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Existence and uniqueness theorems for
fourth-order boundary value problems

by JOLANTA PRZYBYCIN (Krakéw)

Abstract. We establish the existence and uniqueness theorems for a linear and a
nonlinear fourth-order boundary value problem. The results obtained generalize the results
of Usmani [4] and Yang [5]. The methods used are based, in principle, on [3], [5].

1. Let £ be a differential operator of the form £ = L o Ly, where
L; denotes the Sturm—Liouville operator defined by L;y = —(p;v') + ¢y,
i =0,1. As usual we assume p; € C3721(0,1], ¢; € C?>72![0,1] and p; > 0,
gi > 0 on [0,1].

Consider the nonlinear problem
W =Py mo,
y(0) =yo, y(1)=w1, Loy(0)=%o, Loy(1) =71
Denote the above boundary conditions by (B.C.). By a solution of (1) we
understand u € C4]0,1] N (B.C.) satisfying (1).

Usmani studied a particular case of (1), namely Ly = y* and F(z,y) =
f(x)y + g(x). He proved an existence and uniqueness theorem under the
condition sup,.¢(o 1) |f(2)] < 7*. Yang found a better condition on f which
guarantees the unique solvability of the above problem, namely f(z)#jir*
for 5 = 1,2,... He also showed an existence theorem for the nonlinear
problem y®) = F(.,y,y"), (B.C.), under the assumption |F(z,&,n) <
alé| + bln| + ¢, a/7* + b/7% < 1, which is essential to the proof. By ap-
plying the result of Yang to F(-,y,y") = f(,y) + qy”’, where ¢ is a posi-
tive and continuous function on [0, 1] we obtain the existence of solution if
a/m* +max,ep0,1] ¢(x)/m* < 1. This sufficient condition seems to be very re-
strictive. To illustrate this fact consider the equation Ly = y®* —k*7%y” =0
with (B.C.). It is easily verified that this problem is uniquely solvable for
any k € R.

1991 Mathematics Subject Classification: Primary 34B15.
Key words and phrases: eigenvalue, Leray—Schauder degree, Fredholm alternative.

(59]



60 J. Przybycin

We shall now see that it is possible to find a better condition for F' by
proving a theorem which is more general than the result of Yang in some
respects but less general in other ones.

THEOREM 1. Let pjp = mingepo1]pi(x) and gio = ming¢jo.1) ¢i(x). Sup-
pose that F' is continuous on [0,1] and satisfies the condition
(2) E|a75207a<(77219004-!100)(7T21710-‘H110) v(r,é)E[O,l}XR |F(3§,f)| < a|£| + 0.
Then for every yo,y1,Y0,y1 € R problem (1) has a solution.

This result may be proved in much the same way as the theorem of Yang.

The main tool of the proof is the classical method of a priori bounds. Let
us introduce the family of problems

(1) Ly=1tF(-,y) in (0,1),
y(0) =tyo, y(1)=tyr, Loy(0) =tho, Loy(1) =t
Denote by (, ) the scalar product and by || || the norm in L2(0,1). The next
theorem will provide a priori estimates for solutions of (1).
THEOREM 2. Let y; denote a solution of (1;). Then
3) AM >0Vt € [0,1]  [lyell + | Loye]| < M.

Proof. Choose a smooth function w : [0, 1] — R satisfying the boundary
conditions w(0) = yo, w(l) = y1, Low(0) = Yo, Low(l) = y1. Let z, =
yr — tw. Setting G(x, z(x)) = tF(x, z(x) + tw(z)) — tLw(x), we see that z
satisfies the equation

Lz=G(,z) in (0,1),
2(0) = 2(1) = Lpz(0) = Loz(1) = 0.
From (2) we have |G(z, )| < a|¢|+by, where b; depends on b and w. Setting
u = Lyz we can study the following coupled problem:
Loz = u, z(0) = 2(1) =0,
Liu=G(-,2), u(0)=u(l)=0.
By applying the Schwarz inequality combined with the Poincaré inequality
we have the estimate

1
(Poo + qo0)[121I* < pooll2’[I* + qooll211* < | (po 12+ qo(2)[z(2)]?) da
0
= (Lo2,2) = (u,2) < |lul| - [|z]]-
Hence
2] < 5 ]
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Proceeding analogously we obtain for arbitrary € > 0,
(Pro7® + quo)Jull?* < (u, L1u) = (u, G(:, 2))

< Ylalu(@)] - [z(2)] + bifu(z)]) dz

O ey

b

2e

<< a 4}%HW+ﬁ
———— + =¢||lu —.
~ \poom? +qo0 2 2e

Since a satisfies (2) we can choose ¢ sufficiently small such that

a €
1-— — =k>0.
(Poo™? + qoo) (P1072 + qro)  2(m2p10 + G10)

1
< allull - l2ll + gellul® +

Hence
by

ull <
el < [2ek(prom2 + q10)]'/2

= by

and consequently
ba

2 < —.
=1l < P00 + qoo

Thus the proof is complete.
Proof of Theorem 1. Problem (1;) can be written in the form
) Loy = u, y(0) = tyo, y(1) = ty,
Lou=tF(,y),  u(0) = tho, u(l) = ti.
Let G; for i = 0,1 be the Green function of the equation L;v = h in (0, 1),
with v(0) = v(1) = 0. Then v(z) = S(l) G;(x,s)h(s)ds. Using G; we can
transform (1}) into the equivalent system of integral equations

(*) y(x) = tyo + wt(y1 — yo) + \ Go(z, s)u(s) ds,

() u(z) = tho + xt(y1 — Yo) + | tG1(x, 5)F(s,y(s)) ds.

