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Normal structure of Lorentz–Orlicz spaces

by Pei-Kee Lin (Memphis, Tenn.) and Huiying Sun (Harbin)

Abstract. Let φ : R→R+∪{0} be an even convex continuous function with φ(0)=0
and φ(u) > 0 for all u > 0 and let w be a weight function. u0 and v0 are defined by

u0 = sup{u : φ is linear on (0, u)}, v0 = sup{v : w is constant on (0, v)}

(where sup ∅ = 0). We prove the following theorem.

Theorem. Suppose that Λφ,w(0,∞) (respectively , Λφ,w(0, 1)) is an order continuous
Lorentz–Orlicz space.

(1) Λφ,w has normal structure if and only if u0 = 0 (respectively ,
Tv0
0
φ(u0) · w < 2

and u0 <∞).

(2) Λφ,w has weakly normal structure if and only if
Tv0
0
φ(u0) · w < 2.

1. Introduction. Let Ω denote either [0, 1] or [0,∞) and m denote the
Lebesgue measure on Ω. For a measurable function x on Ω, the distribution

function dx and the decreasing rearrangement x∗ are defined by

dx(t) = m(|x| > t), x∗(t) = inf{s > 0 : dx(s) ≤ t}.

An even convex continuous function φ : R → R+∪{0} is said to be a Young

function if φ(0) = 0 and φ(u) > 0 for all u 6= 0. A function w : Ω → R+ is
called a weight function if it is a nonincreasing left continuous function and

1\
0

w(t) dt = 1.

For a Young function φ and a weight function w, the associated Lorentz–

Orlicz space Λφ,w(Ω) (or Λφ,w for short) is the set of all real measurable
functions x on Ω such that

̺φ(λx) =
\
Ω

φ(λx∗(t))w(t) dt ≡
\
Ω

φ(λx∗)w < ∞

1991 Mathematics Subject Classification: 46B20, 46B42.
Key words and phrases: Lorentz–Orlicz space, normal sturcture, order continuous,

Young function.

[147]



148 P.-K. Lin and H. Y. Sun

for some λ > 0. The norm of x ∈ Λφ,w is defined by

‖x‖ = inf{ε > 0 : ̺φ(x/ε) ≤ 1}.

Recall that a mapping σ : R+ → R+ is said to be a measure preserving

transformation if for any measurable set D, m(D)=m(σ−1(D)). It is known
that for any measure preserving transformation σ and any x ∈ Λφ,w, x∗ =
(x ◦ σ)∗ and \

φ(x∗)w ≥
\
φ(x)w ◦ σ.

It is also known that for z ∈ Λφ,w if m(supp(z)) < ∞ (or respectively,
m(supp(z))=∞), then there is (cf. [2]) a measure preserving transformation
σ : R

+ → R
+ (respectively, σ : supp(z) → R+) such that

(i)
T∞
0

φ(z)w ◦ σ =
T∞
0

φ(z∗)w;

(ii) if |z(t)| < |z(s)|, then σ(t) ≥ σ(s).

For a Lorentz–Orlicz space Λφ,w(Ω), φ is said to satisfy the ∆2 condition if
one of the following holds:

(iii) Ω = [0,∞) and there exists l > 0 such that φ(2u) ≤ lφ(u) for all
u > 0.

(iv) Ω = [0, 1] and there are l > 0 and u0 > 0 such that φ(2u) ≤ lφ(u)
for all u ≥ u0.

In [7], Kamińska proved the following theorem.

Theorem A. For a Lorentz–Orlicz space Λφ,w, the following are equiv-

alent :

(1) Λφ,w is order continuous. So the Köthe dual of Λφ,w is the dual of

Λφ,w.

(2) Λφ,w does not contain any isometric copy of ℓ∞.

(3) φ satisfies the ∆2 condition and
T∞
0

w = ∞ if Ω = (0,∞).

(4) For any x ∈ Λφ,w, ̺φ(x) = 1 if and only if ‖x‖ = 1.

Let X be a Banach space. For any bounded subset A of X, define

r(x,A) = sup{‖x − y‖ : y ∈ A} for any x ∈ A;

R(A) = inf{r(x,A) : x ∈ A};

δ(A) = sup{r(x,A) : x ∈ A} = diam A.

A bounded closed convex set A is said to have normal structure if for any
closed convex subset B of A either R(B) = 0 or R(B) < δ(B). X is said to
have (weakly) normal structure if every bounded (weakly compact) closed
convex subset of X has normal structure. Kirk [9] showed that every non-
expansive mapping on a weakly compact convex set with normal structure
has the fixed point property.
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Recall that a sequence {xn} in X is said to be a limit-constant sequence

if for any x ∈ co{xn},

lim
n→∞

‖x − xn‖ = diam{xn}.

Note that here we require the limit to converge to the diameter of co{xn :
n∈N} (cf. [10]). A sequence {xn} is said to be a unit limit-constant sequence

if {xn} is a limit-constant sequence with diam{xn} = 1. It is known that a
Banach space X has (weakly) normal structure if and only if X contains no
(weakly convergent) unit limit-constant sequence [10]. In [3], Chen showed
that if φ is an N -function (for definition see [3]) which satisfies the ∆2

condition, then the Orlicz space Lφ has weakly normal structure. Recently,
Carothers, Dilworth, Hsu, Lennard and Trautman [1, 5] studied the uniform
Kadec–Klee property for the Lorentz space Lw,1. They proved that Lw,1

does not have normal structure and they also gave a sufficient condition for
Lw,1 to have weakly normal structure. In this article, we study (weakly)
normal structure for Lorentz–Orlicz spaces and give a characterization of
the Lorentz–Orlicz spaces with (weakly) normal structure. For more results
about normal structure of Orlicz function (respectively, sequence) spaces
and Lorentz function spaces, see [1, 3, 5, 6, 8, and 11].

It is known that L1 does not have weakly normal structure and ℓ∞
contains an isometric copy of L1. Hence Λφ,w does not have weakly normal
structure if Λφ,w is not order continuous. For a fixed Young function φ :
R → R+ ∪ {0} and a fixed weight function w, let u0 and v0 be defined by

u0 = sup{u : φ is linear on (0, u)},

v0 = sup{v : w is constant on (0, v)},

where sup ∅ = 0. The following are three examples of unit limit-constant
sequences in Lorentz–Orlicz spaces. The first two are well-known.

Example 1 [1]. Suppose that φ is linear on (0,∞) and an is the number
such that

φ(n)

an\
0

w(t) dt =
1

2
.

Let en =n1(0,an). It is easy to see that {en} is a unit limit-constant sequence.
So if Λφ,w(0, 1) has normal structure, then u0 < ∞.

