ANNALES POLONICI MATHEMATICI LXVII.1 (1997)

An energy estimate for the complex Monge–Ampère operator

by URBAN CEGRELL and LEIF PERSSON (Umeå)

Abstract. We prove an energy estimate for the complex Monge–Ampère operator, and a comparison theorem for the corresponding capacity and energy. The results are pluricomplex counterparts to results in classical potential theory.

Introduction. Recall that in classical potential theory, a positive measure μ is said to have *finite energy* if

$$\int -G_{\Omega}(x,y) \, d\mu(x) \, d\mu(y) < \infty,$$

where G_{Ω} is the Green function for the domain Ω . It is shown that

$$-G_{\Omega}(x,y) d\mu(x) d\nu(y)$$

defines an inner product on the linear space of measures spanned by the measures of finite energy. In particular, we have the Cauchy–Schwarz inequality

$$\left(\int -G_{\Omega} \, d\mu \, d\nu\right) \leq \left(\int -G_{\Omega} \, d\mu \, d\mu\right)^{1/2} \left(\int -G_{\Omega} \, d\nu \, d\nu\right)^{1/2}.$$

In this paper, we prove the following analogue of this inequality for the complex Monge–Ampère operator:

THEOREM 1.1. Let Ω be a domain in \mathbb{C}^n , $n \geq 2$. Suppose $u, v \in \text{PSH} \cap L^{\infty}(\Omega)$ with $\lim_{z \to \xi} u(z) = \lim_{z \to \xi} v(z) = 0$, $\forall \xi \in \partial \Omega$. If $p \geq 1$, $0 \leq j \leq n$, then

$$\int (-u)^p (dd^c u)^j \wedge (dd^c v)^{n-j}$$

$$\leq D_{p,j} \left(\int (-u)^p (dd^c u)^n \right)^{(p+j)/(n+p)} \left(\int (-v)^p (dd^c v)^n \right)^{(n-j)/(n+p)}$$

1991 Mathematics Subject Classification: Primary 32F07; Secondary 31C10.

Key words and phrases: capacity, complex Monge–Ampère operator, energy estimate, plurisubharmonic function.

[95]

where $D_{p,j} = p^{(p+j)(n-j)/(p-1)}$ for p > 1 and $D_{p,j} = \exp(1+j)(n-j)$ for p = 1.

For the classical notation of energy and Green potentials we refer to Landkof [6], and for the pluripotential theory to the survey article by Bed-ford [1].

2. Proof of the theorem. In order to be able to integrate by parts, we first assume that

(2.1)
$$\int_{\Omega} ((dd^c u)^n + (dd^c v)^n) < \infty$$

Then for the mixed terms we have

$$\int_{\Omega} (dd^c u)^j \wedge (dd^c v)^{n-j} \leq \int_{\Omega} (dd^c (u+v))^n < \infty, \quad 0 \leq j \leq n,$$

where the last inequality is obtained from the comparison principle and the assumption above (cf. [5]). For let $\mu = (dd^c(u+v))^n$ and choose $1 < \alpha < 2$ such that $\mu\{u = \alpha v\} = 0$. Then $\mu \Omega = \mu\{(1+\alpha)u/\alpha < u+v\} + \mu\{(1+\alpha)v < u+v\}$, and thus $\mu \Omega \leq 3^n \int_{\Omega} ((dd^c u)^n + (dd^c v)^n)$ by the comparison principle, which proves the boundedness of the mixed terms.

