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An energy estimate for the complex

Monge–Ampère operator

by Urban Cegrell and Leif Persson (Ume̊a)

Abstract. We prove an energy estimate for the complex Monge–Ampère operator,
and a comparison theorem for the corresponding capacity and energy. The results are
pluricomplex counterparts to results in classical potential theory.

Introduction. Recall that in classical potential theory, a positive mea-
sure µ is said to have finite energy if\

−GΩ(x, y) dµ(x) dµ(y) <∞,

where GΩ is the Green function for the domain Ω. It is shown that\
−GΩ(x, y) dµ(x) dν(y)

defines an inner product on the linear space of measures spanned by the
measures of finite energy. In particular, we have the Cauchy–Schwarz in-
equality

(\
−GΩ dµ dν

)

≤
(\

−GΩ dµ dµ
)1/2(\

−GΩ dν dν
)1/2

.

In this paper, we prove the following analogue of this inequality for the
complex Monge–Ampère operator:

Theorem 1.1. Let Ω be a domain in C
n, n ≥ 2. Suppose u, v ∈ PSH ∩

L∞(Ω) with limz→ξ u(z) = limz→ξ v(z) = 0, ∀ξ ∈ ∂Ω. If p ≥ 1, 0 ≤ j ≤ n,
then\

(−u)p(ddcu)j ∧ (ddcv)n−j

≤ Dp,j

(\
(−u)p(ddcu)n

)(p+j)/(n+p)(\
(−v)p(ddcv)n

)(n−j)/(n+p)
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where Dp,j = p(p+j)(n−j)/(p−1) for p > 1 and Dp,j = exp(1 + j)(n − j) for

p = 1.

For the classical notation of energy and Green potentials we refer to
Landkof [6], and for the pluripotential theory to the survey article by Bed-
ford [1].

2. Proof of the theorem. In order to be able to integrate by parts, we
first assume that

(2.1)
\
Ω

((ddcu)n + (ddcv)n) <∞.

Then for the mixed terms we have\
Ω

(ddcu)j ∧ (ddcv)n−j ≤
\
Ω

(ddc(u+ v))n <∞, 0 ≤ j ≤ n,

where the last inequality is obtained from the comparison principle and the
assumption above (cf. [5]). For let µ = (ddc(u+ v))n and choose 1 < α < 2
such that µ{u = αv} = 0. Then µΩ = µ{(1+α)u/α < u+v}+µ{(1+α)v <
u+v}, and thus µΩ ≤ 3n

T
Ω

((ddcu)n+(ddcv)n) by the comparison principle,
which proves the boundedness of the mixed terms.

Since dcu ∧ (ddcu)j−1 ∧ (ddcv)n−j is a positive measure on {u = −ε}
(cf. [4]), we have

0 ≤
\

{u=−ε}

(−v)pdcu ∧ (ddcu)j−1 ∧ (ddcv)n−j

≤ sup{(−v(z))p | u(z) = −ε} ·
\
Ω

(ddcu)j ∧ (ddcv)n−j → 0, εց 0.

Therefore, we can integrate by parts in this case. Define

xj = log
\
(−u)p(ddcu)j ∧ (ddcv)n−j ,

yj = log
\
(−v)p(ddcv)j ∧ (ddcu)n−j .

Then integration by parts and Hölder’s inequality give\
(−u)p(ddcu)j∧(ddcv)n−j

= −
\
dv ∧ dc(−u)p ∧ (ddcu)j ∧ (ddcv)n−j−1

=
\
vddc(−u)p ∧ (ddcu)j ∧ (ddcv)n−j−1

= p(p− 1)
\
v(−u)p−2du ∧ dcu ∧ (ddcu)j ∧ (ddcv)n−j−1

+ p
\
(−v)(−u)p−1(ddcu)j+1 ∧ (ddcv)n−j−1

≤ p
\
(−v)(−u)p−1(ddcu)j+1 ∧ (ddcv)n−j−1
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≤
(

p
\
(−v)p(ddcu)j+1 ∧ (ddcv)n−j−1

)1/p

×
(

p
\
(−u)p(ddcu)j+1 ∧ (ddcv)n−j−1

)(p−1)/p

.

Taking logarithms, we get

xj ≤
p− 1

p
xj+1 +

1

p
yn−j−1 + log p

and

yj ≤
p− 1

p
yj+1 +

1

p
xn−j−1 + log p.