Suppose that Ω = (0,∞) and φ is linear on (0, u0) for some u0 > 0. Let
bn be the number such that

φ

(

u0

n

) bn\
0

w(t) dt =
1

2
.

A similar proof shows that {en = (u0/n)1(0,bn)} is a unit limit-constant
sequence. Hence if Λφ,w(0,∞) has normal structure, then u0 = 0.
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Example 2. Suppose that there exist two positive numbers u and v
such that φ is linear on (0, u), w is constant on (0, v), and

Tv
0
φ(u/2)w ≥ 1.

Without loss of generality, we may assume that
Tv
0
φ(u/2)w = 1. Let

xn(t) =







u

2
· sgn

(

sin

(

2nπt

v

))

if t ≤ v,

0 otherwise.

Then for any x ∈ co{xi : i ≤ k} and n > k, ‖x − xn‖ = 1. This implies
that {xn} is a unit limit-constant sequence. It is known that Λφ,w(0, v) is
not equal to L∞(0, 1) up to equivalent norm. By Proposition 2.c.10 in [13]
(p. 160), {xn} is a weakly null sequence. Hence if Λφ,w has weakly normal
structure, then

Tv0

0
φ(u0) · w < 2.

Example 3. Suppose that u0 > 0 and for some v > 0, w is constant on
(v,∞). Then there are 0 < u < u0 and v′ > v such that

2v′\
0

φ(u)w = 1.

Let en = u1((n−1)v′ ,nv′). If ak ≥ 0 and
∑N

k=1 ak = 1, then

̺φ

(

eN+1 −
N

∑

k=1

akek

)

=

v′\
0

φ(u)w(t) dt +

N
∑

k=1

(k+1)v′\
kv′

φ(aku)w(t) dt

=

2v′\
0

φ(u)w = 1.

So {en} is a unit limit-constant sequence.
We claim that {en} is equivalent to the natural basis of ℓ1. So it cannot

be a weakly convergent sequence.
In fact, for any finite sequence {ak}

N
k=1 with

N
∑

k=1

|ak| ≥
1T2v′

v′
φ(u)w

,

we have

̺φ

(

N
∑

k=1

akek

)

≥
N

∑

k=1

|ak|
2v′\
v′

φ(u)w ≥ 1.

Hence
∥

∥

∥

N
∑

k=1

akek

∥

∥

∥
≥

∑N
k=1 |ak|T2v′

v′
φ(u)w

.

This implies that {en} is equivalent to the natural basis of ℓ1.
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From the above examples, it is natural to ask the following questions:

(1) Does Λφ,w(0,∞) (respectively, Λφ,w(0, 1)) have normal structure if
u0 = 0 (respectively, u0 < ∞ and

Tv0

0
φ(u0) · w < 2)?

(2) Does Λφ,w have weakly normal structure if
Tv0

0
φ(u0)w < 2?

The following theorem shows that the answer to the above questions is
affirmative.

Theorem 1. Suppose that Λφ,w is an order continuous Lorentz–Orlicz

space.

(1) Λφ,w has normal structure if u0 = 0 (respectively ,
Tv0

0
φ(u0)w < 2

and u0 < ∞).
(2) Λφ,w has weakly normal structure if

Tv0

0
φ(u0)w < 2.

2. Basic properties of unit limit-constant sequences in Λφ,w.

First, we need the following three lemmas. The first one easily follows from
the definition and the second one was proved in [12].

Lemma 2. Suppose that v > ε > 0 and u2 > u1 > 0. If x is an element

of Λφ,w such that

m({t ∈ (0, v) : |x(t)| ≤ u1}) > ε, m({t ∈ (v,∞) : |x(t)| ≥ u2}) > ε,

then \
φ(|x|)w ≤ ̺φ(x) − (φ(u2) − φ(u1))

(

v\
v−ε

w −
v+ε\

v

w
)

.

R e m a r k 1. Suppose that either w is not constant on (v−ε, v) or w is not

constant on (v, v + ε). Then
Tv
v−ε

w−
Tv+ε

v
w > 0. Hence there is δ > 0 such

that ̺φ(x) ≥ δ +
T
φ(x)w whenever x satisfies the assumption of Lemma 2.

Lemma 3. Let Λφ,w be an order continuous Lorentz–Orlicz space and E

be a set of positive measure and λ be a positive number. Suppose that x, y
and z are three elements of Λφ,w such that ̺φ(x− y) ≤ 1, ̺φ(x− z) ≤ 1 and

φ

(

x(t) −
1

2
(y(t) + z(t))

)

≤
φ
(

x(t) − y(t)
)

+ φ
(

x(t) − z(t)
)

2
− λ

for every t ∈ E. Then there is ν > 0 such that

̺φ

(

x −
y + z

2

)

≤ 1 − ν.

Lemma 4. Let φ be a Young function. For any given δ > 0, there exists

ε > 0 such that

φ

(

d2 −
d1

2

)

<
1

2
(φ(d2 − d1) + φ(d2))

whenever d1 > u0 + δ and 0 < d2 < d1 + ε.
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P r o o f. If u0 = 0, then there is ε < δ/3 such that φ is not linear on
(ε, 2ε). If u0 > 0, let ε = 1

3 min{u0, δ}. Then φ is not linear on (ε, u0 + ε).
Hence if d3 > 2ε + u0 and 0 ≤ d4 < ε, then

φ

(

d3 + d4

2

)

<
1

2
(φ(d3) + φ(d4)).

C a s e 1: d1 ≤ d2. In this case, d2 − d1 < ε, and d2 ≥ d1 > u0 + δ >
u0 + 2ε. So

φ

(

d2 −
d1

2

)

= φ

(

d2 + d2 − d1

2

)

<
1

2
(φ(d2 − d1) + φ(d2)).

C a s e 2: d1 > d2. If d2 < d1/2, then

φ

(

d2 −
d1

2

)

= φ

(

d1

2
− d2

)

≤ φ

(

d1 − d2

2

)

≤
1

2
φ(d1 − d2).

If d2 ≥ d1/2, then

φ

(

d2 −
d1

2

)

≤ φ

(

d2 −
d2

2

)

= φ

(

d2

2

)

≤
1

2
φ(d2).

Hence

φ

(

d2 −
d1

2

)

<
1

2
(φ(d2 − d1) + φ(d2)).

It seems that the following proposition is known. But we cannot find a
reference. So we present a proof.

Proposition 5. Let {xn} be a sequence in the unit ball of an order

continuous Köthe space E and {Bn} be a sequence of disjoint measurable

subsets. If {xn1Bn
} is equivalent to the natural basis of ℓ1, then {xn} does

not converge weakly.

