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Only one of generalized gradients can be elliptic

by Jerzy Kalina, Antoni Pierzchalski
and Pawe lWalczak ( Lódź)

Abstract. Decomposing the space of k-tensors on a manifoldM into the components
invariant and irreducible under the action of GL(n) (or O(n) whenM carries a Riemannian
structure) one can define generalized gradients as differential operators obtained from a
linear connection ∇ on M by restriction and projection to such components. We study
the ellipticity of gradients defined in this way.

Introduction. We decompose a connection∇ on an n-dimensional C∞-
manifold M (in particular, a Riemannian connection on a Riemannian man-
ifold (M, g)) into the sum of first order differential operators ∇αβ acting on
covariant k-tensors, k = 1, 2, . . . , and arising from the decomposition of the
space T k of k-tensors into the direct sum of irreducible GL(n)-invariant (or,
in the Riemannian case, O(n)-invariant) subspaces. Following [SW] we shall
call them GL(n)- and O(n)-gradients, respectively.

Some of the gradients ∇αβ have important geometric meaning. The best
known is the exterior derivative d corresponding to skew-symmetric tensors.
Its role in geometry and topology of manifolds cannot be overestimated.
Another one, known as the Ahlfors operator S : T 1 → S2

0 , is defined for
1-forms ω by the splitting

∇ω =
1
2
dω + Sω − 1

n
δω · g

and corresponds to the subbundle of traceless symmetric 2-tensors. It ap-
pears to play an important role in conformal and quasi-conformal geometry
(see the recent papers [ØP], [P], etc.).

In Section 1, we recall (after H. Weyl [We]) the theory of Young dia-
grams and schemes and define our operators ∇αβ . In Section 2, we consider

1991 Mathematics Subject Classification: 53C05, 20G05.
Key words and phrases: connection, group representation, Young diagram, elliptic

operator.
The authors were supported by the KBN grant 2 P301 036 04.

[111]



112 J. Kalina et al.

the ellipticity of operators corresponding to GL(n)-invariant subspaces. We
distinguish a suitable extension of a Young diagram α and show that ∇αβ
is elliptic if and only if β is a distinguished extension of α. In Section 3, we
get some particular ellipticity results for operators corresponding to O(n)-
invariant subspaces. We end with some remarks.

Similar problems could be considered for any connection ∇,

∇ : C∞(ξ)→ C∞(T ∗M ⊗ ξ),
in any vector bundle ξ over a manifold M and any Lie group G acting
simultaneously in T ∗M and ξ. Splitting ξ and ξ̃ = T ∗M ⊗ ξ into the direct
sums of irreducible G-invariant subbundles, ξ =

⊕
α ξα and ξ̃ =

⊕
β ξ̃β ,

G-gradients could be defined as

∇αβ = π̃β ◦ ∇ ◦ ια,

where ια : ξα → ξ and π̃β : ξ̃→ ξ̃β are the canonical maps. One of interest-
ing examples of this sort is the classical Dirac operator D which could be
considered as an eliptic Spin(n)-gradient in a spinor bundle over a manifold
equipped with a spinor structure. Ellipticity of general G-gradients will be
studied elsewhere.

1.Young diagrams. LetW be a vector space (over R or C) of dimension
n. Fix k ∈ N and take a sequence of integers α = (α1, . . . , αr), α1 ≥ . . . ≥
αr ≥ 1, α1 + . . . + αr = k. Such an α is called a Young scheme of length
k. In some references a Young scheme is called a decomposition. It can be
represented by the figure consisting of r rows of squares and such that the
number of squares in the jth row is αj .

A Young scheme can be filled with numbers 1, . . . , k distributed in any
order. A scheme filled with numbers is called a Young diagram. Without
loss of generality we can assume that the numbers grow both in rows and
columns.