In matrix notation,

(2.2) S













x0

y0
...
xn

yn













≤ log p





1
...
1





where S is the 2n× (2n + 2) matrix

S =





































1 0 1−p
p 0 0 · · · 0 0 − 1

p 0 0

0 1 0 1−p
p 0 · · · 0 − 1

p 0 0 0

0 0 1 0 1−p
p

· · · − 1
p

0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
0 0 − 1

p 0 0 · · · 1 0 1−p
p 0 0

0 − 1
p

0 0 0 · · · 0 1 0 1−p
p

0

− 1
p 0 0 0 0 · · · 0 0 1 0 1−p

p





































.

Let A denote the left 2n×2n submatrix of S. We will find that A is invertible
and that A−1 has nonnegative elements. So multiplication of the system (2.2)
with A−1 will preserve the inequality and give a reduced row-echelon form.
To this end consider the system of equations

A













x0

y0
...

xn−1

yn−1













=













c0
d0
...

cn−1

dn−1













.
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A calculation shows that then

xj =
n− j

(p− 1)(p + n)

j−1
∑

k=0

(k + 1)ck(2.3)

+
p+ j

(p− 1)(p + n)

n−1
∑

k=j

(p− 1 + n− k)ck

+
n− j

(p− 1)(p + n)

n−1
∑

k=n−j

(p − 1 + n− k)dk

+
p+ j

(p− 1)(p + n)

n−j−1
∑

k=0

(k + 1)dk,

and similarly for yj . This shows that A−1 exists and has nonnegative ele-
ments. It follows from (2.3) that

(2.4) A−1S =













I 0 0 · · · 0 0 A0

0 I 0 · · · 0 0 A1
...

...
...

. . .
...

...
...

0 0 0 · · · I 0 An−2

0 0 0 · · · 0 I An−1













,

where I is the 2 × 2 identity matrix and

Aj = −

(

p+j
p+n

n−j
p+n

n−j
p+n

p+j
p+n

)

.

Then (2.2) implies that

(2.5) A−1S













x0

y0
...
xn

yn













≤ log pA−1





1
...
1



 .

To compute the right hand side of (2.5), we have to find

(2.6) A−1





1
...
1



 =













x′0
y′0
...

x′n−1

y′n−1













.
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Thus we put ck = dk = 1 in (2.3) and get

(2.7) x′j = y′j =
(p+ j)(n − j)

p− 1
.

We substitute (2.7) and (2.6) in (2.5) and obtain

(2.8)

xj −
p+ j

p+ n
xn −

n− j

p+ n
yn ≤

(p + j)(n − j)

p− 1
log p,

yj −
n− j

p+ n
xn −

p+ j

p+ n
yn ≤

(p + j)(n − j)

p− 1
log p.

This concludes the proof for the case p > 1 and the extra assumption (2.1).
Since the integrals are continuous in p, and since

lim
p→1

log p

p− 1
= 1,

the inequality also holds for p = 1. To complete the proof of the theorem,
we have to remove the assumption (2.1). We can assume that\

((−u)p(ddcu)n + (−v)p(ddcv)n) <∞,

otherwise there is nothing to prove. Let ε > 0 be given an let ur denote the
usual regularization

ur(z) =
\
u(z − rξ)φ(ξ) dV (ξ),

where V is the Lebesgue measure on C
n, and φ is a fixed radial, nonn-

egative, smooth and compactly supported function in the unit ball of C
n

with
T
φdV = 1. Let ω ⋐ Ω be a strictly pseudoconvex domain containing

{u < −ε/4}. Then ur ∈ PSH(ω) ∩ C∞(ω) if r < d(ω, cΩ), and we define

uω
r,ε =

{

ur if ur < −ε,
εhω

{ur<−ε} if ur ≥ −ε,

where hω
E is the relative extremal function

(2.9) hω
E(z) = sup{φ(z) | φ ∈ PSH(ω), φ ≤ 0, φ|E ≤ −1}

with respect to ω. By Sard’s theorem, the boundary of {ur<−ε} is a smooth
manifold for all ε outside a set of Lebesgue measure zero. We consider only
those ε’s. Then lim{ur≤−ε}∋ξ→z h

ω
{ur<−ε}(ξ) = −1 for all z ∈ {ur < −ε}, so

uω
r,ε is plurisubharmonic on ω. Now,\

ω

(−uω
r,ε)

p(ddcuω
r,ε)

n =
\

{ur<−ε}

. . .+
\

{ur≥−ε}

. . .