P r o o f. Since {xn1Bn
} is equivalent to the natural ℓ1 basis, there is x∗

in the dual of Λφ,w such that 〈x∗, xn1Bn
〉 = 1. We claim that

(1) lim
j→∞

lim
n→∞

〈x∗1Bj
, xn〉 = 0.

By passing to further subsequences of {xn}, we may assume that for any
j ∈ N, limn→∞〈x∗1Bj

, xn〉 exists. Suppose the claim is not true. Then there
exist c > 0, L ≥ ‖x∗‖/c, l and F ⊆ N such that card(F ) ≥ L and for any
j ∈ F ,

|〈x∗1Bj
, xl〉| > c.

This implies 〈|x∗|, |xl|〉 > Lc ≥ ‖x∗‖, which contradicts ‖xl‖ ≤ 1.
We claim that there is a subsequence {xnk

} of {xn} such that

|〈x∗1Bni
, xnl

〉| <
1

4
for any l ≥ i + 1;
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‖xni
1⋃∞

j=ni
Bnj

‖ ≤
1

4i+1‖x∗‖
.

By (1), there is n1 such that

lim
k→∞

|〈x∗1Bn1
, xk〉| <

1

4
.

We can find an n2 > n1 such that

|〈x∗1Bn1
, xl〉| <

1

4
for any l ≥ n2;

‖xn1
1⋃∞

j=n2
Bnj

‖ ≤
1

42‖x∗‖
(since E is order continuous);

lim
k→∞

|〈x∗1Bn2
, xk〉| <

1

42
by (1).

Assume that n1, . . . , ni are selected. Then there is ni+1 > ni such that

|〈x∗1Bni
, xl〉| <

1

4i
for any l ≥ ni+1;

‖xni
1⋃∞

j=ni+1
Bnj

‖ ≤
1

4i+1‖x∗‖
(since E is order continuous);

lim
k→∞

|〈x∗1Bni+1
, xk〉| <

1

4i+1
by (1).

We have constructed a subsequence {xnk
} which satisfies our claim. Let

{aj : 1 ≤ j ≤ N} be any finite real sequence, and let

E1 =
⋃

{Bj : aj > 0 and j ≤ N}, E2 =
⋃

{Bj : aj ≤ 0 and j ≤ N}.

Then

‖x∗‖ ·
∥

∥

∥

N
∑

j=1

ajxnj

∥

∥

∥
≥

〈

x∗1E1
− x∗1E2

,

N
∑

j=1

ajxnj

〉

≥
N

∑

j=1

(

|aj |〈x
∗, 1Bj

xnj
〉

−

j−1
∑

i=1

|aj | · |〈x
∗, 1Bi

xnj
〉| − |aj | · ‖xnj

1⋃∞

l=j+1
Bnl

‖
)

≥
N

∑

j=1

|aj |

(

1 −

j+1
∑

i=1

1

4i

)

≥
2

3

N
∑

j=1

|aj |.

This implies that {xnk
} is equivalent to the natural basis of ℓ1. So {xn}

cannot converge weakly.

Suppose that Λφ,w is an order continuous Lorentz–Orlicz function space
without (weakly) normal structure. There exists a (weakly convergent) unit
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limit-constant sequence {xn} in Λφ,w. (From now on, {xn} is a fixed (weakly
convergent) unit limit-constant sequence.) Let

xn =
1

n

n
∑

k=1

xk, z′n = sup{x1, . . . , xn}, z′′n = inf{x1, . . . , xn}.

Then {z′n} is an increasing sequence. It converges in measure to an extended
measurable function

z′ = sup{xn : n ∈ N} ≡ lim
n→∞

z′n.

Similarly, {z′′n} is a decreasing sequence, and it converges in measure to
another extended measurable function

z′′ = inf{xn : n ∈ N} ≡ lim
n→∞

z′′n.

Lemma 6. m({t : |z′(t) − z′′(t)| > u0}) = 0.

P r o o f. If u0 =∞, then there is nothing to be proved. So we may assume
that u0 < ∞. Suppose that the lemma is not true. Since

{t : |z′(t) − z′′(t)| > u0} =
⋃

m,n∈N

{t : |xn(t) − xm(t)| > u0},

there are n and m such that

m({t : |xn(t) − xm(t)| > u0}) > 0.

By passing to a subsequence, we may assume that xn = x1 and xm = x2.
Let A = {t : x2(t)−x1(t) ≥ 0}. Replacing xk by (xk−x1)1A−(xk−x1)1Ω\A,
we may assume that x2 ≥ 0. By measure theory, there is δ > 0 such that

m({t : |x1(t) − x2(t)| > u0 + δ}) > c > 0.

By Lemma 4, there is ε > 0 such that

(2) φ

(

d2 −
d1

2

)

<
1

2
(φ(d2 − d1) + φ(d2))

provided d1 > u0 + δ and 0 < d2 < d1 + ε.

Claim. There are a subsequence {yk}
∞
k=1 of {xn} and a decreasing se-

quence {Ck}
∞
k=2 of measurable sets such that

(a) y1 = x1, y2 = x2;

(b) m(Cn) ≥ (1/2 + 1/2n)c;

(c) for any t ∈ Cn, there is k < n such that

|yn(t) − yk(t)| ≥ ε + sup{|yn−1(t) − yj(t)| : j < n}

= ε + sup{|yi(t) − yj(t)| : i, j < n}.
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Suppose the claim were proved. Note that if n > 2, t ∈ Cn and yn(t) > 0,
then

yn(t) − inf{yi(t) : 1 ≤ i ≤ n − 1} ≥ ε + sup{|yn−1(t) − yi(t)| : 1 ≤ i < n}.

Similarly, if yn(t) < 0, then

sup{yi(t) : 1 ≤ i ≤ n − 1} − yn(t) ≥ ε + sup{|yn−1(t) − yi(t)| : 1 ≤ i < n}.

So for any t ∈ Cn and k < m ≤ n − 1, we have

(yn(t) − ym(t))(yn(t) − yk(t)) ≥ 0,

and
|yn(t) − ym(t)| ≥ sup{|yn(t) − yj(t)| : j ≤ n − 1}

− sup{|ym(t) − yj(t)| : j ≤ n − 1} ≥ ε.

This implies

card({j ≤ n − 1 : |yn(t) − yj(t)| < lε}) ≤ l − 1,

and

|yn(t) − yn−1(t)| =
1

n − 1

n−1
∑

i=1

|yn(t) − yi(t)| ≥
1

n − 1

n−1
∑

i=1

iε =
nε

2
.

