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Only one of generalized gradients can be elliptic

by JERZY KALINA, ANTONI PIERZCHALSKI
and PAWELWALCzAK (L6dz)

Abstract. Decomposing the space of k-tensors on a manifold M into the components
invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian
structure) one can define generalized gradients as differential operators obtained from a
linear connection V on M by restriction and projection to such components. We study
the ellipticity of gradients defined in this way.

Introduction. We decompose a connection V on an n-dimensional C'*°-
manifold M (in particular, a Riemannian connection on a Riemannian man-
ifold (M, g)) into the sum of first order differential operators V? acting on
covariant k-tensors, k = 1,2,..., and arising from the decomposition of the
space T* of k-tensors into the direct sum of irreducible GL(n)-invariant (or,
in the Riemannian case, O(n)-invariant) subspaces. Following [SW] we shall
call them GL(n)- and O(n)-gradients, respectively.

Some of the gradients V*? have important geometric meaning. The best
known is the exterior derivative d corresponding to skew-symmetric tensors.
Its role in geometry and topology of manifolds cannot be overestimated.
Another one, known as the Ahlfors operator S : Tt — S2, is defined for
1-forms w by the splitting

1 1
Vw=-dw+ Sw— —dw-g
2 n

and corresponds to the subbundle of traceless symmetric 2-tensors. It ap-
pears to play an important role in conformal and quasi-conformal geometry
(see the recent papers [OP], [P], etc.).

In Section 1, we recall (after H. Weyl [We]) the theory of Young dia-
grams and schemes and define our operators V. In Section 2, we consider
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the ellipticity of operators corresponding to GL(n)-invariant subspaces. We
distinguish a suitable extension of a Young diagram « and show that V*
is elliptic if and only if § is a distinguished extension of a. In Section 3, we
get some particular ellipticity results for operators corresponding to O(n)-
invariant subspaces. We end with some remarks.

Similar problems could be considered for any connection V,

V0% = C(T"M @),

in any vector bundle £ over a manifold M and any Lie group G acting
simultaneously in 7" M and . Splitting § and £ = T*M ® £ into the direct
sums of irreducible G-invariant subbundles, { = @, . and § = D; s,
G-gradients could be defined as

VP =F50V o,

where ¢ 1 {o — € and 73 : £~ — Eg are the canonical maps. One of interest-
ing examples of this sort is the classical Dirac operator D which could be
considered as an eliptic Spin(n)-gradient in a spinor bundle over a manifold
equipped with a spinor structure. Ellipticity of general G-gradients will be
studied elsewhere.

1. Young diagrams. Let W be a vector space (over R or C) of dimension
n. Fix k € N and take a sequence of integers a = (aq,..., ), a3 > ... >
a. > 1, a1+ ...+a. = k. Such an « is called a Young scheme of length
k. In some references a Young scheme is called a decomposition. It can be
represented by the figure consisting of r rows of squares and such that the
number of squares in the jth row is «;.

A Young scheme can be filled with numbers 1,..., k distributed in any
order. A scheme filled with numbers is called a Young diagram. Without
loss of generality we can assume that the numbers grow both in rows and
columns.

Take a Young diagram « and denote by H, and V, the subgroups of
the symmetric group Sy consisting of all permutations preserving rows and
columns, respectively. « determines the linear operator (called the Young
symmetrizer) Py : WF — WF Wk =&, W, given by

(1) P, = Z sgn o - 70,
TE€H,, o€V,
where the action of any permutation g € S on simple tensors is given by
o1 ® ... QL) =Vp-11) ® ... @ Vp1(p)
for all vy,...,vx € W. It is well known that
(2) Pa2 = mqaP,
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for some m, € N and that W, = im P, is an invariant subspace of W¥
for the standard representation of GL(n) in W*. This representation is ir-
reducible on W,. Moreover,

(3) W =P Wa.

If W is equipped with a scalar product g = (-, ), then g allows defining
contractions in W¥. An element w of W* is said to be traceless if C(w) =
0 for any contraction C' : W* — W*=2_ (In particular, all 1-tensors are
traceless.) Traceless tensors form a linear subspace W§ of W*. Tts orthogonal
complement consists of all the tensors of the form

(4) Z U(g®wa)a

oESk

where w, € W*~2. For simplicity, denote the space of tensors of the form
(4) by g @ Wk=2 50 that

(5) Wk =wia (gewr2).

