$ and fix a point $x_0 \in V \setminus \bigcup_{i=1}^{\infty} W_i$. The ring \mathcal{O}_{X,x_0} is noetherian (see [L]), therefore there exists $k \in \mathbb{N}$ such that the germ $(f_{k+1})_{x_0}$ belongs to the ideal $((f_1)_{x_0}, \ldots, (f_k)_{x_0})$ of the ring \mathcal{O}_{X,x_0} .

Denote by \mathcal{J}_k (resp. \mathcal{J}_{k+1}) the sheaf of ideals on $X \setminus \bigcup_{i=1}^{k+1} W_i$ defined by (f_1, \ldots, f_k) (resp. (f_1, \ldots, f_{k+1})). Let $Z := \operatorname{Supp}(\mathcal{J}_{k+1}/\mathcal{J}_k)$. Then Z is an analytic subset of $X \setminus \bigcup_{i=1}^{k+1} W_i$ and $x_0 \notin Z$.

Take a Zariski open neighborhood X_0 of x_0 in $X \setminus (\bigcup_{i=1}^{k+1} W_i \cup Z)$ which is a Stein space. Then $(f_{k+1})_x \in ((f_1)_x, \ldots, (f_k)_x)$ for every $x \in X_0$ and by Cartan's Theorem B there exist functions g_1, \ldots, g_k , holomorphic on X_0 , such that $f_{k+1} = f_1g_1 + \ldots + f_kg_k$. Since $g_1, \ldots, g_k \in \mathcal{O}_{X,V}$ we have $f_{k+1} \in (f_1, \ldots, f_k)$, contrary to our assumption. This proves the proposition.

3. Proof of the main result. Before the proof of Theorem 1 we state two lemmas.

LEMMA 3.1. Let V be an irreducible quasi-projective algebraic set and let $f: V \to V$ be a holomorphic injection such that for every $q \in \mathbb{N}$ the set $V \setminus f^q(V)$ is contained in a proper algebraic subset of V (f^q denotes the q-th iterate of f). Then the mapping f^{-1} is w-holomorphic on V.

Proof. Let $\hat{f}: \hat{V} \to \hat{V}$ be the lifting of f to an algebraic normalization \hat{V} of V. It is easy to see that it suffices to show that the mapping \hat{f} is biholomorphic.

Let W_q denote the closure of $\widehat{V} \setminus \widehat{f^q}(\widehat{V})$ in the (algebraic) Zariski topology on \widehat{V} . Then the set W_q is either empty or of pure dimension d-1, where $d := \dim V$, and the mapping $\widehat{f^{-q}} : \widehat{V} \setminus W_q \to \widehat{V}$ is holomorphic. Let $W'_q := \operatorname{Reg} W_q \setminus \operatorname{Sing} V$. Using the Laurent expansion of any component of $\widehat{f^{-q}}$ near points of W'_q (in suitable local coordinates on \widehat{V}) and the identity principle we see that the set of points of W'_q such that the mapping $\widehat{f^{-q}}$ can be holomorphically continued through them is open and closed in W'_q . Therefore $\widehat{V} \setminus \widehat{f^q}(\widehat{V}) = W_q$.

Let $H^i_{\rm c}(T)$ denote the *i*th Alexander–Spanier cohomology group with compact supports of the locally compact topological space T, with complex coefficients, and let $H^*_{\rm c}(T)$ be the direct sum of all $H^i_{\rm c}(T)$. In our case $H^*_{\rm c}(\widehat{V})$ is a finite-dimensional vector space and by [B, Lemma 1.2] the sequence $(\dim H^*_{\rm c}(W_q))_{q\in\mathbb{N}}$ is uniformly bounded.

By [B, Lemma 2.2] the sequence $(W_q)_{q \in \mathbb{N}}$ is stationary. But $W_{q+1} = W_q \cup \hat{f}^q(W_1)$, and $W_q \cap \hat{f}^q(W_1) = \emptyset$, so $W_1 = \emptyset$, which concludes the proof.

LEMMA 3.2. Let V be a quasi-projective algebraic set and let $f: V \to V$ be a holomorphic bijection. Then the mapping f^{-1} is w-holomorphic on V.

Proof. Let $V = V_1 \cup \ldots \cup V_r$ be the decomposition of V into irreducible components. Since any irreducible component of V is mapped by f into an irreducible component and f is surjective, the mapping f permutes the components of V.

Fix a component V_k of V. Replacing, if necessary, the mapping f by its suitable iterate, we may assume that $f(V_k) \subset V_k$. Since f is bijective and $f(V_i) \subset \bigcup_{j \neq k} V_j$ for $i \neq k$, we see that $V_k \setminus f(V_k) \subset \bigcup_{j \neq k} V_j$ and the same holds for any iterate of f.

By Lemma 3.1 the function $f^{-1}|V_k$ is w-holomorphic on V_k . Therefore the mapping f^{-1} is w-holomorphic on V.

Proof of Theorem 1. Assume that X is a quasi-projective algebraic set and $f: X \to X$ is a holomorphic bijection. Then, by Lemma 3.2, the mapping f^{-1} is w-holomorphic on X.

Denote by S_{ν} the singular set of the w-holomorphic mapping $f^{-\nu}$, for $\nu = 1, 2, \ldots$ Of course $S_{\nu} \subset S_{\nu+1}$ and $f(S_{\nu}) \subset S_{\nu+1}$. By Theorem 2, the sequence $(S_{\nu})_{\nu \in \mathbb{N}}$ is stationary, i.e. $S_{\nu} = S$ for $\nu \geq \nu_0$ with S algebraic and $f(S) \subset S$.

Let V be an irreducible component of S. Without loss of generality we may assume that $f(V) \subset V$. Let D be a universal denominator on X (see [L]) and let, for any positive integer ν ,

 $I_{\nu} := \{ D \cdot (h \circ f^{-\nu}) \in \mathcal{O}_{X,V} : h \in \mathcal{O}_{X,V} \}.$

These are ideals in the ring $\mathcal{O}_{X,V}$ and $I_{\nu} \subset I_{\nu+1}$. By Proposition 2.1 there exists $n_0 \geq \nu_0$ such that $I_n = I_{n_0}$ for $n \geq n_0$.

Choose an affine part $\widetilde{X} \subset \mathbb{C}^d$ of the set X in the manner that \widetilde{X} contains a dense subset of V. Then, if z_1, \ldots, z_d are the coordinate functions on \widetilde{X} , we have

$$D \cdot (z_i \circ f^{-2n_0}) = D \cdot (h_i \circ f^{-n_0})$$

for some $h_1, \ldots, h_d \in \mathcal{O}_{X,V}$.

Hence we get $z_i \circ f^{-n_0} = h_i$. This means that the mapping f^{-n_0} is holomorphic at the generic point of V. Therefore the set V is empty and $f^{-1}: X \to X$ is a holomorphic mapping.

References

- [B] A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math. (Basel) 20 (1969), 531–537.
- [C] S. Cynk, Primary decomposition of algebraic sheaves, preprint, 1995.
- [CR] S. Cynk and K. Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991), 29–35.
- [L] S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
- [N] K. Nowak, Injective endomorphisms of algebraic varieties, Math. Ann. 299 (1994), 769–778.
- [W] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: cynk@im.uj.edu.pl rusek@im.uj.edu.pl

Reçu par la Rédaction le 12.7.1995