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Families of smooth curves on surface
singularities and wedges

by Gérard Gonzalez-Sprinberg and
Monique Lejeune-Jalabert (Grenoble)

Abstract. Following the study of the arc structure of singularities, initiated by
J. Nash, we give criteria for the existence of smooth curves on a surface singularity (S,O)
and of smooth branches of its generic hypersurface section. The main applications are the
following: the existence of a natural partition of the set of smooth curves on (S,O) into
families, a description of each of them by means of chains of infinitely near points and their
associated maximal cycle and the existence of smooth curves on any sandwiched surface
singularity. A wedge centered at a smooth curve on (S,O) is essentially a one-parameter
deformation of the parametrization of the curve. We show that there is no wedge centered
at smooth curves of two different families.

Introduction. In this paper we investigate the infinitesimal geometry
of the set of smooth curves on a surface singularity. Our motivation comes
from a preprint (1) by J. Nash in which he initiates the study of the set of
germs of parametrized curves, arcs in his terminology, on an algebraic or
analytic variety over C. The case on which we focus here may be regarded
as the simplest one to be analyzed from this viewpoint.

It has long been recognized that, the rational singularity E8 being facto-
rial, it contains no smooth curves at all. In fact, a smooth curve is encoun-
tered only on those rational surface singularities whose fundamental cycle
has a reduced component.

In Section 1, we get a criterion for the existence of smooth curves gener-
ically contained in the regular locus of a surface singularity (S,O) of which
the above condition is a specialization. This criterion involves the irreducible
components of the exceptional fiber of the minimal desingularization of
(S,O) over O and a suitable valuative condition, and leads to a decomposi-

1991 Mathematics Subject Classification: 14B05, 14E15, 32B30, 32C45.
Key words and phrases: surface singularities, smooth curves, maximal cycle, wedges.
(1) We became aware of its publication in the special volume “A celebration of John
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tion of the set of all such curves into a finite number of mutually disjoint fam-
ilies in one-to-one correspondence with the components just distinguished.

The jets of the parametrizations of the curves in each family coincide up
to some order l. An equivalent geometric formulation is that these curves
go through an infinitely near point Ol of O lying on a surface Sl obtained
from S by a chain of l point blowing-ups. In addition, the strict transform of
almost all curves in the family is a smooth branch of a general hypersurface
section of Sl through Ol. This is Theorem 1.10 and Remark 1.11.

The application of this result given in Section 2 is in the context of a
question concerning the arc structure of surface singularities stated in the
introduction of [N]. This question is also reproduced in [G/L2], Problem 3.2,
and the connection is explained in Section 3 and [L-J]. Roughly speaking,
it means that a smooth curve of one family cannot degenerate to a smooth
curve of another one; indeed, a wedge on (S,O) centered at a smooth curve
Γ (see Definitions 2.1) may be interpreted as a one-parameter deformation
of the coefficients of the parametrization of Γ .

Notation. From now on, (S,O) will denote a surface singularity, i.e. the
spectrum of an equicharacteristic complete local ring A of Krull dimension
two whose closed point O is singular; furthermore, it will be tacitly assumed
that A is reduced and equidimensional, that its residue field k is algebraically
closed and that a field of representatives has been fixed. SingS and RegS
will denote respectively the singular and the regular locus of (S,O); and
L will be the set of smooth curves Γ on (S,O) whose generic point lies
on RegS.

1. Families of smooth curves. Any proper and birational morphism
π : X → (S,O) inducing an isomorphism from π−1(RegS) to RegS gives
rise to a map of sets ΦX : L → π−1(O) by sending Γ ∈ L to the exceptional
point of its strict transform ΓX on X. The exceptional fiber π−1(O) has a
natural scheme structure given by the inverse image ideal sheaf mOX of the
maximal ideal m of OS,O. The codimension one component of its underlying
cycle, denoted by ZX in the sequel, is the so-called maximal cycle of π; its
support |ZX | is not empty if and only if π is not a finite morphism.

When X is nonsingular, the image of the “fiber map” ΦX is described
through the schematic exceptional fiber as follows.

1.1. Proposition. Let π : X → (S,O) be a desingularization and let
Q ∈ π−1(O).

(i) If Q is isolated in π−1(O), then Q ∈ ΦX(L) if and only if there exists
a regular system of parameters (u, v) of OX,Q and an integer m ≥ 1 such
that mOX,Q = (u, vm).
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(ii) If Q ∈ |ZX |, then Q ∈ ΦX(L) if and only if there exists a regular
system of parameters (u, v) of OX,Q such that mOX,Q = (u).