Therefore,\
Ω

φ((yn − yn−1)
∗)w ≥

m(Cn)\
0

φ

(

nε

2

)

w ≥ φ

(

nε

2

) c/2\
0

w,

which is impossible if n is large enough. Hence the lemma must be true.

P r o o f o f C l a im. Let C2 ={t : |y1(t)−y2(t)| > u0 + δ}. (So m(C2) <
∞.) Suppose that y1, . . . , yk = xnk

and C2, . . . , Ck have been constructed.
For j < k, let

Dj = {t ∈ Ck : |yk(t) − yj(t)|

= sup{|yk(t) − yi(t)| : i < k} > sup{|yk(t) − yi(t)| : i < j}}.

Then Ck =
⋃k−1

j=1 Dj .

Subclaim. There is Mj > nk such that for any n ≥ Mj ,

m({t ∈ Dj : sup{|xn(t) − yi(t)| : i ≤ k}

≥ sup{|yk(t) − yi(t)| : i < k} + ε}) ≥ (1 − 1/2k+1)m(Dj).

Suppose that the subclaim were proved. Let nk+1 = sup{Mj : j < k},
yk+1 = xnk+1

, and

Ck+1 = {t ∈ Ck : sup{|yk+1(t) − yj(t)| : j ≤ k}

≥ sup{|yk(t) − yj(t)| : j < k} + ε}.

Then Ck+1 and yk+1 satisfy (b) and (c), hence the claim is proved.
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P r o o f o f S u b c l a i m. If m(Dj) = 0, then let Mj = nk + 1. So we
may assume that m(Dj) > 0. By measure theory, there exists L > δ + u0

such that

m({t ∈ Dj : |yk(t) − yj(t)| ≤ L}) > (1 − 1/2k+2)m(Dj)

for any m(Dj) > 0, j ≤ k. Note that if t ∈ Dj , then u0 + δ < |yk(t)− yj(t)|.
Suppose the subclaim is not true. Then for any N > nk, there is m > N
such that

Em,j = {t ∈ Dj : max{|xm(t) − yk(t)|, |xm(t) − yj(t)|}

< |yk(t) − yj(t)| + ε and u0 + δ < |yk(t) − yj(t)| ≤ L}

has measure greater than 2−(k+2)m(Dj). For any t ∈ Em,j , either yk(t) >
yj(t) or yk(t) < yj(t). Without loss of generality, we assume that yk(t) >
yj(t) and yk(t) + ε ≥ xm(t) ≥ yj(t) − ε. Let d1 = yk(t) − yj(t) and

d2 =

{

yk(t) − xm(t) if xm(t) ≤ yk(t),
xm(t) − yj(t) otherwise.

Since [0, L] is compact and φ is continuous, by (2), there is λ > 0 such
that

φ

(

d2 −
d1

2

)

≤
1

2
(φ(d2 − d1) + φ(d2)) − λ

whenever L ≥ d1 > u0 + δ and d2 ≤ d1 + ε. So

φ

(

1

2
(yk(t) + yj(t)) − xm(t)

)

= φ

(

yk(t) − xm(t) −
yk(t) − yj(t)

2

)

≤
1

2
(φ(yk(t) − xm(t)) + φ(yj(t) − xm(t))) − λ.

Note that ̺φ

(

xm − 1
2
(yj + yk)

)

≤ 1 and
T∞
0

w = ∞. By Lemma 3, there is
ν > 0 (which depends on λ, w and m(Dj), but is independent of xm) such
that

∞\
0

φ

((

xm −
1

2
(yj + yk)

)∗)

w ≤ 1 − ν.

Since φ satisfies the ∆2 condition, by Theorem A,

lim inf
m→∞

∥

∥

∥

∥

xm −
1

2
(yk + yj)

∥

∥

∥

∥

< 1,

which contradicts the fact that {xn} is a unit limit-constant sequence. So
the subclaim must be true and the proof of Lemma 6 is complete.

R e m a r k 2. Since {xn} is not a constant sequence, we have u0 > 0.
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Lemma 7. For any l ∈ N and ε > 0,

lim
n→∞

m({t : z′′l (t) + ε < xn(t) < z′l(t) − ε}) = 0.

P r o o f. Suppose the lemma is not true. By passing to a further subse-
quence of {xn}, we may assume that there are ε > 0 and δ > 0 such that
for all m > l, the set

Fm = {t : z′′l (t) + ε < xm(t) < z′l(t) − ε}

has measure at least δ. Let σ be a measure preserving transformation such
that

(i)
T∞
0

φ(xm − xl)w ◦ σ =
T∞
0

φ((xm − xl)
∗)w;

(ii) if |(xm − xl)(t)| < |(xm − xl)(s)|, then σ(t) ≥ σ(s).

Since for any t ∈ Fm,

1

l

l
∑

k=1

|xm(t) − xk(t)| ≥
ε

l
+ |xm(t) − xl(t)|,

by Lemma 3, there is ν > 0 (dependent only on l, δ and ε) such that

∞\
0

φ((xm − xl)
∗)w =

∞\
0

φ

(

xm −
1

l

l
∑

k=1

xk

)

w ◦ σ

≤
1

l

l
∑

k=1

̺φ(|xm − xk|) − ν ≤ 1 − ν.

This contradicts limm→∞ ‖xm − xl‖ = 1.

Lemma 8. Suppose that there are two positive numbers v1, u1 such that

(1) either w(t) < w(v1) for all t > v1 or w(t) > w(v1) for all t < v1;
(2) for any i 6= j, m

(

{t : |xi(t) − xj(t)| ≥ u1}
)

≤ v1.

Then for any u2 > u1, m({t : z′(t) − z′′(t) ≥ u2}) ≤ v1.

P r o o f. Since the proofs are similar, we can assume that w(t) < w(v1)
for all t > v1. Suppose that the lemma is not true. There is ν > 0 such that
u2 − u1 > 2ν and

m({t : z′(t) − z′′(t) > u1 + 2ν}) > v1 + 2ν.

Let

Fl = {t : z′l(t) − z′′l (t) > u1 + 3ν/2}.

Clearly, m(Fk) < ∞ for all k ∈ N. Since {Fk} is an increasing sequence and
⋃∞

k=1 Fk ⊇ {t : z′(t)−z′′(t) > u1+2t}, there is l such that m(Fl) ≥ v1+3ν/2.
Let

Gn = {t ∈ Fl : xn(t) ≥ z′l(t) − ν/4 or xn(t) ≤ z′′l (t) + ν/4}.
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By Lemma 6, limn→∞ m(Fl \ Gn) = 0. So there is N1 > l such that if
n > N1, then m(Gn) ≥ v1 +ν. This implies that for any measure preserving
transformation σ of Ω,

m({t ∈ Gn : t ∈ σ−1(v1,∞)}) ≥ ν.