Since $d^c u \wedge (dd^c u)^{j-1} \wedge (dd^c v)^{n-j}$ is a positive measure on $\{u = -\varepsilon\}$ (cf. [4]), we have

$$0 \leq \int_{\{u=-\varepsilon\}} (-v)^p d^c u \wedge (dd^c u)^{j-1} \wedge (dd^c v)^{n-j}$$

$$\leq \sup\{(-v(z))^p \mid u(z) = -\varepsilon\} \cdot \int_{\Omega} (dd^c u)^j \wedge (dd^c v)^{n-j} \to 0, \quad \varepsilon \searrow 0.$$

Therefore, we can integrate by parts in this case. Define

$$\begin{aligned} x_j &= \log \int (-u)^p (dd^c u)^j \wedge (dd^c v)^{n-j}, \\ y_j &= \log \int (-v)^p (dd^c v)^j \wedge (dd^c u)^{n-j}. \end{aligned}$$

Then integration by parts and Hölder's inequality give

$$\begin{split} \int (-u)^{p} (dd^{c}u)^{j} \wedge (dd^{c}v)^{n-j} \\ &= -\int dv \wedge d^{c} (-u)^{p} \wedge (dd^{c}u)^{j} \wedge (dd^{c}v)^{n-j-1} \\ &= \int v dd^{c} (-u)^{p} \wedge (dd^{c}u)^{j} \wedge (dd^{c}v)^{n-j-1} \\ &= p(p-1) \int v (-u)^{p-2} du \wedge d^{c}u \wedge (dd^{c}u)^{j} \wedge (dd^{c}v)^{n-j-1} \\ &+ p \int (-v) (-u)^{p-1} (dd^{c}u)^{j+1} \wedge (dd^{c}v)^{n-j-1} \\ &\leq p \int (-v) (-u)^{p-1} (dd^{c}u)^{j+1} \wedge (dd^{c}v)^{n-j-1} \end{split}$$

Monge-Ampère operator

$$\leq \left(p \int (-v)^p (dd^c u)^{j+1} \wedge (dd^c v)^{n-j-1} \right)^{1/p} \\ \times \left(p \int (-u)^p (dd^c u)^{j+1} \wedge (dd^c v)^{n-j-1} \right)^{(p-1)/p}.$$

Taking logarithms, we get

$$x_j \le \frac{p-1}{p} x_{j+1} + \frac{1}{p} y_{n-j-1} + \log p$$

and

$$y_j \le \frac{p-1}{p} y_{j+1} + \frac{1}{p} x_{n-j-1} + \log p.$$

In matrix notation,

(2.2)
$$S\begin{pmatrix} x_0\\ y_0\\ \vdots\\ x_n\\ y_n \end{pmatrix} \le \log p \begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix}$$

where S is the $2n \times (2n+2)$ matrix

Let A denote the left $2n \times 2n$ submatrix of S. We will find that A is invertible and that A^{-1} has nonnegative elements. So multiplication of the system (2.2) with A^{-1} will preserve the inequality and give a reduced row-echelon form. To this end consider the system of equations

$$A\begin{pmatrix} x_0\\ y_0\\ \vdots\\ x_{n-1}\\ y_{n-1} \end{pmatrix} = \begin{pmatrix} c_0\\ d_0\\ \vdots\\ c_{n-1}\\ d_{n-1} \end{pmatrix}.$$

A calculation shows that then

(2.3)
$$x_{j} = \frac{n-j}{(p-1)(p+n)} \sum_{k=0}^{j-1} (k+1)c_{k} + \frac{p+j}{(p-1)(p+n)} \sum_{k=j}^{n-1} (p-1+n-k)c_{k} + \frac{n-j}{(p-1)(p+n)} \sum_{k=n-j}^{n-1} (p-1+n-k)d_{k} + \frac{p+j}{(p-1)(p+n)} \sum_{k=0}^{n-j-1} (k+1)d_{k},$$

and similarly for y_j . This shows that A^{-1} exists and has nonnegative elements. It follows from (2.3) that

(2.4)
$$A^{-1}S = \begin{pmatrix} I & 0 & 0 & \cdots & 0 & 0 & A_0 \\ 0 & I & 0 & \cdots & 0 & 0 & A_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & I & 0 & A_{n-2} \\ 0 & 0 & 0 & \cdots & 0 & I & A_{n-1} \end{pmatrix},$$

where I is the 2×2 identity matrix and

$$A_j = -\begin{pmatrix} \frac{p+j}{p+n} & \frac{n-j}{p+n} \\ \frac{n-j}{p+n} & \frac{p+j}{p+n} \end{pmatrix}.$$