Take a Young diagram α and denote by Hα and Vα the subgroups of
the symmetric group Sk consisting of all permutations preserving rows and
columns, respectively. α determines the linear operator (called the Young
symmetrizer) Pα : W k →W k, W k =

⊗
kW , given by

(1) Pα =
∑

τ∈Hα, σ∈Vα

sgn σ · τσ,

where the action of any permutation % ∈ Sk on simple tensors is given by

%(v1 ⊗ . . .⊗ vk) = v%−1(1) ⊗ . . .⊗ v%−1(k)

for all v1, . . . , vk ∈W . It is well known that

(2) P 2
α = mαPα
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for some mα ∈ N and that Wα = imPα is an invariant subspace of W k

for the standard representation of GL(n) in W k. This representation is ir-
reducible on Wα. Moreover,

(3) W k =
⊕
α

Wα.

If W is equipped with a scalar product g = 〈·, ·〉, then g allows defining
contractions in W k. An element w of W k is said to be traceless if C(w) =
0 for any contraction C : W k → W k−2. (In particular, all 1-tensors are
traceless.) Traceless tensors form a linear subspaceW k

0 ofW k. Its orthogonal
complement consists of all the tensors of the form

(4)
∑
σ∈Sk

σ(g ⊗ wσ),

where wσ ∈ W k−2. For simplicity, denote the space of tensors of the form
(4) by g ⊗W k−2 so that

(5) W k = W k
0 ⊕ (g ⊗W k−2).

The intersection W 0
α = Wα ∩ W k

0 is non-trivial if and only if the sum of
lenghts of the first two columns of a Young diagram α is ≤ n. A diagram
like this is called admissible and the corresponding space W 0

α is invariant
and irreducible under the O(n)-action. Moreover,

(6) W k
0 =

⊕
α

W 0
α,

where α ranges over the set of all admissible Young diagrams with numbers
growing both in rows and columns. Comparing (5) and (6), and proceeding
with the analogous decompositions of W k−2, W k−4, etc., one gets the de-
composition of W k into the direct (in fact, orthogonal) sum of irreducible
O(n)-invariant subspaces.

2. GL(n)-gradients. Let β = (β1, . . . , βs) be a Young scheme of length
k+1 obtained from α by an extension by a single square. The corresponding
diagram should have k + 1 in the added square, while the ordering in the
other part of the diagram is the same as in α. We call β a distinguished
extension of α if

(7) s = r, β1 = α1 + 1, β2 = α2, . . . , βs = αs.

In other words, β is distinguished when the added square is situated at the
end of the first row.

Take an arbitrary v ∈ W and consider a linear mapping ⊗v : W k →
W k+1 defined by

(8) ⊗v(v1 ⊗ . . .⊗ vk) = v1 ⊗ . . .⊗ vk ⊗ v.
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Theorem 1. For v 6= 0 the mapping

(9) Pβ ◦ ⊗v|Wα
: Wα →Wβ

is injective if and only if β is the distinguished extension of α.

Before the proof we make the following observations.

Lemma 1. Assume that i, j, i 6= j, are in the same column of a Young
diagram α. Then

(10) Pα(v) = 0,

whenever v = v1 ⊗ . . .⊗ vi ⊗ . . .⊗ vj ⊗ . . .⊗ vk+1 and vj = vi.

P r o o f. Denote by V +
α and V −α the subsets of Vα consisting of odd and

even permutations σ ∈ Vα, respectively, V +
α ∪ V −α = Vα. The mapping

(11) σ 7→ σ̃ = σ ◦ tij ,

where tij is the transposition, is a one-to-one map of V +
α onto V −α . If vi = vj ,

then

(12)
∑
σ∈Vα

σ(v) =
∑
σ∈V +

α

σ(v)−
∑
σ∈V −α

σ(v) = 0,

because the terms corresponding to σ and σ̃ are the same. Now, the state-
ment follows from formulae (1) and (12).

Lemma 2. If β is the distinguished extension of α, then

(13) Pβ = mα

[
id +

∑
t∈Tα

t ◦ id
]

on Wα⊗W , where Tα denotes the set of all transpositions of k+ 1 with the
numbers from the first row.

P r o o f. Since Vβ = Vα up to the canonical isomorphism and Hβ =
Hα ∪

⋃
t∈Tα tHα, we have

(14) Pβ =
∑

τ∈Hβ , σ∈Vα

sgnσ · τσ.