Fix n > N1. By the definition of Gn, for any t ∈ Gn, either xn(t)≥ z′l(t) −
ν/4 or xn(t)≤ z′′l (t)+ν/4. Without loss of generality, xn(t)≥ z′l(t)−ν/4. Let
j ≤ l such that xj(t) = z′′l (t). Then

|xn(t) − xj(t)| ≥ z′l(t) − z′′l (t) − ν/4 > u1 + 5ν/4.

Note that {xn} is a unit limit-constant sequence. For any λ > 0, there are
n > N1 and a measure preserving transformation σ such that

(i)
T
φ(xn − xl)w ◦ σ =

T
φ((xn − xl)

∗)w ≥ 1 − λ;
(ii) if |(xn − xl)(t)| ≥ |(xn − xl)(s)|, then σ(t) ≥ σ(s).

For any k ≤ l, let

Hk = σ−1(v1,∞) ∩ {t : |xn(t) − xk(t)| > u1 + 5ν/4}.

Clearly,
⋃l

k=1 Hk ⊇ {t ∈ Gn : t ∈ σ−1(v1,∞)}. Hence there is k ≤ l such
that m(Hk) ≥ ν/l. By (2), the set {t ∈ σ−1(0, v1) : |xn(t)−xk(t)| < u1} has
measure at least m(Hk). By Lemma 2 and Remark 1, there is δ > 0 such
that δ is only dependent on u1, ν, v1, l, and\

φ(|xn(t) − xk(t)|)w ◦ σ(t) dt ≤ ̺φ(xn − xk) − δ.

This implies, for any λ > 0,

1 − λ ≤
\
φ(xn − xl)w ◦ σ ≤

1

l

l
∑

j=1

\
φ(xn − xj)w ◦ σ

≤
1

l

l
∑

j=1

̺φ(xn − xj) −
δ

l
≤ 1 −

δ

l
.

It is impossible if λ < δ/l.

We have the following two corollaries.

Corollary 9. If v0 = 0, then z′ and z′′ are finite almost everywhere.

P r o o f. Since v0 = 0 and w is left continuous, for any δ > δ1 > 0, there
are 0 < δ2 < δ1 and u1 > 0 such that ̺φ(u11(0,δ2)) > 1 and w(t) < w(δ2) if
t > δ2. Since {xn} is a unit limit-constant sequence, for any m,n we have
̺φ(xm − xn) ≤ 1. So

m
(

{t : |xn(t) − xm(t)| > u1}
)

≤ δ2 for all n,m ∈ N.

By Lemma 8, we have

m({t : z′(t) − z′′(t) ≥ u2}) ≤ δ2
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for any u2 > u1. Since δ2 is arbitrary, z′ and z′′ are finite almost every-
where.

Corollary 10. Suppose that w is not constant on (v,∞) for any v > 0.
Then for any ε > 0,

m({t : z′(t) − z′′(t) > 2ε}) < ∞.

P r o o f. Since
T∞
0

w = ∞ and w is not constant on (v,∞) for any v > 0,
it follows that for any ε > 0, there is L > 0 such that w(t) > w(L) for all
t > L and

m{t : |xn(t) − xm(t)| ≥ ε} < L

for all n,m. By Lemma 8, we have

m({t : z′(t) − z′′(t) > 2ε}) < L < ∞.

Proposition 11. Suppose that there is 1 > δ > 0 such that one of the

following conditions holds:

(1) For any M > 0, there is n such that ̺φ(xn1{t:|xn(t)|>M}) > δ.

(2) For any ε > 0 there is n such that ̺φ(xn1{t:|xn(t)|<ε}) > δ.

Then {xn} does not converge weakly.

P r o o f. Since the proofs are similar, we only prove the proposition when
(1) holds.

Suppose the proposition is not true. Then there is a weakly convergent
unit limit-constant sequence {xn} satisfying (1). Lemma 6 yields u0 = ∞.
By assumption, there exist sequences {Dk}, {dk} and {nk} such that for all
k ∈ N we have 8kdk < 8kDk < δdk+1 < δDk+1 and ̺φ(xnk

1{t:dk≤|xnk
(t)|≤Dk})

> δ. Let

Ak = {t : dk ≤ |xnk
(t)| ≤ Dk}, Bk = Ak

∖

∞
⋃

j=k+1

Aj .

Since ̺φ(xnk
) ≤ 1 and |xnk

(t)| ≥ dk for every t ∈ Ak,
Tm(Ak)

0
w(t) dt ≤

1/φ(dk). So

̺φ(xnk
1Bk

) ≥ ̺φ(xnk
1Ak

) −
∞
∑

j=k+1

̺φ(xnk
1Aj

)

≥ δ −
∞
∑

j=k+1

φ(Dk)
1

φ(dj)
≥ δ −

δ

3
=

2δ

3
.

We claim that {xnk
1Bk

} is equivalent to the natural basis of ℓ1. Without
loss of generality, we assume that
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Bk =
(

∞
∑

j=k+1

m(Bj),

∞
∑

j=k

m(Bj)
)

,

and |xnk
|1Bk

is decreasing on Bk. Then\
φ(xnk

1Bk
)w

=
\

Bk

φ(xnk
)w

=

m(Bk)\
0

φ(xnk
)
(

t +

∞
∑

j=k+1

m(Bj)
)

w
(

t +

∞
∑

j=k+1

m(Bj)
)

≥

m(Bk)\
0

φ(xnk
)
(

t +

∞
∑

j=k+1

m(Bj)
)

w(t) − φ(Dk)

∞
∑

j=k+1

1/φ(dj)

≥ ̺φ(xnk
1Bk

) −
δ

3
≥

2δ

3
−

δ

3
=

δ

3
.

Hence, for any sequence {an} ∈ ℓ1 with
∑∞

n=1 |an| ≥ 1/(3δ),

̺φ

(

∞
∑

j=1

ajxnj
1Bj

)

≥
\
φ
(

∞
∑

j=1

ajxnj
1Bj

)

w =
∞
∑

j=1

\
Bj

φ(ajxnj
)w

=
∞
∑

j=1

\
Bj

ajφ(xnj
)w ≥

∞
∑

j=1

|aj |
δ

3
≥ 1.

This implies that {xnk
1Bk

} is equivalent to the natural basis of ℓ1. By
Proposition 5, {xn} does not converge weakly.

Proposition 12. Suppose that for any ν > 0, there are a sequence {ni}
and a measurable set A such that 0 < m(A) ≤ v0 and

̺φ((xnk
− xnj

)1A) ≥ 1 − ν whenever i > j.