Then (2.2) implies that

(2.5)
$$A^{-1}S\begin{pmatrix}x_0\\y_0\\\vdots\\x_n\\y_n\end{pmatrix} \le \log p A^{-1}\begin{pmatrix}1\\\vdots\\1\end{pmatrix}.$$

To compute the right hand side of (2.5), we have to find

(2.6)
$$A^{-1}\begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix} = \begin{pmatrix} x'_0\\ y'_0\\ \vdots\\ x'_{n-1}\\ y'_{n-1} \end{pmatrix}.$$

Thus we put $c_k = d_k = 1$ in (2.3) and get

(2.7)
$$x'_{j} = y'_{j} = \frac{(p+j)(n-j)}{p-1}.$$

We substitute (2.7) and (2.6) in (2.5) and obtain

(2.8)
$$x_{j} - \frac{p+j}{p+n}x_{n} - \frac{n-j}{p+n}y_{n} \leq \frac{(p+j)(n-j)}{p-1}\log p,$$
$$y_{j} - \frac{n-j}{p+n}x_{n} - \frac{p+j}{p+n}y_{n} \leq \frac{(p+j)(n-j)}{p-1}\log p.$$

This concludes the proof for the case p > 1 and the extra assumption (2.1). Since the integrals are continuous in p, and since

$$\lim_{p \to 1} \frac{\log p}{p-1} = 1,$$

the inequality also holds for p = 1. To complete the proof of the theorem, we have to remove the assumption (2.1). We can assume that

$$\int \left((-u)^p (dd^c u)^n + (-v)^p (dd^c v)^n \right) < \infty,$$

otherwise there is nothing to prove. Let $\varepsilon>0$ be given an let u_r denote the usual regularization

$$u_r(z) = \int u(z - r\xi)\phi(\xi) \, dV(\xi)$$

where V is the Lebesgue measure on \mathbb{C}^n , and ϕ is a fixed radial, nonnegative, smooth and compactly supported function in the unit ball of \mathbb{C}^n with $\int \phi \, dV = 1$. Let $\omega \Subset \Omega$ be a strictly pseudoconvex domain containing $\{u < -\varepsilon/4\}$. Then $u_r \in \text{PSH}(\omega) \cap C^{\infty}(\overline{\omega})$ if $r < d(\omega, {}^c\Omega)$, and we define

$$u_{r,\varepsilon}^{\omega} = \begin{cases} u_r & \text{if } u_r < -\varepsilon, \\ \varepsilon h_{\{u_r < -\varepsilon\}}^{\omega} & \text{if } u_r \ge -\varepsilon, \end{cases}$$

where h_E^{ω} is the relative extremal function

(2.9)
$$h_E^{\omega}(z) = \sup\{\phi(z) \mid \phi \in \mathrm{PSH}(\omega), \ \phi \le 0, \ \phi|_E \le -1\}$$

with respect to ω . By Sard's theorem, the boundary of $\{u_r < -\varepsilon\}$ is a smooth manifold for all ε outside a set of Lebesgue measure zero. We consider only those ε 's. Then $\lim_{\{u_r \leq -\varepsilon\} \ni \xi \to z} h^{\omega}_{\{u_r < -\varepsilon\}}(\xi) = -1$ for all $z \in \overline{\{u_r < -\varepsilon\}}$, so $u^{\omega}_{r,\varepsilon}$ is plurisubharmonic on ω . Now,

$$\int_{\omega} (-u_{r,\varepsilon}^{\omega})^{p} (dd^{c} u_{r,\varepsilon}^{\omega})^{n} = \int_{\{u_{r} < -\varepsilon\}} \dots + \int_{\{u_{r} \ge -\varepsilon\}} \dots$$
$$\leq \int_{K} (-u_{r})^{p} (dd^{c} u_{r})^{n} + \varepsilon^{p} \int_{\{u_{r} = -\varepsilon\}} (dd^{c} u_{r,\varepsilon}^{\omega})^{n}$$