≤
\
K

(−ur)
p(ddcur)

n + εp
\

{ur=−ε}

(ddcuω
r,ε)

n
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for all compact sets K in ω containing {u < −ε}. Furthermore,\
ω

(ddcuω
r,ε)

n =
\
ω

(ddcεhω
{ur<−ε})

n =
\

{ur=−ε}

(ddcεhω
{ur<−ε})

n

≤
\

{u<(ε/4)hω

{ur <−ε}
−ε/4}

(ddcεhω
{ur<−ε})

n

= 4n
\

{u<(ε/4)hω

{ur <−ε}
−ε/4}

(

ddc

(

ε

4
hω
{ur<−ε} −

ε

4

))n

≤ 4n
\

{u<−ε/4}

(ddcu)n

by the comparison principle. Combining these two inequalities, we get\
ω

(−uω
r,ε)

p(ddcuω
r,ε)

n ≤
\
K

(−ur)
p(ddcur)

n + εp
\

{u<−ε/4}

(ddcu)n.

We now let r ց 0; then uω
r,ε decreases to

uω
ε =

{

u if u < −ε,
εhω

{u<−ε} if u ≥ −ε,

and \
ω

(−uω
ε )p(ddcuω

ε )n ≤
\
K

(−u)p(ddcu)n + εp
\

{u<ε/4}

(ddcu)n

so if we let ω and K increase to Ω, then uω
ε decreases to uΩ

ε and\
(−uΩ

ε )p(ddcuΩ
ε )n ≤

\
(−u)p(ddcu)n + εp

\
{u<ε/4}

(ddcu)n.

If we now let εց 0 then

lim
ε→0

\
(−uΩ

ε )p(ddcuΩ
ε )n ≤

\
(−u)p(ddcu)n

and similarly for v. Also, by semicontinuity we have

lim inf
ε→0

\
(−uΩ

ε )p(ddcuΩ
ε )j ∧ (ddcuΩ

ε )n−j ≥
\
(−u)p(ddcu)j ∧ (ddcv)n−j .

We have already proved the inequalities for uΩ
ε and vΩ

ε so the above inequal-
ities complete the proof of the theorem.

R e m a r k. The theorem can be generalized to more than two functions.
Also, it can be proved that D1,j = 1 (see [7]).

3. An application. Let Ω be a strictly pseudoconvex set in C
n, n ≥ 2,

and denote by P the class of bounded plurisubharmonic functions φ on Ω
such that limz→ξ φ(z) = 0,∀ξ ∈ ∂Ω and

T
Ω

(ddcφ)n < ∞. In analogy with
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the notation of capacity and energy in classical potential theory, we consider
the pluricomplex capacity, defined by Bedford and Taylor in [2],

d(F ) = sup
{ \

F

(ddcu)n
∣

∣

∣u ∈ P, −1 ≤ u ≤ 0
}

,

and the pluricomplex energy,

I(F ) = inf
{\

−u(ddcu)n
∣

∣

∣
u ∈ P,

\
F

(ddcu)n ≥ 1
}

,

of a compact subset F of Ω. If
T
F

(ddcu)n = 0,∀u ∈ P , we say that F has
infinite energy ; this happens exactly when F is pluripolar.

Theorem 3.1. Suppose that F is not pluripolar. Then

(3.1) D
−(n+1)/n
1,0 ≤ d(F )1/nI(F ) ≤ 1.

P r o o f. Let ψ = h∗F /d(F )1/n ∈ P , where h∗F denotes the smallest upper
semicontinuous majorant of the relative extremal function hF = hΩ

F defined
by (2.9). Then supp(ddcψ)n ⊂ F and

T
F
(ddcψ)n = 1 by [2]. Therefore,

I(F ) ≤
1

d(E)

\
−

h∗F
d(F )1/n

(ddch∗F )n =
1

d(F )1/n

since h∗F = −1 on F outside a pluripolar set. This proves the last inequality
in (3.1).

To prove the first inequality we use Theorem 1.1. If u ∈ P withT
F
(ddcu)n ≥ 1, then

1 ≤
\
−hF (ddcu)n ≤ D1,0

(\
−hF (ddchF )n

)1/(n+1)(\
−u(ddcu)n

)n/(n+1)

= D1,0d(F )1/(n+1)
(\

−u(ddcu)n
)n/(n+1)

so

D
−(n+1)/n
1,0 ≤ d(F )1/n

\
−u(ddcu)n.

Taking infimum with respect to u we get the first inequality in (3.1), and
the proof of the theorem is complete.

R e m a r k. By [7], D1,0 = 1, so we have in fact

d(F )1/nI(F ) = 1.

This is the pluricomplex counterpart of the classical fact that capacity times
energy equals 1 (cf. [3], p. 20). For further results on pluricomplex energy,
see [5].
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