The intersection W9 = W, N W} is non-trivial if and only if the sum of
lenghts of the first two columns of a Young diagram « is < n. A diagram
like this is called admissible and the corresponding space W? is invariant
and irreducible under the O(n)-action. Moreover,

(6) Wy =we,

where a ranges over the set of all admissible Young diagrams with numbers
growing both in rows and columns. Comparing (5) and (6), and proceeding
with the analogous decompositions of W*=2, W*=4_ etc., one gets the de-
composition of W* into the direct (in fact, orthogonal) sum of irreducible
O(n)-invariant subspaces.

2. GL(n)-gradients. Let 5 = (f1,...,[(s) be a Young scheme of length
k+1 obtained from « by an extension by a single square. The corresponding
diagram should have k£ 4+ 1 in the added square, while the ordering in the
other part of the diagram is the same as in a. We call § a distinguished
extension of « if

(7) S=T, /Bl:a1+17 6220427"'7/88:045-

In other words, ( is distinguished when the added square is situated at the
end of the first row.

Take an arbitrary v € W and consider a linear mapping ®, : W* —
Wk defined by

(8) R ®@...QUL) =11 R ... v, 0.



114 J. Kalina et al.

THEOREM 1. For v # 0 the mapping

9) Pgo®ylw, : Wo — Wp

1s injective if and only if B is the distinguished extension of .
Before the proof we make the following observations.

LEMMA 1. Assume that 1,7, i # j, are in the same column of a Young
diagram o. Then

(10) P,(v) =0,
whenever v =11 ® ... QV; @ ...QV; @ ... V41 and vj; = v;.

Proof. Denote by V5 and V,; the subsets of V,, consisting of odd and
even permutations o € V,,, respectively, V.;- UV, = V,,. The mapping

(11) 0+ 0 =0 0t,

where ¢;; is the transposition, is a one-to-one map of V" onto V,;. If v; = vj,
then

(12) Y o)=Y o) - D> o) =0,
o€Vy oeVy oceVy

because the terms corresponding to o and ¢ are the same. Now, the state-
ment follows from formulae (1) and (12). =

LEMMA 2. If B is the distinguished extension of o, then
(13) Py =me[id+ Y toid|
teT,

on W, @ W, where T,, denotes the set of all transpositions of k4 1 with the
numbers from the first row.

Proof. Since V3 = V, up to the canonical isomorphism and Hg =
H,U UteTa tH,, we have
(14) Pg = Z sgno - To.
TEHﬁ, O'EVQ
Consequently,

Pg(Pyv ®w) = Z T( Z sgno - o(Pyv) ® w)
TEHg o€Vy

= Z sgno - 7o(Pyv) @ w
oeVy, TEH,,
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+ Z t( Z sgno - 7o (P,v) ® w)

teT,, o€V, TEH,

=Po@w+ Z t(P*v ® w),
teT,

for any v € W* and w € W. Now, the proof is completed by applying (2).

|

LEMMA 3. If vq,...,u; € W are linearly independent, o is a permutation
mapping the numbers 1,... a1 onto the numbers of the first row of the
diagram o, a1 + 1, ..., a1+ as onto the numbers of the second row etc., and
(15) w=0 (@ ®...0% v),
then Pyw # 0.

Proof. The statement follows from (1) and the following:

(i) Any two permutations o1 and oy of V,, satisfying 7o1w = 70w for
some 7 € H, have the same sign.

(ii) Any two products obtained from w by permuting factors are linearly
dependent if and only if they are equal. =

Proof of Theorem 1. Assume first that § is the distinguished ex-
tension of a. If n € W, and Pg(n ® w) = 0, then, by Lemma 2,

n®w+2t(n®w):0.
t

Take w =e1, n = > niy. ip€i; @ ... e;,, where {e1,...,ex} is a basis
of W. Then the last equality is equivalent to
D iin(en ®...®e, Qe te1®e, ®... Qe Ve,
+...4+€6,®...0¢,  Reg®e;) =0.
Now, if 41,...,7; > 1, then n;, ;, = 0 because all the terms are linearly
independent. If i1 =1, ia,...,4x > 1, then
2Miy. i1 @€, ®...Q €, @ e
+ (terms linearly independent of the first one) = 0,
SO Miy...i,, = 0.
We can repeat the reasoning for the other coefficients. Consequently,
n = 0 and the mapping (9) is injective.
Assume now that ( is a non-distinguished extension of «. Then, by
Lemma 1,