for all compact sets K in ω containing $\{u < -\varepsilon\}$. Furthermore,

$$\int_{\omega} (dd^{c} u_{r,\varepsilon}^{\omega})^{n} = \int_{\omega} (dd^{c} \varepsilon h_{\{u_{r} < -\varepsilon\}}^{\omega})^{n} = \int_{\{u_{r} = -\varepsilon\}} (dd^{c} \varepsilon h_{\{u_{r} < -\varepsilon\}}^{\omega})^{n} \\
\leq \int_{\{u < (\varepsilon/4)h_{\{u_{r} < -\varepsilon\}}^{\omega} - \varepsilon/4\}} (dd^{c} \varepsilon h_{\{u_{r} < -\varepsilon\}}^{\omega})^{n} \\
= 4^{n} \int_{\{u < (\varepsilon/4)h_{\{u_{r} < -\varepsilon\}}^{\omega} - \varepsilon/4\}} \left(dd^{c} \left(\frac{\varepsilon}{4} h_{\{u_{r} < -\varepsilon\}}^{\omega} - \frac{\varepsilon}{4} \right) \right)^{n} \\
\leq 4^{n} \int_{\{u < -\varepsilon/4\}} (dd^{c} u)^{n}$$

by the comparison principle. Combining these two inequalities, we get

$$\int_{\omega} (-u_{r,\varepsilon}^{\omega})^p (dd^c u_{r,\varepsilon}^{\omega})^n \leq \int_K (-u_r)^p (dd^c u_r)^n + \varepsilon^p \int_{\{u < -\varepsilon/4\}} (dd^c u)^n.$$

We now let $r \searrow 0$; then $u_{r,\varepsilon}^{\omega}$ decreases to

$$u_{\varepsilon}^{\omega} = \begin{cases} u & \text{if } u < -\varepsilon, \\ \varepsilon h_{\{u < -\varepsilon\}}^{\omega} & \text{if } u \geq -\varepsilon, \end{cases}$$

and

$$\int_{\omega} (-u_{\varepsilon}^{\omega})^{p} (dd^{c}u_{\varepsilon}^{\omega})^{n} \leq \int_{K} (-u)^{p} (dd^{c}u)^{n} + \varepsilon^{p} \int_{\{u < \varepsilon/4\}} (dd^{c}u)^{n}$$

so if we let ω and K increase to Ω , then u_{ε}^{ω} decreases to u_{ε}^{Ω} and

$$\int (-u_{\varepsilon}^{\Omega})^{p} (dd^{c}u_{\varepsilon}^{\Omega})^{n} \leq \int (-u)^{p} (dd^{c}u)^{n} + \varepsilon^{p} \int_{\{u < \varepsilon/4\}} (dd^{c}u)^{n}.$$

If we now let $\varepsilon \searrow 0$ then

$$\lim_{\varepsilon \to 0} \int (-u_{\varepsilon}^{\Omega})^{p} (dd^{c} u_{\varepsilon}^{\Omega})^{n} \leq \int (-u)^{p} (dd^{c} u)^{r}$$

and similarly for v. Also, by semicontinuity we have

$$\liminf_{\varepsilon \to 0} \int (-u_{\varepsilon}^{\Omega})^{p} (dd^{c}u_{\varepsilon}^{\Omega})^{j} \wedge (dd^{c}u_{\varepsilon}^{\Omega})^{n-j} \ge \int (-u)^{p} (dd^{c}u)^{j} \wedge (dd^{c}v)^{n-j}.$$

We have already proved the inequalities for u_{ε}^{Ω} and v_{ε}^{Ω} so the above inequalities complete the proof of the theorem.