Consequently,

Pβ(Pαv ⊗ w) =
∑
τ∈Hβ

τ
( ∑
σ∈Vα

sgnσ · σ(Pαv)⊗ w
)

=
∑

σ∈Vα, τ∈Hα

sgnσ · τσ(Pαv)⊗ w
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+
∑
t∈Tα

t
( ∑
σ∈Vα, τ∈Hα

sgnσ · τσ(Pαv)⊗ w
)

= P 2
αv ⊗ w +

∑
t∈Tα

t(P 2
αv ⊗ w),

for any v ∈ W k and w ∈ W . Now, the proof is completed by applying (2).

Lemma 3. If v1, ..., vl ∈W are linearly independent , % is a permutation
mapping the numbers 1, . . . , α1 onto the numbers of the first row of the
diagram α, α1 + 1, . . . , α1 +α2 onto the numbers of the second row etc., and

(15) ω = %−1(⊗α1v1 ⊗ . . .⊗αl vl),
then Pαω 6= 0.

P r o o f. The statement follows from (1) and the following:

(i) Any two permutations σ1 and σ2 of Vα satisfying τσ1ω = τσ2ω for
some τ ∈ Hα have the same sign.

(ii) Any two products obtained from ω by permuting factors are linearly
dependent if and only if they are equal.

P r o o f o f T h e o r e m 1. Assume first that β is the distinguished ex-
tension of α. If η ∈Wα and Pβ(η ⊗ w) = 0, then, by Lemma 2,

η ⊗ w +
∑
t

t(η ⊗ w) = 0.

Take w = e1, η =
∑
ηi1...ikei1 ⊗ . . . ⊗ eik , where {e1, . . . , ek} is a basis

of W . Then the last equality is equivalent to∑
ηi1...ik(ei1 ⊗ . . .⊗ eik ⊗ e1 + e1 ⊗ ei2 ⊗ . . .⊗ eik ⊗ ei1

+ . . .+ ei1 ⊗ . . .⊗ eik−1 ⊗ e1 ⊗ eik) = 0.

Now, if i1, . . . , ik > 1, then ηi1...ik = 0 because all the terms are linearly
independent. If i1 = 1, i2, . . . , ik > 1, then

2η1i2...ike1 ⊗ ei2 ⊗ . . .⊗ eik ⊗ e1
+ (terms linearly independent of the first one) = 0,

so η1i2...ik = 0.
We can repeat the reasoning for the other coefficients. Consequently,

η = 0 and the mapping (9) is injective.
Assume now that β is a non-distinguished extension of α. Then, by

Lemma 1,
Pβ(Pαω ⊗ v1) = 0,

where ω is of the form (15), while, by Lemma 3, Pαω 6= 0.
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Now, consider any connection ∇ on a manifold M and extend it to
covariant k-tensor fields, k = 1, 2, . . . , in the standard way:

(16) ∇ω(X1, . . . , Xk+1) = (∇Xk+1ω)(X1, . . . , Xk).

For any two diagrams α and β of length k and k + 1, respectively, denote
by ∇αβ the differential operator given by

(17) ∇αβ = Pβ ◦ ∇|Tα,
where Tα denotes the space of all k-tensor fields ω such that ω(x) ∈ (T ∗xM)α
for any x ∈M . Since Pβ is linear the symbol of the operator ∇αβ is given by

(18) σ(∇αβ , w∗)(ω) = Pβ(ω ⊗ w∗)
for any covector w∗ ∈ T ∗xM , any ω ∈ (T ∗xM)α and x ∈ M . Theorem 1
together with (18) yields

Corollary. The operator ∇αβ is elliptic if and only if β is the distin-
guished extension of α.