Then
Tv0

0
φ(u0)w ≥ 2.

P r o o f. It is clear that v0 > 0. If u0 = ∞, then there is nothing to
be proved. So we may assume that u0 < ∞. Replacing xn by xn − x1 if
necessary, we may also assume that x1 ≡ 0. By Lemma 6, both z′ and
z′′ are bounded. Since φ is linear on (0, v0), without loss of generality, we
further assume that φ(t) = t for all 0 < t ≤ u0 and w(t) = 1 for all t ≤ v0.
To prove the proposition, it is enough to show that v0 ≥ 2/u0.

Let K be a fixed natural number. For any a < b and any 0 ≤ l ≤ 2K,
let {ak : 1 ≤ k ≤ 2K} be a finite sequence such that

ak =
{

a if k ≤ l,
b otherwise.
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Then
∑

i<j≤2K

|aj − ai| = (2K − l + 1)(l − 1)(b − a) ≤ K2(b − a).

Let 0 < δ < v0 be any positive number such that

δ\
0

u0 dt ≤
1

K4
.

By assumption, there are a measurable set A and a natural number N such
that 0 < m(A) ≤ v0 and

̺φ((xnk
− xnj

)1A) ≥ 1 − 1/K4 whenever k > j ≥ N.

By the definition of z′ and z′′, there exists l such that

m

{

t ∈ A : |z′(t) − z′l(t)| >
1

2K4v0

}

<
δ

3
,

m

{

t ∈ A : |z′′(t) − z′′l (t)| >
1

2K4v0

}

<
δ

3
.

By Lemma 7, there exists a finite subsequence {k1, . . . , k2K} of {nk} such
that for any j ≤ 2K,

m

({

t ∈ A : z′′l (t) +
1

2K4v0
< xkj

< z′l −
1

2K4v0

})

<
δ

3
.

Let

Bi =

{

t ∈ A : |z′′(t) − xki
(t)| ≥

1

K4v0
and |xki

(t) − z′(t)| ≥
1

K4v0

}

.

Then for all i ≤ 2K, Bi has measure at most δ. For each i ≤ 2K, let yi be a
measurable function such that yi(t) ∈ {z′(t), z′′(t)} and for any t ∈ A \ Bi,
|yi(t) − xki

(t)| < 1
K4v0

. Then

K(2K − 1)

(

1 −
1

K4

)

≤
∑

i<j≤2K

̺φ((xki
− xkj

)1A)

=
∑

i<j≤2K

\
A

|xki
− xkj

| dt

≤
∑

i<j≤2K

\
A

|xki
− yi| + |yi − yj | + |yj − xkj

| dt

≤
∑

i<j≤2K

( \
Bi

u0 dt +
\

Bj

u0 dt +
\

A\Bi

dt

K4v0

+
\

A\Bj

dt

K4v0
+
\
A

|yi − yj | dt

)
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≤ K(2K − 1)
4

K4
+
\
A

∑

i<j≤2K

|yi − yj |

≤
16

K2
+ K2u0v0.

This implies

v0 ≥ (u0)
−1

(

2K2 − K −
2

K2
−

16

K2

)

1

K2
.

Since K is arbitrary, v0 ≥ 2/u0.

For any subsequence {xnk
} of {xn}, define

p(xnk
) = sup{u : m({t : sup{xnk

}(t) − inf{xnk
}(t) > u}) = ∞}.

Lemma 13. Suppose z′ and z′′ are finite almost everywhere. Then there

is a subsequence {xnk
} of {xn} such that for any further subsequence {yk}

of {xnk
}, p(xnk

) = p(yk).

P r o o f. For any subsequence {xnk
} of {xn}, clearly, p(xn)≥p(xnk

). Let

q(xnk
) = inf{p(yk) : {yk} is a subsequence of {xnk

}}.

By induction, there exists a sequence {xj,n : n ∈ N}∞j=1 of sequences such
that

(a) for any j, {xj,n : n ∈ N} is a subsequence of {xj−1,n : n ∈ N};
(b) for any j,

pj = p({xj,n : j ∈ N}) ≤ qj−1 + 1/2j

where qj−1 = q({xj−1,n : n ∈ N}).

Note that {pn} is a decreasing sequence, {qn} is an increasing sequence
and |pn − qn−1| ≤ 1/2n. Further,

u4 = lim
n→∞

pn = lim
n→∞

qn

exists. We claim that p({xn,n : n ∈ N}) = u4 = q({xn,n : n ∈ N}).
Let {yk} be any subsequence of {xn,n : n ∈ N}. Then for any m ∈ N,

{yk : k ≥ m} is a subsequence of {xm,n : n ∈ N}. So

p(yk) ≥ lim
m→∞

p({yk : k ≥ m}) ≥ lim
m→∞

qm = u4.

For any ε > 0, there is m such that pm < u4 + ε/4. Let

A = {t : sup{xn,n : n ≥ m}(t) − inf{xn,n : n ≥ m}(t) ≥ u4 + ε/4}

B = {t : |xj,j(t)| ≥ ε/4 for some j ≤ m}.

Since
T∞
0

w = ∞ and p({xn,n : n ≥ m}) < u4 + ε/4, both A and B have
finite measure.
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If j, k ≤ m and t 6∈ A ∪ B, then

|xj,j(t) − xk,k(t)| ≤ ε/2 ≤ u4 + 3ε/4;

|sup{xn,n : n ≥ m}(t) − xj,j(t)|

≤ |sup{xn,n : n ≥ m}(t) − xm,m(t)| + |xm,m(t) − xj,j(t)| ≤ u4 + 3ε/4

and

|inf{xn,n : n ≥ m}(t) − xj,j(t)|

≤ |inf{xn,n : n ≥ m}(t) − xm,m(t)| + |xm,m(t) − xj,j(t)| ≤ u4 + 3ε/4.

This implies that for any t 6∈ A∪B, sup{xn,n}(t)− inf{xn,n}(t) ≤ u4 +3ε/4,
and

p({xn,n : n ∈ N}) ≤ u4 + ε.

But ε is arbitrary, so p({xn,n : n ∈ N}) ≤ u4.

Lemma 14. Let u4, δ and ν be positive real numbers. Suppose that {xn} is

a unit limit-constant sequence such that for any subsequence {xnk
} of {xn},

we have

u4 = p({xn : n ∈ N}) = p({xnk
: k ∈ N}),

(3)
m({t : sup{xnk

: k ∈ N}(t) − inf{xnk
: k ∈ N}(t) > 3ν}) ≥ v0 + 3δ.