R e m a r k. The theorem can be generalized to more than two functions. Also, it can be proved that $D_{1,j} = 1$ (see [7]).

3. An application. Let Ω be a strictly pseudoconvex set in \mathbb{C}^n , $n \geq 2$, and denote by P the class of bounded plurisubharmonic functions ϕ on Ω such that $\lim_{z\to\xi} \phi(z) = 0, \forall \xi \in \partial \Omega$ and $\int_{\Omega} (dd^c \phi)^n < \infty$. In analogy with

the notation of capacity and energy in classical potential theory, we consider the pluricomplex capacity, defined by Bedford and Taylor in [2],

$$d(F) = \sup \left\{ \int_{F} (dd^{c}u)^{n} \, \Big| \, u \in P, \ -1 \le u \le 0 \right\},$$

and the pluricomplex energy,

$$I(F) = \inf\left\{ \int -u(dd^c u)^n \, \middle| \, u \in P, \ \int_F (dd^c u)^n \ge 1 \right\}$$

of a compact subset F of Ω . If $\int_F (dd^c u)^n = 0, \forall u \in P$, we say that F has *infinite energy*; this happens exactly when F is pluripolar.

THEOREM 3.1. Suppose that F is not pluripolar. Then

(3.1)
$$D_{1,0}^{-(n+1)/n} \le d(F)^{1/n} I(F) \le 1.$$

Proof. Let $\psi = h_F^*/d(F)^{1/n} \in P$, where h_F^* denotes the smallest upper semicontinuous majorant of the relative extremal function $h_F = h_F^{\Omega}$ defined by (2.9). Then $\operatorname{supp}(dd^c\psi)^n \subset F$ and $\int_F (dd^c\psi)^n = 1$ by [2]. Therefore,

$$I(F) \le \frac{1}{d(E)} \int -\frac{h_F^*}{d(F)^{1/n}} (dd^c h_F^*)^n = \frac{1}{d(F)^{1/n}}$$

since $h_F^* = -1$ on F outside a pluripolar set. This proves the last inequality in (3.1).

To prove the first inequality we use Theorem 1.1. If $u \in P$ with $\int_F (dd^c u)^n \ge 1$, then

$$1 \leq \int -h_F (dd^c u)^n \leq D_{1,0} \left(\int -h_F (dd^c h_F)^n \right)^{1/(n+1)} \left(\int -u (dd^c u)^n \right)^{n/(n+1)}$$
$$= D_{1,0} d(F)^{1/(n+1)} \left(\int -u (dd^c u)^n \right)^{n/(n+1)}$$

 \mathbf{SO}

$$D_{1,0}^{-(n+1)/n} \le d(F)^{1/n} \int -u (dd^c u)^n.$$

Taking infimum with respect to u we get the first inequality in (3.1), and the proof of the theorem is complete.

Remark. By [7], $D_{1,0} = 1$, so we have in fact

$$d(F)^{1/n}I(F) = 1.$$

This is the pluricomplex counterpart of the classical fact that capacity times energy equals 1 (cf. [3], p. 20). For further results on pluricomplex energy, see [5].

References

- E. Bedford, Survey of pluri-potential theory, in: Several Complex Variables, Proc. Mittag-Leffler Institute, 1987–88, J. E. Fornaess (ed.), Math. Notes 38, Princeton Univ. Press, 1993, 48–97.
- E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- [3] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N.J., 1967.
- [4] U. Cegrell, The symmetric pluricomplex Green function, in: Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 135–141.
- [5] —, *Pluricomplex energy*, Acta Math., to appear.
- [6] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972.
- [7] L. Persson, A Dirichlet principle for the complex Monge-Ampère operator, Research Report No. 8, 1997, Dept. Math., Umeå University.

Department of Mathematics Umeå University S-901 87 Umeå, Sweden E-mail: Urban.Cegrell@mathdept.umu.se leifp@abel.math.umu.se

Reçu par la Rédaction le 10.10.1996