3. O(n)-gradients. Given two admissible Young diagrams α and β
of length k and k + 1, respectively, and a Riemannian connection ∇ on a
Riemannian manifold (M, g) one can consider the differential operator ∇αβ
given by

(19) ∇αβ = π ◦ Pβ ◦ ∇|W 0
α,

where W 0
α denotes the subspace of Wα consisting of all the traceless tensor

fields and π is the projection of k-tensors to traceless k-tensors defined by
the decomposition (5). The operator (19) differs from ∇αβ of Section 2 but
this should lead to no misunderstandings. Again, since π is a linear map,
the symbol of ∇αβ is given by the formula analogous to (18):

(20) σ(∇αβ , w)(ω) = π(Pβ(ω ⊗ w))

for any traceless ω and w ∈ TM . (Hereafter, vectors and covectors are
identified by the Riemannian structure.)

Note that since ∇ is Riemannian, ∇Xω is traceless for any vector field
X and any traceless k-tensor ω while ∇ω itself can have non-vanishing
contractions of the form Cik+1∇ω, where i ≤ k. Note also, that, in general,
the distinguished extension of an admissible Young diagram is admissible
again. The only exception is that of a one-column diagram of length n. These
observations together with results of Section 2 motivate the following

Conjecture. ∇αβ is elliptic if and only if β is the distinguished exten-
sion of α, both α and β being admissible.

An elementary proof of the conjecture seems unlikely, because there is
no algorithm providing the traceless component of k-tensors, even of the
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form ω ⊗ v with ω being traceless and v a single vector. However, we can
prove, in an elementary way, ellipticity of ∇αβ in some particular cases and
the “if” part completely.

Theorem 2. (i) If α is trivial , i.e. consits of a single row or of a single
column, β is the distinguished extension of α and both α and β are admis-
sible, then the operator ∇αβ is elliptic.

(ii) If β is a non-distinguished extension of α, then ∇αβ is not elliptic.

P r o o f. (i) Assume first that α is a single row. Then so is β and the spaces
Tα and Tβ consist of symmetric tensors. From (13) and (20) it follows that
the ellipticity of ∇αβ is equivalent to the following statement:

(∗) If ω is traceless and symmetric, v is a non-vanishing vector and

(21) ω � v ∈ g ⊗W k−1,

then ω = 0.

Since β is admissible, n > 1. To prove (∗) take an orthonormal frame
e1, . . . , en and assume, without loss of generality, that v = e1. Since the sym-
metric algebra is isomorphic to the algebra of polynomials and the tensors
in (21) are symmetric, we can replace (21) by the equality

(22) x1 · P (x1, . . . , xn) =
( n∑
i=1

x2
i

)
·Q(x1, . . . , xn),

where P and Q are polynomials. From (22) it follows that Q is of the form
x1 · Q′ for another polynomial Q′ and therefore, P =

∑
x2
i · Q′. Since P

corresponds to ω, the last equality shows that ω ∈ (g⊗W k−2)∩W k
0 = {0}.

Assume now that α is a single column. The space Wα consists of skew-
symmetric tensors and β is admissible if and only if k < n. Assume that
ω ∈Wα and

(23) ω ⊗ v + (−1)k−1v ⊗ ω ∈ g ⊗W k−1

for some v 6= 0. (Note that, by Lemma 2, the tensor in (23) coincides with
Pβω.) From (23) it follows that

(24) ω = v ∧ η

for some (k− 1)-form η. In fact, otherwise ω⊗ v± v⊗ω, when decomposed
into a sum of simple tensors, would contain a term w1⊗ . . .⊗wk+1 with all
the factors wi linearly independent while tensors of g⊗W k−1 do not admit
terms of this sort. Moreover, one could choose η in (24) to be a (k−1)-form
on the orthogonal complement {v}⊥ of the one-dimensional space spanned
by v. If so, ω ⊗ v ± v ⊗ ω would contain no non-trivial terms of the form

(25) %(w ⊗ w ⊗ w1 ⊗ . . .⊗ wk−1)
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with % ∈ Sk−1 and w ∈ {v}⊥ while all the non-zero tensors of g⊗W k−1 do.
Consequently, ω = 0.

