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An energy estimate for the complex
Monge—Ampere operator

by URBAN CEGRELL and LEIF PERSSON (Umea)

Abstract. We prove an energy estimate for the complex Monge-Ampeére operator,
and a comparison theorem for the corresponding capacity and energy. The results are
pluricomplex counterparts to results in classical potential theory.

Introduction. Recall that in classical potential theory, a positive mea-
sure u is said to have finite energy if

| —Ga(,y) du(x) du(y) < o,
where G, is the Green function for the domain (2. It is shown that

V—Galx,y) du(z) dv(y)

defines an inner product on the linear space of measures spanned by the
measures of finite energy. In particular, we have the Cauchy—Schwarz in-
equality
1/2 1/2
(S—G;ﬂludu) < (S—G;ﬂlud,u) (S—G;ﬂludu)
In this paper, we prove the following analogue of this inequality for the
complex Monge-Ampeére operator:

THEOREM 1.1. Let £2 be a domain in C", n > 2. Suppose u,v € PSHN
L*>(£2) with lim, ¢ u(z) =lim, ¢ v(z) =0, V€ € 002. If p>1,0<j <mn,
then

{ (—w)? (ddu)? A (ddv)"~

)(p+j)/(n+p) <S (—v)P (dd°v)"

< Dy, (S(—U)p(ddcu)" )("—J‘)/(n+p)
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where D, ; = p®+)m=0/0=1) for p > 1 and D, ; = exp(1 + j)(n — j) for
p=1.
For the classical notation of energy and Green potentials we refer to

Landkof [6], and for the pluripotential theory to the survey article by Bed-
ford [1].

2. Proof of the theorem. In order to be able to integrate by parts, we
first assume that

(2.1) | ((ddeu)™ + (dd°v)") < 0.
Q
Then for the mixed terms we have
| (ddeu)’ A (ddv)" 7 < {(dd*(u+0v))" < oo, 0<j<mn,
Q Q
where the last inequality is obtained from the comparison principle and the
assumption above (cf. [5]). For let u = (dd°(u + v))™ and choose 1 < o < 2
such that p{u = aw} = 0. Then uf2 = p{(1+a)u/a < u+v}+p{(1+a)v <
u+v}, and thus pf2 < 3" §,((dd“u)™+(dd°v)™) by the comparison principle,
which proves the boundedness of the mixed terms.
Since d°u A (dd°u)? =1 A (ddv)"~7 is a positive measure on {u = —¢}
(cf. [4]), we have
0< | (—vPdun (ddu) =" A (ddv)"
{u=—c}

< sup{(—v(2))? | u(z) = —¢} - S(ddcu)j A (dd°v)" ™7 — 0, &\, 0.
0
Therefore, we can integrate by parts in this case. Define

z; = log S (—w)?(dd°u)’ A (dd°v)" 7,
Yj = IOgS(—v)p(dd%)j A (dd®u)" .
Then integration by parts and Holder’s inequality give
| (—w)P (ddou)? A(ddev)—

= — de A d(—u)P A (dd°u)? A (ddv)n 971

= Yvdd®(—u)? A (ddu)? A (ddv)" 7!

= p(p — 1) {o(—u)P~2du A dou A (dd°u)? A (ddov)" =91
+p| (=) (—uw)P~ " (dd°u) T A (ddov)" I
< p (—0)(—u)?~! (ddu) T A (ddov)
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< <px(—v)p(ddcu)j+1 A (ddcv)”—j—1>1/p

X (ps (—u)P(ddu)?™ A (ddcv)"_j_l)
Taking logarithms, we get

-1
xj§§p

1
Tjy1+ ]_Qyn—j—l +logp
and
<P ! + = + log
Yi > —Yj+1 T —Tpn—j-1 ogp.
J p Jj+ p J

In matrix notation,

To
Yo 1
(2.2) Sl ¢ | <logp
Ty, 1
Yn
where S is the 2n x (2n + 2) matrix
1—-p 1
1 0 - 1O 0 0 01 -5
—P
0 1 0 - 10 01 - 0
i—-p _1
0 0 1 0 - - 0 0
S = o
S S o 1
0 0 -3 0 1 0 m
0 —% 0 0 o -~ 0 1 0
- 0 0 0 O --- 0 0 1
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Let A denote the left 2n x 2n submatrix of S. We will find that A is invertible
and that A~! has nonnegative elements. So multiplication of the system (2.2)
with A= will preserve the inequality and give a reduced row-echelon form.

To this end consider the system of equations

Zo Co
Yo do
A . _ .
Tp—1 Cn—1

Yn—1 dp—1
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A calculation shows that then

(2.3) R ) n_pj+n JZ_:IHJL
%n:( —1+4n—k)ep
S T eEa :Z( Pt A
S e,

k=0

and similarly for y;. This shows that A~! exists and has nonnegative ele-
ments. It follows from (2.3) that

I 0 0 0 O Ag

0O I O 0 0 Ay
(2.4) ATMS =1 o s ]

00 0 I 0 A,

0O 0 0 0 I A,

where [ is the 2 x 2 identity matrix and

ptj n—j
_ p+n p+n
A5 =- <u m) :
ptn  ptn
Then (2.2) implies that

To

Yo 1
(2.5) ATIS | o ] <logpA™!