Pg(Pow ®v1) =0,
where w is of the form (15), while, by Lemma 3, Pyw # 0. =
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Now, consider any connection V on a manifold M and extend it to
covariant k-tensor fields, k = 1,2, ..., in the standard way:

(16) Vw(Xlw"an-i-l) = (vXk+1w)(X17"'an)'

For any two diagrams « and 3 of length k£ and k + 1, respectively, denote
by VP the differential operator given by

(17) v = Py o V[T,

where T, denotes the space of all k-tensor fields w such that w(z) € (T M),
for any @ € M. Since Pg is linear the symbol of the operator VB is given by

(18) o(V,w*)(w) = Ps(w @ w*)

for any covector w* € T;M, any w € (TM), and x € M. Theorem 1
together with (18) yields

COROLLARY. The operator V8 is elliptic if and only if 3 is the distin-
guished extension of a.. m

3. O(n)-gradients. Given two admissible Young diagrams a and 3
of length k£ and k + 1, respectively, and a Riemannian connection V on a
Riemannian manifold (M, g) one can consider the differential operator V?
given by

(19) ves :WOPBOV‘WS,

where W2 denotes the subspace of W, consisting of all the traceless tensor
fields and 7 is the projection of k-tensors to traceless k-tensors defined by
the decomposition (5). The operator (19) differs from V*? of Section 2 but
this should lead to no misunderstandings. Again, since 7 is a linear map,
the symbol of V*? is given by the formula analogous to (18):

(20) o(V,w)(w) = 7(Ps(w © w))

for any traceless w and w € TM. (Hereafter, vectors and covectors are
identified by the Riemannian structure.)

Note that since V is Riemannian, Vxw is traceless for any vector field
X and any traceless k-tensor w while Vw itself can have non-vanishing
contractions of the form C,i 41 Vw, where i < k. Note also, that, in general,
the distinguished extension of an admissible Young diagram is admissible
again. The only exception is that of a one-column diagram of length n. These
observations together with results of Section 2 motivate the following

CONJECTURE. V? is elliptic if and only if 3 is the distinguished exten-
sion of «, both o and 3 being admissible.

An elementary proof of the conjecture seems unlikely, because there is
no algorithm providing the traceless component of k-tensors, even of the
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form w ® v with w being traceless and v a single vector. However, we can
prove, in an elementary way, ellipticity of V®? in some particular cases and
the “if” part completely.

THEOREM 2. (i) If « is trivial, i.e. consits of a single row or of a single
column, (B is the distinguished extension of a and both o and (B are admis-
sible, then the operator VP is elliptic.

(i) If B is a non-distinguished extension of «, then V% is not elliptic.

Proof. (i) Assume first that « is a single row. Then so is 5 and the spaces
T, and Tj consist of symmetric tensors. From (13) and (20) it follows that
the ellipticity of V*? is equivalent to the following statement:

() If w is traceless and symmetric, v is a non-vanishing vector and
(21) woOvEgRWrL
then w = 0.

Since [ is admissible, n > 1. To prove (x) take an orthonormal frame
e1,...,e, and assume, without loss of generality, that v = e;. Since the sym-
metric algebra is isomorphic to the algebra of polynomials and the tensors
in (21) are symmetric, we can replace (21) by the equality

n
(22) x1- Pz, ... x,) = <me)@($1,,xn),

i=1
where P and ) are polynomials. From (22) it follows that @ is of the form
71 - Q' for another polynomial Q' and therefore, P = Y 22 - Q'. Since P
corresponds to w, the last equality shows that w € (g ® Wk=2)n Wk = {0}.

