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Existence and uniqueness theorems for

fourth-order boundary value problems

by Jolanta Przybycin (Kraków)

Abstract. We establish the existence and uniqueness theorems for a linear and a
nonlinear fourth-order boundary value problem.The results obtained generalize the results
of Usmani [4] and Yang [5]. The methods used are based, in principle, on [3], [5].

1. Let L be a differential operator of the form L = L1 ◦ L0, where
Li denotes the Sturm–Liouville operator defined by Liy = −(piy

′)′ + qiy,
i = 0, 1. As usual we assume pi ∈ C3−2i[0, 1], qi ∈ C2−2i[0, 1] and pi > 0,
qi ≥ 0 on [0, 1].

Consider the nonlinear problem

(1)
Ly = F (·, y) in (0, 1),

y(0) = y0, y(1) = y1, L0y(0) = ŷ0, L0y(1) = ŷ1.

Denote the above boundary conditions by (B.C.). By a solution of (1) we
understand u ∈ C4[0, 1] ∩ (B.C.) satisfying (1).

Usmani studied a particular case of (1), namely Ly = y(4) and F (x, y) =
f(x)y + g(x). He proved an existence and uniqueness theorem under the
condition supx∈[0,1] |f(x)| < π4. Yang found a better condition on f which

guarantees the unique solvability of the above problem, namely f(x) 6=j4π4

for j = 1, 2, . . . He also showed an existence theorem for the nonlinear
problem y(4) = F (·, y, y′′), (B.C.), under the assumption |F (x, ξ, η)| ≤
a|ξ| + b|η| + c, a/π4 + b/π2 < 1, which is essential to the proof. By ap-
plying the result of Yang to F (·, y, y′′) = f(·, y) + qy′′, where q is a posi-
tive and continuous function on [0, 1] we obtain the existence of solution if
a/π4 +maxx∈[0,1] q(x)/π2 < 1. This sufficient condition seems to be very re-

strictive. To illustrate this fact consider the equation Ly = y(4)−k2π2y′′ = 0
with (B.C.). It is easily verified that this problem is uniquely solvable for
any k ∈ R.
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We shall now see that it is possible to find a better condition for F by
proving a theorem which is more general than the result of Yang in some
respects but less general in other ones.

Theorem 1. Let pi0 = minx∈[0,1] pi(x) and qi0 = minx∈[0,1] qi(x). Sup-

pose that F is continuous on [0, 1] and satisfies the condition

(2) ∃a,b≥0, a<(π2p00+q00)(π2p10+q10) ∀(x,ξ)∈[0,1]×R |F (x, ξ)| ≤ a|ξ| + b.

Then for every y0, y1, ŷ0, ŷ1 ∈ R problem (1) has a solution.

This result may be proved in much the same way as the theorem of Yang.
The main tool of the proof is the classical method of a priori bounds. Let
us introduce the family of problems

(1t)
Ly = tF (·, y) in (0, 1),

y(0) = ty0, y(1) = ty1, L0y(0) = tŷ0, L0y(1) = tŷ1.

Denote by ( , ) the scalar product and by ‖ ‖ the norm in L2(0, 1). The next
theorem will provide a priori estimates for solutions of (1t).

Theorem 2. Let yt denote a solution of (1t). Then

(3) ∃M > 0 ∀t ∈ [0, 1] ‖yt‖ + ‖L0yt‖ ≤ M.

P r o o f. Choose a smooth function w : [0, 1] → R satisfying the boundary
conditions w(0) = y0, w(1) = y1, L0w(0) = ŷ0, L0w(1) = ŷ1. Let zt =
yt − tw. Setting G(x, z(x)) = tF (x, z(x) + tw(x)) − tLw(x), we see that zt

satisfies the equation

Lz = G(·, z) in (0, 1),

z(0) = z(1) = L0z(0) = L0z(1) = 0.

From (2) we have |G(x, ξ)| ≤ a|ξ|+b1, where b1 depends on b and w. Setting
u = L0z we can study the following coupled problem:

L0z = u, z(0) = z(1) = 0,

L1u = G(·, z), u(0) = u(1) = 0.