O e = O ey =

Let E = L?(0,1) x L?(0,1). It is a Banach space equipped with the norm
|(y,w)|| = |lyl| + ||u||. Define a map Ty : E — E by Ty = (TP, T}) where
T2 (y,u), T} (y,u) are the right-hand sides of (x) and (*x) respectively. To
prove that problem (1) has a C*-solution it is enough to search for solu-
tions of (I — T1)(y,u) = 0 in E. It is easily seen that T; is a compact
operator for every ¢t € [0,1]. Thus we see that the Leray—Schauder degree
theory applies to I —T}; and t is an allowable homotopy parameter. Consider
Buarv1 = {(y,2) € E:||(y,u)|| < M + 1}. The estimate (3) guarantees that
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deg(I — T}, Bpr4+1,0) is well defined for each ¢t € [0,1] and, by using the
homotopy invariance of the degree we have

deg([— Tl,BM+1,0) = deg(] — To,BM+1,0) = deg(], BM+1,0) =1

Consequently, (I —T1)(y,u) = 0 has a solution in Bjy;;1, which completes
the proof.

Remark 3. Let u! denote the first eigenvalue of the problem L;y = uy
subject to y(0) = y(1) = 0. From the above proof it is clear that using the
variational definition of p} we can replace the assumption (2) by

Ja,b >0, a < ppy Vo, & |F(x,6)] < al¢|+0.
Remark 4. The equation Ly = y® — 372" = 47*y has no solutions

when yo +y1 + (1/(47%))(Jo + 1) # 0, which means that assumption (2) is
sharp.

2. Let us return to problem (1) in a linear version similar to that which
was investigated by Usmani. The function F has the form F(z,y) = f(x)y+
g(x), where f and g are continuous on [0, 1]. So, we consider the problem

(4) Ly=fy+g in(0,1)

together with the boundary conditions (B.C.). If we assume additionally
that the operator £ is symmetric and positive definite (this is satisfied in
particular when Ly = £;) then the linear problem

Lv = pv
together with the boundary conditions
v(0) =v(1) = Lov(0) = Lov(1) =0
has an increasing sequence of positive eigenvalues 0 < p1 < g < ...

Our main result for (4) is:

THEOREM 5. If f(x) # pj, j = 1,2,..., then for any chosen yo,y1, Yo, Y1
and an arbitrary function g problem (4) has a unique solution.

This result may be obtained by applying a mapping theorem for non-
linear operators of the form L — N in a Hilbert space, with L linear and
N nonlinear, proved by Mawhin in [3]. Nevertheless, for clarity and simpli-
city we give the direct proof of Theorem 5 which is based in great part on
Mawhin’s idea.

Proof of Theorem 5. Using the Green functions introduced in
Section 1 we can convert problem (4) into an equivalent integral equation
over C0,1]:

(5) y—Ty=h,
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where

1 1
Ty(w) = {Gola, ) | | Ga(s,0f (y(t) dt] ds,
0 0

h(x) = yo + z(y1 — ¥o)

+{Gole,8) [ + 5@ — o) + | Ga (5, O (1)y(t) + 9(0)) d] ds.
0 0

It is clearly enough to show that (5) is uniquely solvable for arbitrary h €
C'[0, 1]. Since T is a compact operator we can apply the Fredholm alternative.
So, it is sufficient to prove that the boundary value problem

(©) Ly=fy in(0,1),

y(0) = y(1) = Loy(0) = Loy(1) = 0,
has only the trivial solution. The differential operator £ together with the
boundary conditions y(0) = y(1) = Loy(0) = Loy(1) = 0 defines an un-

bounded selfadjoint operator L in L?(0,1), so that problem (6) can be
rewritten as

~

(7) (L —kly = F(y),
where k € R and F denotes the operator of multiplication by f — k, namely

Fy)(z) = (f(z) — k)y ().
We denote by o(L) the spectrum of L. For k # pj, L — kI is invertible,
so that (7) is equivalent to

y = (L - kD) F(y).
Since ||(L — kI)7Y||~! = dist(k, o(L)) ([2]), we obtain
(L= kD)7 F < (L= kD)7 [|F)
__F_ maxeep |f (@) — A
dist(k,o (L)) — dist(k, o (L))

There are two possibilities: either max,¢(o 1) f(#) < p1, or there exists j € N
such that p; < mingep,1) f(2) < maxgepoq) f(2) < pjy1-
Note that

dist(k, o(L)) = {”1 —k for k < pu,

inf{k — pj, pj11 — k} for k € (pj, pj41).

It is clear that we can choose k depending on f such that ||(L—kI) "1 F|| < 1.
So (7) has only the trivial solution. This completes the proof.

Consider the particular case of problem (4), namely

(8) y @D = f2)y+ qy” +g(x)



64 J. Przybycin

with the boundary conditions (B.C.). The next result is an immediate con-
sequence of Theorem 5.

THEOREM 6. If f(x) # j*n*,j = 1,2,..., then for any chosen yo,y1,
Yo, 1 and arbitrary functions g and q, problem (8) has a unique solution.

Notice that y® = —x2y” has no solutions when 7y + 71 # 0, which
shows that the condition ¢; > 0 is sharp.
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