Ty 1

Yn

To compute the right hand side of (2.5), we have to find

ZU,

| v

(2.6) A7 ] = :
1 Ty q
Yn—1
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Thus we put ¢, = di =1 in (2.3) and get

(p+4)n—Jj)
We substitute (2.7) and (2.6) in (2.5) and obtain
P NS L I (p+7)(n—J) log p.
(2.8) p+n p+n p—1
n—j P+ (p+7)(n —J)
Yj — n Yn < log p.
p+n p+n p—1

This concludes the proof for the case p > 1 and the extra assumption (2.1).
Since the integrals are continuous in p, and since
. logp
lim =
p—1p—1

L

the inequality also holds for p = 1. To complete the proof of the theorem,
we have to remove the assumption (2.1). We can assume that

J(—w)(dd°u)" + (—v)? (ddv)") < oo,

otherwise there is nothing to prove. Let € > 0 be given an let u,. denote the
usual regularization

ur(2) = Ju(z = r)d (&) AV (¢),

where V is the Lebesgue measure on C", and ¢ is a fixed radial, nonn-
egative, smooth and compactly supported function in the unit ball of C"
with {¢dV = 1. Let w € 2 be a strictly pseudoconvex domain containing
{u < —¢/4}. Then u, € PSH(w) N C*(w) if r < d(w,(2), and we define

w Uy if u, < —¢,
re = 5h°{”uT<_6} if u. > —e,

where h% is the relative extremal function

(2.9) hi(2) = sup{¢(z) | ¢ € PSH(w), ¢ <0, ¢|p < —1}

with respect to w. By Sard’s theorem, the boundary of {u, < —¢} is a smooth
manifold for all € outside a set of Lebesgue measure zero. We consider only
those e’s. Then limg,, <_cys¢—. 1Y, . (§) = —1forall z € {u, < —¢}, s0

w

u,” . is plurisubharmonic on w. Now,
Curray = |t |
w {u.<—ce} {ur,>—¢}

< \(—u)P(ddu)" +e? | (ddug,)"
K {ur,=—c}
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for all compact sets K in w containing {u < —e}. Furthermore,

V(ddoug )" = \(dd°ehg, . )" = | (ddehg, . )"
w w {ur=—c}
< | (dd°ehf, - 4)"
{u<(a/4)h?’ur <—e} —e/4}

n C 6 w 6 "
—4 S (dd <Z e} — Z))
{u<(e/4)h%

Cur<—ey ~6/4}
<4 | (ddw)"
{u<—e/4}
by the comparison principle. Combining these two inequalities, we get
V(—ug )P (ddous )" < {(—up)P(ddou,)" +e” | (ddu)™.
w K {u<—e/4}
We now let r ™\ 0; then w;’_ decreases to
w U if u < —¢,
Ue = {Ehf{’u<_€} if u> —¢,
and
{(—ug)r(ddoue)” < \(—w)P(ddw)" +e* | (dd°u)”
w K {u<e/4}
so if we let w and K increase to {2, then u% decreases to uf’ and
V(—u?)P(ddu?)" < \(—uw)P(ddw)" +e7 | (ddu)".
{u<e/4}
If we now let £ N\, 0 then

lim § (—uf)?(dd“u?)" < | (~u)? (ddu)"

g
and similarly for v. Also, by semicontinuity we have

lim iélfg(—uf)fﬂ(ddcuf)f A (ddeuf )"0 > | (—w)P (ddu)? A (ddv)",
We have already proved the inequalities for uf? and v so the above inequal-
ities complete the proof of the theorem.

Remark. The theorem can be generalized to more than two functions.
Also, it can be proved that D; ; =1 (see [7]).

3. An application. Let 2 be a strictly pseudoconvex set in C*, n > 2,
and denote by P the class of bounded plurisubharmonic functions ¢ on {2
such that lim,. ¢ ¢(z) = 0,V¢ € 912 and |, (dd°¢)" < co. In analogy with
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the notation of capacity and energy in classical potential theory, we consider
the pluricomplex capacity, defined by Bedford and Taylor in [2],

d(F) = sup{ S(ddcu)”
F

u € P, —1§u§0},

and the pluricomplex energy,

I(F) = inf { S —u(ddu)"™

u € P, S(ddcu)" > 1},
F
of a compact subset F of 2. If {.(dd“u)” = 0,Yu € P, we say that F has
infinite energy; this happens exactly when F' is pluripolar.
THEOREM 3.1. Suppose that F is not pluripolar. Then
(3.1) DL <a(F)rI(F) < 1.

Proof. Let ¢ = h%/d(F)'/™ € P, where h%. denotes the smallest upper
semicontinuous majorant of the relative extremal function hr = h¥ defined
by (2.9). Then supp(dd®y)™ C F and §,.(dd“¢)™ = 1 by [2]. Therefore,

1 h 1
I(F) < L (dd°h}p)" =
(F) < d(E) S d(F)l/"( r) d(F)t/n
since h}. = —1 on F outside a pluripolar set. This proves the last inequality

in (3.1).
To prove the first inequality we use Theorem 1.1. If w € P with

{-(dd®u)™ > 1, then

—u(ddu)"

n/(n+1)

1/(n+1)<S >n/(n+1)

1<\ —hp(ddu)" < Dl,o(ﬂ—hp(ddchF)”>

= D170d(F)1/(n+1) (S—U(ddCU)n)
SO
Dy < d(F) | —u(ddeu)"

Taking infimum with respect to u we get the first inequality in (3.1), and
the proof of the theorem is complete. m

Remark. By [7], D10 =1, so we have in fact
d(F)Y"I(F) = 1.

This is the pluricomplex counterpart of the classical fact that capacity times
energy equals 1 (cf. [3], p. 20). For further results on pluricomplex energy,
see [5].
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