By applying the Schwarz inequality combined with the Poincaré inequality
we have the estimate

(p00π
2 + q00)‖z‖

2 ≤ p00‖z
′‖2 + q00‖z‖

2 ≤

1\
0

(p0(x)[z′(x)]2 + q0(x)[z(x)]2) dx

= (L0z, z) = (u, z) ≤ ‖u‖ · ‖z‖.

Hence

‖z‖ ≤
1

p00π2 + q00
‖u‖.
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Proceeding analogously we obtain for arbitrary ε > 0,

(p10π
2 + q10)‖u‖

2 ≤ (u,L1u) = (u,G(·, z))

≤

1\
0

(a|u(x)| · |z(x)| + b1|u(x)|) dx

≤ a‖u‖ · ‖z‖ +
1

2
ε‖u‖2 +

b2
1

2ε

≤

(
a

p00π2 + q00
+

1

2
ε

)
‖u‖2 +

b2
1

2ε
.

Since a satisfies (2) we can choose ε sufficiently small such that

1 −
a

(p00π2 + q00)(p10π2 + q10)
−

ε

2(π2p10 + q10)
= k > 0.

Hence

‖u‖ ≤
b1

[2εk(p10π2 + q10)]1/2
= b2

and consequently

‖z‖ ≤
b2

p00π2 + q00
.

Thus the proof is complete.

P r o o f o f T h e o r e m 1. Problem (1t) can be written in the form

(1′t)
L0y = u, y(0) = ty0, y(1) = ty1,

L1u = tF (·, y), u(0) = tŷ0, u(1) = tŷ1.

Let Gi for i = 0, 1 be the Green function of the equation Liv = h in (0, 1),

with v(0) = v(1) = 0. Then v(x) =
T1
0
Gi(x, s)h(s) ds. Using Gi we can

transform (1′t) into the equivalent system of integral equations

y(x) = ty0 + xt(y1 − y0) +

1\
0

G0(x, s)u(s) ds,(∗)

u(x) = tŷ0 + xt(ŷ1 − ŷ0) +

1\
0

tG1(x, s)F (s, y(s)) ds.(∗∗)

Let E = L2(0, 1) × L2(0, 1). It is a Banach space equipped with the norm
‖(y, u)‖ = ‖y‖ + ‖u‖. Define a map Tt : E → E by Tt = (T 0

t , T 1
t ) where

T 0
t (y, u), T 1

t (y, u) are the right-hand sides of (∗) and (∗∗) respectively. To
prove that problem (1) has a C4-solution it is enough to search for solu-
tions of (I − T1)(y, u) = 0 in E. It is easily seen that Tt is a compact
operator for every t ∈ [0, 1]. Thus we see that the Leray–Schauder degree
theory applies to I−Tt and t is an allowable homotopy parameter. Consider
BM+1 = {(y, z) ∈ E : ‖(y, u)‖ ≤ M + 1}. The estimate (3) guarantees that
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deg(I − Tt, BM+1, 0) is well defined for each t ∈ [0, 1] and, by using the
homotopy invariance of the degree we have

deg(I − T1, BM+1, 0) = deg(I − T0, BM+1, 0) = deg(I,BM+1, 0) = 1.

Consequently, (I − T1)(y, u) = 0 has a solution in BM+1, which completes
the proof.

R e m a r k 3. Let µi
1 denote the first eigenvalue of the problem Liy = µy

subject to y(0) = y(1) = 0. From the above proof it is clear that using the
variational definition of µi

1 we can replace the assumption (2) by

∃a, b ≥ 0, a < µ0
1µ

1
1 ∀x, ξ |F (x, ξ)| ≤ a|ξ| + b.

R e m a r k 4. The equation Ly = y(4) − 3π2y′′ = 4π4y has no solutions
when y0 + y1 + (1/(4π2))(ŷ0 + ŷ1) 6= 0, which means that assumption (2) is
sharp.