Assume now that « is a single column. The space W, consists of skew-

symmetric tensors and 3 is admissible if and only if k¥ < n. Assume that
w e W, and

(23) wRv+ ()" lvewegeWr!

for some v # 0. (Note that, by Lemma 2, the tensor in (23) coincides with
Psw.) From (23) it follows that

(24) w=vAn

for some (k —1)-form 7. In fact, otherwise w ® v £ v ® w, when decomposed
into a sum of simple tensors, would contain a term w; ® ... ® wy41 with all
the factors w; linearly independent while tensors of g @ W*~! do not admit
terms of this sort. Moreover, one could choose 7 in (24) to be a (k —1)-form
on the orthogonal complement {v}+ of the one-dimensional space spanned
by v. If so, w ® v £ v ® w would contain no non-trivial terms of the form

(25) (WRWRW ® ... wg_1)
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with o € S,_; and w € {v}* while all the non-zero tensors of g ® W*~1 do.
Consequently, w = 0.

(ii) Assume that a is admissible and put m = min{d;,n/2}, where ¢; is
the length of the jth column of «. Since 01 +do < n, it follows that G2 < m.
Split the set {1,2,...,k} into the sum AUBUC of pairwise disjoint subsets
such that #4 = #B = m. Set A = {a1,...,am}, B = {b1,...,by} and
C={2m+1,...,n}.

Fix an orthonormal frame (eq,...,e,) of W and denote by w the sum of
all the terms of the form
(26) (-1 e, ®...Qe€,,

where i, € {as,bs} when r belongs to the sth row of the Young diagram «
and s < m, i, = ¢; when r belongs to the sth row of o and s > m, and

l=[3#{r:i, € B}].
It is easy to see that both tensors w and P,w are traceless while P, (w) # 0.
Take any non-distinguished extension § of o and denote by s the number
of the column of 3 which contains k + 1. Write w in the form
(27) w=wyg +wp,

where wy (resp., wp) is the sum of all the terms of the form (26) for which
ir € A (resp., i, € B) for the r which appears in the first row and sth
column of a. Let v =e,, + €p,. Then

(28) Z sgno - o(wa ®eq,) = Z sgno-o(wp®ep ) =0
oc€Hpg oc€Hpg

by Lemma 1. Also,

(29) Z sgno-o(wa ®ep, ) = — Z sgno - o(wp ® eq,)
oc€Hpg ocC€Hpg

because for any term in the first sum there exists a unique term in the second
sum with e,, and e, interchanged. Equalities (27)-(29) together with (1)
and the definition of v imply that Pz(w ® v) = 0.

Finally, following the proof of Lemma 2 one can show that

(30) Py=mq Yy Y sgnt-t'o(P,®id)ot,
teTv t'eTh

where T" (resp., T") consists of the identity and all the transpositions of
k + 1 with the elements of the row (resp., column) containing it. It follows
that

(31) Ps(Pow ®@v) = maPg(w®@v) =0. m
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4. Final remarks. (i) Denote by N (k) the number of components in the
decomposition (3). It is easy to observe that N(1) =1, N(2) = 2, N(3) = 4,
N(4) =10, N(5) = 26, etc. The above observation motivates the recurrent
formula

(32) N(k)=N(k—1)+ (k—1)- N(k — 2).

The authors could not find anything like this in the literature. A numerical
experiment showed that (32) holds for small k, say k < 20.

(ii) As we said in Section 3, there is no explicit formula for the traceless
part of a tensor. In some sense, a formula of this sort could be obtained in
the following way. Put

(33) E= ) T2

and define an endomorphism K : £ — E by the formula
(34) K((wi) = (C5 (D trotalg@wrs)) ),

where t, (resp. ts) is the transposition of the terms 1 and 7 (resp., 1 and s).
K is an isomorphism. In fact, if K(£2) =0, {2 = (w;;), then the tensor

(35) O = trotig®wrs)
T8
is traceless and—because of its form—orthogonal to the space of traceless
tensors, and therefore, it vanishes. Decomposing tensors w;; according to (6)
and proceeding inductively one would get w;; = 0 for all ¢ and j, i.e. £2=0.
The traceless part wg of any k-tensor w is given by the formula

(36) wop = w — 9,

where © is given by (35) with (w;;) = K~ '((Cjw)). In fact, from the
definition of K it follows immediately that C]i-@ = C]Z:w for all ¢ and j.

After submitting the paper, the authors, working jointly with B. OQrsted
and G. Zhang, proved the Conjecture from Section 3 as well as formula (32).
See Elliptic gradients and highest weights, Bull. Polish Acad. Sci. Math.
44 (1996), 527-535.
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