(ii) Assume that α is admissible and put m = min{δ1, n/2}, where δj is
the length of the jth column of α. Since δ1 + δ2 ≤ n, it follows that β2 ≤ m.
Split the set {1, 2, . . . , k} into the sum A∪B∪C of pairwise disjoint subsets
such that #A = #B = m. Set A = {a1, . . . , am}, B = {b1, . . . , bm} and
C = {2m+ 1, . . . , n}.

Fix an orthonormal frame (e1, . . . , en) of W and denote by ω the sum of
all the terms of the form

(26) (−1)l · ei1 ⊗ . . .⊗ eik ,

where ir ∈ {as, bs} when r belongs to the sth row of the Young diagram α
and s ≤ m, ir = cs when r belongs to the sth row of α and s > m, and

l =
[
1
2#{r : ir ∈ B}

]
.

It is easy to see that both tensors ω and Pαω are traceless while Pα(ω) 6= 0.
Take any non-distinguished extension β of α and denote by s the number

of the column of β which contains k + 1. Write ω in the form

(27) ω = ωA + ωB ,

where ωA (resp., ωB) is the sum of all the terms of the form (26) for which
ir ∈ A (resp., ir ∈ B) for the r which appears in the first row and sth
column of α. Let v = ea1 + eb1 . Then

(28)
∑
σ∈Hβ

sgnσ · σ(ωA ⊗ ea1) =
∑
σ∈Hβ

sgnσ · σ(ωB ⊗ eb1) = 0

by Lemma 1. Also,

(29)
∑
σ∈Hβ

sgnσ · σ(ωA ⊗ eb1) = −
∑
σ∈Hβ

sgnσ · σ(ωB ⊗ ea1)

because for any term in the first sum there exists a unique term in the second
sum with ea1 and eb1 interchanged. Equalities (27)–(29) together with (1)
and the definition of v imply that Pβ(ω ⊗ v) = 0.

Finally, following the proof of Lemma 2 one can show that

(30) Pβ = mα

∑
t∈Tv

∑
t′∈Th

sgn t · t′ ◦ (Pα ⊗ id) ◦ t,

where Th (resp., T v) consists of the identity and all the transpositions of
k + 1 with the elements of the row (resp., column) containing it. It follows
that

(31) Pβ(Pαω ⊗ v) = mαPβ(ω ⊗ v) = 0.
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4. Final remarks. (i) Denote byN(k) the number of components in the
decomposition (3). It is easy to observe that N(1) = 1, N(2) = 2, N(3) = 4,
N(4) = 10, N(5) = 26, etc. The above observation motivates the recurrent
formula

(32) N(k) = N(k − 1) + (k − 1) ·N(k − 2).

The authors could not find anything like this in the literature. A numerical
experiment showed that (32) holds for small k, say k ≤ 20.

(ii) As we said in Section 3, there is no explicit formula for the traceless
part of a tensor. In some sense, a formula of this sort could be obtained in
the following way. Put

(33) E =
⊕

(k2)
T k−2

and define an endomorphism K : E → E by the formula

(34) K((ωij)) =
(
Cij

(∑
r,s

tr ◦ ts(g ⊗ ωrs)
))
,

where tr (resp. ts) is the transposition of the terms 1 and r (resp., 1 and s).
K is an isomorphism. In fact, if K(Ω) = 0, Ω = (ωij), then the tensor

(35) Θ =
∑
r,s

tr ◦ ts(g ⊗ ωrs)

is traceless and—because of its form—orthogonal to the space of traceless
tensors, and therefore, it vanishes. Decomposing tensors ωij according to (6)
and proceeding inductively one would get ωij = 0 for all i and j, i.e. Ω = 0.

The traceless part ω0 of any k-tensor ω is given by the formula

(36) ω0 = ω −Θ,
where Θ is given by (35) with (ωij) = K−1((Cijω)). In fact, from the
definition of K it follows immediately that CijΘ = Cijω for all i and j.

After submitting the paper, the authors, working jointly with B. Ørsted
and G. Zhang, proved the Conjecture from Section 3 as well as formula (32).
See Elliptic gradients and highest weights, Bull. Polish Acad. Sci. Math.
44 (1996), 527–535.
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