2. Let us return to problem (1) in a linear version similar to that which
was investigated by Usmani. The function F has the form F (x, y) = f(x)y+
g(x), where f and g are continuous on [0, 1]. So, we consider the problem

(4) Ly = fy + g in (0, 1)

together with the boundary conditions (B.C.). If we assume additionally
that the operator L is symmetric and positive definite (this is satisfied in
particular when L0 = L1) then the linear problem

Lv = µv

together with the boundary conditions

v(0) = v(1) = L0v(0) = L0v(1) = 0

has an increasing sequence of positive eigenvalues 0 < µ1 < µ2 < . . .

Our main result for (4) is:

Theorem 5. If f(x) 6= µj , j = 1, 2, . . . , then for any chosen y0, y1, ŷ0, ŷ1

and an arbitrary function g problem (4) has a unique solution.

This result may be obtained by applying a mapping theorem for non-
linear operators of the form L − N in a Hilbert space, with L linear and
N nonlinear, proved by Mawhin in [3]. Nevertheless, for clarity and simpli-
city we give the direct proof of Theorem 5 which is based in great part on
Mawhin’s idea.

P r o o f o f T h e o r e m 5. Using the Green functions introduced in
Section 1 we can convert problem (4) into an equivalent integral equation
over C[0, 1]:

(5) y − Ty = h,
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where

Ty(x) =

1\
0

G0(x, s)
[ 1\

0

G1(s, t)f(t)y(t) dt
]
ds,

h(x) = y0 + x(y1 − y0)

+

1\
0

G0(x, s)
[
ŷ0 + s(ŷ1 − ŷ0) +

1\
0

G1(s, t)(f(t)y(t) + g(t)) dt
]
ds.

It is clearly enough to show that (5) is uniquely solvable for arbitrary h∈
C[0, 1]. Since T is a compact operator we can apply the Fredholm alternative.
So, it is sufficient to prove that the boundary value problem

(6)
Ly = fy in (0, 1),

y(0) = y(1) = L0y(0) = L0y(1) = 0,

has only the trivial solution. The differential operator L together with the
boundary conditions y(0) = y(1) = L0y(0) = L0y(1) = 0 defines an un-
bounded selfadjoint operator L in L2(0, 1), so that problem (6) can be
rewritten as

(7) (L − kI)y = F̂ (y),

where k ∈ R and F̂ denotes the operator of multiplication by f − k, namely
F̂ (y)(x) = (f(x) − k)y(x).

We denote by σ(L) the spectrum of L. For k 6= µj , L − kI is invertible,
so that (7) is equivalent to

y = (L − kI)−1F̂ (y).

Since ‖(L − kI)−1‖−1 = dist(k, σ(L)) ([2]), we obtain

‖(L − kI)−1F̂‖ ≤ ‖(L − kI)−1‖ · ‖F̂‖

=
‖F̂‖

dist(k, σ(L))
≤

maxx∈[0,1] |f(x) − k|

dist(k, σ(L))
.

There are two possibilities: either maxx∈[0,1] f(x) < µ1, or there exists j ∈ N

such that µj < minx∈[0,1] f(x) ≤ maxx∈[0,1] f(x) < µj+1.
Note that

dist(k, σ(L)) =

{
µ1 − k for k < µ1,
inf{k − µj , µj+1 − k} for k ∈ (µj , µj+1).

It is clear that we can choose k depending on f such that ‖(L−kI)−1F̂‖ < 1.
So (7) has only the trivial solution. This completes the proof.

Consider the particular case of problem (4), namely

(8) y(4) = f(x)y + q1y
′′ + g(x)
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with the boundary conditions (B.C.). The next result is an immediate con-
sequence of Theorem 5.

Theorem 6. If f(x) 6= j4π4, j = 1, 2, . . . , then for any chosen y0, y1,
ŷ0, ŷ1 and arbitrary functions g and q1 problem (8) has a unique solution.

Notice that y(4) = −π2y′′ has no solutions when ŷ0 + ŷ1 6= 0, which
shows that the condition qi ≥ 0 is sharp.
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Reçu par la Rédaction le 7.2.1996
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