Then there is a further subsequence {xnk
} of {xn} such that for almost all t ,

sup{xnk
}(t) − inf{xnk

}(t) ≤ u4.

P r o o f. We only prove the lemma when v0 = 0. Suppose the lemma is
not true. Then there is ν/6 > ε > 0 such that the set

G1 = {t : z′(t) − z′′(t) > u4 + ε}

has measure at least ε. Replace δ by ε/2 if necessary. We may assume
that δ ≤ ε. Since v0 = 0, there is 0 < δ1 < δ/6 such that if t > δ1, then
w(t) < w(δ1). Note that for any subsequence {xnk

}, p(xnk
) = u4. Applying

Lemma 8 and passing to subsequences, we may assume that for any n 6= m,

(4) m({t : |xn(t) − xm(t)| ≥ u4 + 2ε/3}) ≥ δ1.

Let

G2 = {t : z′(t) − z′′(t) > u4 + ε/2}.

Then δ1 < m(G2) < ∞, and there is l such that

G3 = {t ∈ G2 : z′(t) − z′l(t) > ε/12 and z′′l (t) − z′′(t) > ε/12}

has measure less than δ1/10. By Lemma 7, there is N3 such that for any
n > N3, the set

G4 = {t ∈ G2 \ G3 : either |z′l(t) − xn(t)| < ε/6 or |z′′l (t) − xn(t)| < ε/6}
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has measure at least m(G2) − δ1/5. Let

G5 = G4 ∩ G1 = {t ∈ G1 \ G3 : either |z′l(t) − xn(t)| < ε/6

or |z′′l (t) − xn(t)| < ε/6}.

Then m(G5) ≥ m(G1) − δ1/5 and for any t ∈ G5 (respectively, t ∈ G4),
there exists k1 ≤ l (respectively, k2 ≤ l) such that

|xn(t) − xk1
(t)| = max{|xn(t) − z′l(t)|, |xn(t) − z′′l (t)|} ≥ u4 + ε − ε/3,

or respectively,

|xn(t) − xk2
(t)| = min{|xn(t) − z′l(t)|, |xn(t) − z′′l (t)|} ≤ ε/6).

Since {xn} is a unit limit-constant sequence, for any λ > 0, there are n > N3

and a measure preserving transformation σ such that

(i)
T∞
0

φ(xn − xl)w ◦ σ =
T∞
0

φ((xn − xl)
∗)w ≥ 1 − λ;

(ii) if |(xn − xl)(t)| ≥ |(xn − xl)(s)|, then σ(t) ≥ σ(s).

C a s e 1: m(σ−1(0, δ1) ∩ G4) ≥ 2δ1/5. For any k ≤ l, let

Hk = {t : t ∈ σ−1(0, δ1) and |xn(t) − xk(t)| ≤ ε/6}.

Since
⋃l

k=1 Hk ⊇ G4 ∩ σ−1(0, δ1), there exists k ≤ l such that m(Hk) ≥
2δ1/(5l). By (4),

m({t ∈ σ−1(δ1,∞) : |xn(t) − xk(t)| ≥ u4 + 2ε/3}) ≥ 2δ1/(5l).

C a s e 2: m(σ−1(0, δ1)) ∩ G4) < 2δ1/5. Note that G5 ⊆ G4 ⊆ G2 and
m(G2) ≤ δ1/5 + m(G4). We have

m(σ−1(0, δ1) \ G2) ≥ δ1 − m(σ−1(0, δ1) ∩ G4) − δ1/5 ≥ 2δ1/5,

and

4δ1/5 ≤ m(G1) − δ1/5

≤ m(G5) = m(σ−1(δ1,∞) ∩ G5) + m(σ−1(0, δ1) ∩ G5)

≤ m(σ−1(δ1,∞) ∩ G5) + m(σ−1(0, δ1) ∩ G4)

≤ m(σ−1(δ1,∞) ∩ G5) + 2δ1/5.

This yields

(5) m(σ−1(δ1,∞) ∩ G5) ≥ 4δ1/5 − 2δ1/5 = 2δ1/5.

Let

H ′
k = {t ∈ σ−1(δ1,∞) : |xn(t) − xk(t)| ≥ u4 + 2ε/3}.

Let t be an element of G5 ∩ σ−1(δ1,∞). Then

z′(t) − z′′(t) > u4 + ε

with either |z′l(t)−xn(t)| < ε/6 or |z′′l (t)−xn(t)| < ε/6. So t ∈ H ′
k for some

k ≤ l. By (5), there is k ≤ l such that m(H ′
k) ≥ δ1/(5l). On the other hand,

if t ∈ σ−1(0, δ1) \ G2, then |xn(t) − xk(t)| ≤ z′(t) − z′′(t) ≤ u4 + ε/2.
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By Lemma 2 and Remark 1, for both cases, there is δ2 > 0 (which is
dependent only on δ1, l, u4, ε) such that

̺φ(xn − xk) ≥
\
φ(xn − xk)w ◦ σ + δ2.

This implies, for any λ > 0,

1 − λ ≤
\
φ

(

xn −
1

l

l
∑

j=1

xj

)

w ◦ σ ≤
1

l

l
∑

j=1

\
φ(xn − xj)w ◦ σ

≤
1

l

l
∑

j=1

̺φ(xn − xj) −
δ2

l
≤ 1 −

δ2

l
.

This is impossible if λ < δ2/l.

3. Proof of Theorem 1. Let Λφ,w be an order continuous Lorentz–
Orlicz space such that

Tv0

0
φ(u0)w < 2. We claim that if Λφ,w contains a unit

limit-constant sequence {xn}, then

(a) {xn} does not converge weakly;

(b) if Λφ,w ≡ Λφ,w(0, 1), then u0 = ∞.

Condition (a) implies that if
Tv0

0
φ(u0)w < 2, then Λφ,w has weakly nor-

mal structure. By Lemma 6 (cf. Remark 2), (b) yields that u0 > 0 if Λφ,w

does not have normal structure. Moreover, if Λφ,w ≡ Λφ,w(0, 1) does not
have normal structure, then either

Tv0

0
φ(u0)w ≥ 2 or u0 = ∞.

Let {xn} be a unit limit-constant sequence in Λφ,w. Suppose that {xn}
satisfies one of the following conditions:

(c) For any M > 0, there is n such that ̺φ(xn1{t:|xn(t)|>M}) > δ.

(d) For any ε > 0 there is n such that ̺φ(xn1{t:|xn(t)|<ε}) > δ.

By Proposition 11, {xn} does not contain any weakly covergent subse-
quence. By Lemma 6, (c) yields u0 = ∞.

Suppose (d) holds. Since Λφ,w is order continuous, for any δ > 0 there is
ε > 0 such that ̺φ(ε1(0,1)) < δ/2. Hence, if ̺φ(xn1{t:|xn(t)|<ε}) > δ, then we
must have Λφ,w ≡ Λφ,w(0,∞). Hence we may assume that neither (c) nor
(d) holds.

Since
Tv0

0
φ(u0)w < 2, by Proposition 12, there exists ν > 0 such that for

any subsequence {xnk
} of {xn},

(6) m({t : sup{xnk
: k ∈ N}(t) − inf{xnk

: k ∈ N}(t) > 3ν}) ≥ v0 + 3ν.

The same assumption yields either u0 < ∞ or v0 = 0. By Lemma 6 and
Corollary 9, both z′ and z′′ are finite almost everywhere. Applying Lem-
mas 13 and 14 and passing to further subsequences of {xn}, we may assume
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that for any subsequence {xnk
} of {xn},

u4 = p(xn) = p(xnk
),

and

(7) sup{xn}(t) − inf{xn}(t) ≤ u4.

If u4 = 0, then {xn} contains a constant subsequence. This contradicts the
fact that {xn} is a unit limit-constant sequence. So u4 must be positive,

(8) m({t : sup{xn}(t) − inf{xn}(t) > 15u4/16}) = ∞,

and Ω = (0,∞). By Corollary 10, there is v such that w is constant on
(v,∞). Let

v1 = inf{v : w is constant on (v,∞)}.

If v1 = 0, then v0 = ∞. This contradicts our assumption
Tv0

0
φ(u0)w < 2.

So v1 ≥ v0 and v1 > 0.

By (8) and Lemma 8, there exists a subsequence {xnk
} of {xn} such that

for any j < m,

m({t : |xnj
− xnm

| ≥ 7u4/8)}) ≥ v1.

Replacing {xk} by {xnk
} if necessary, we may assume that for any n > m,

(9) m({t : |xn(t) − xm(t)| ≥ 7u4/8)}) ≥ v1.

Claim. There are a subsequence {xnk
} of {xn} and a sequence of pair-

wise disjoint measurable sets {Bk} such that m(Bk) ≥ 2v1/3, and for any

m ∈ N, t ∈ Bm,

|xnm
(t) − xnk

(t)| ≥ 3u4/4 if k < m.

Suppose the claim were proved. By the proof of Example 3, {(xnk
−

xnk−1
)1Bk

} is equivalent to the natural basis of ℓ1. By Proposition 5, {xn}
does not converge weakly. Hence we only need to prove our claim.

P r o o f o f C l a i m. Let n1 = 2. Suppose that n1, . . . , nk are selected.
For any l > nk with ̺φ(xl − (1/k)

∑k
j=1 xnj

) > 1 − λ, let σ be the measure
preserving transformation such that

(i)
T∞
0

φ(xl − (1/k)
∑k

j=1 xnj
)w ◦ σ =

T∞
0

φ((xl − (1/k)
∑k

j=1 xnj
)∗)w ≥

1 − λ;

(ii) if |(xl − (1/k)
∑k

j=1 xnj
)(t)| ≥ |xl − (1/k)

∑k
j=1 xnj

)(s)|, then σ(t) ≥
σ(s).

If m({t ∈ σ−1((0, v1)) : |xl(t) − xnj
(t)| ≤ 3u4/4}) ≥ v1/4

j for some
j ≤ k, then by (9), we have

m({t ∈ σ−1(v1,∞) : |xl(t) − xnj
(t)| ≥ 7u4/8}) ≥ v1/4

j .
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By Lemma 2 and Remark 1, there is δ3 > 0 independent of σ such that

∞\
0

φ

(

xl −
1

k

k
∑

j=1

xnj

)

w ◦ σ ≤ 1 − δ3.

Since Λφ,w is order continuous and {xn} is a unit limit-constant sequence,
there is nk+1 > nk such that

∞\
0

φ

(

xl −
1

k

k
∑

j=1

xnj

)

w ◦ σ ≥ 1 −
δ3

2
.

The above proof shows that for any j ≤ k,

m({t ∈ σ−1(0, v1) : |xnk+1
(t) − xnj

(t)| ≤ 3u4/4}) ≤ v1/4
j .

Let

Bk+1 = {t ∈ σ−1(0, v1) : for any j ≤ k, |xl(t) − xnj
(t)| > 3u4/4}.

Then

m(Bk+1) ≥ v1 −
k

∑

j=1

v1

4j
≥

2v1

3
.

Let t be an element in Bk and i, j two natural numbers such that i < j < k.
Then

(1 + 1/16)u4 ≥ |xnk
(t) − xnj

(t)| > 3u4/4 by (7).

If (xnk
(t) − xnj

(t))(xnk
(t) − xni

(t)) < 0, then

|xni
(t) − xnj

(t)| = |xnk
(t) − xnj

(t)| + |xnk
(t) − xni

(t)|

≥ 2
3u4

4
=

3u4

2
.

This is impossible. So for almost all t ∈ Bk+1 and for i < j < k, sgn(xnk
(t)−

xnj
(t)) = sgn(xnk

(t) − xni
(t)), and

|xni
(t) − xnj

(t)| ≤ u4/4.

This implies t 6∈ Bj and {Bk} is pairwise disjoint. We proved our claim, and
hence also Theorem 1.

R e m a r k 3. (1) The results in Sections 2 and 3 are still true for Lorentz–
Orlicz sequence spaces ℓφ,w. Hence if ℓφ,w is an order continuous Lorentz–
Orlicz sequence space (i.e. φ satisfies the ∆2 condition for small values and
∑∞

i=1 w(i) = ∞), then ℓφ,w has normal structure if and only if u0 = 0.
(2) Let {xn} be a limit-constant sequence in an order continuous Lorentz–

Orlicz sequence space ℓφ,w. We claim that {xn} does not converge weakly.
By passing to a subsequence and then translating it, we may assume that
for any n > m,

‖|xn| ∧ |xm|‖∞ ≤ 1/n.
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If for any ε > 0 there is n ∈ N such that ‖xn‖∞ < ε, then by Proposition 11,
{xn} does not converge weakly. In this case, we are done. So we may as-
sume that there is N and ε > 0 such that ‖xn‖∞ ≥ ε for all n > N . By
Corollary 10, there is v ≥ 0 such that w is constant on (v,∞). By Proposi-
tion 5 (cf. Example 3), {xn} does not converge weakly. Hence every order
continuous Lorentz–Orlicz sequence space ℓφ,w has weakly normal structure.
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Révisé le 7.4.1997