P r o o f. Let x be the greatest common divisor of the elements in mOX,Q
and write mOX,Q = xI for some ideal I inOX,Q. If Γ ∈ L andQ = ΦX(Γ ), a
formal parametrization of Γ in (S,O) factors through a local homomorphism
OX,Q → k[[t]] such that ordt mOX,Q = 1, where ordt denotes the (t)-adic
valuation in k[[t]].

In case (i), x is a unit and I is primary for the maximal ideal M of OX,Q.
So we have ordt I = 1 and, a fortiori , ordQ I = max{n | I ⊂Mn} = 1. Any
u ∈ I \M2 is part of a regular system of parameters (u, v) of OX,Q and
I = (u, vm) with m = ordv IOX,Q/(u)≥1.

In case (ii), x is not a unit. So we have

1 ≤ ordt x ≤ ordt x+ ordt I = 1.

Therefore ordt x = ordQ x = 1 and ordt I = ordQ I = 0; the function x is
part of a regular system of parameters of OX,Q and we have mOX,Q = (x).

Conversely, if (i) or (ii) holds, the projection on (S,O) of any formal
curve Γ̃ on (X,Q) whose parametrization sends u to t is a smooth curve on
(S,O). By imposing the generic point of Γ̃ to lie in π−1(RegS), we get a
curve in L.

This proposition has two immediate consequences, namely a criterion
for L to be nonempty and a natural expression of L as a disjoint union of
finitely many families, joined together in the following statement.

1.2. Corollary. Let π be the minimal desingularization of (S,O). For
any irreducible component E of π−1(O), let ordE denote the divisorial val-
uation of the function field of (S,O) given by the filtration of OX,E by the
powers of its maximal ideal. Then

(i) The components E such that LE := {Γ ∈ L | ΦX(L) ∈ E} 6= ∅ are
those for which ordE mOX = 1.

(ii) The set L is the disjoint union of the LE.

1.3. This motivates the introduction of some terminology which we will
use from now on in this paper.

By a family (2) of smooth curves on (S,O), we will mean any of the
nonempty subsets LE introduced in Corollary 1.2. If E is a point, the family
LE will be said to be small . Each family lies on one sheet (i.e. analytically

(2) This definition does not coincide with the one given by Nash in [N]. In fact, our
Theorem 2.3 below is intended to be an intermediate step towards proving that a family
of arcs as defined by Nash contains at most one of our families of smooth curves.
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irreducible component) of (S,O). Note that LE is small if and only if the
normalization of the sheet on which it lies is nonsingular.

1.4. It may happen that the general hypersurface section of (S,O) has
smooth branches (i.e. analytically irreducible components). A family con-
taining such a branch will be said to be a first order family; before going
further in the description of these families, we need to specify what we mean
by a general hypersurface section. This will be done in terms of the normal-
ized blowing-up of (S,O) with center O, that is, the composition σ1 = σ1◦n1

of the blowing-up σ1 : S1 → (S,O) of O and the normalization n1 : S1 → S1.
For simplicity, Z1 (resp. Z1) will denote the maximal cycle of σ1 (resp. σ1)
instead of ZS1 (resp. ZS̄1

); and CS,O (resp. TS,O) will denote the tangent
cone (resp. the Zariski tangent space) of S at O, as usual.

Recall that a hypersurface section of (S,O) is a “curve”, i.e. a Cartier
divisor on (S,O) given by a local equation h = 0 for some h ∈ m which is
not a zero divisor in OS,O. Here we will say that it is general if h 6∈ m2 and if
the hyperplane H in ProjTS,O given by h mod m2 = 0 intersects the curve
Proj |CS,O| = Proj |Z1| transversally at regular points of |Z1| onto which
neither singular points of S1 nor branch points of |Z1| → |Z1| project and
other than the exceptional points of the strict transform of SingS (if O is
not a isolated singular point) ([G-S]).

In the sequel, the lines on CS,O corresponding to the above “prohibited”
points of |Z1| will be said to be special.

In view of Bertini’s theorem, the set of hyperplanes in PT := ProjTS,O
with the properties just listed forms a Zariski open dense subset of the linear
system OPT (1).

General hypersurface sections of (S,O) need not be analytically isomor-
phic. But they have in common the following “equisingularity” properties
which will be enough for our purpose: any of them is generically reduced,
is reduced if and only if OS,O is Cohen Macaulay and has −(Z1 · |Z1|)
branches, each irreducible component F of |Z1| contributing to −(Z1·F ) > 0
branches whose strict transforms on S1 meet F transversally and whose
multiplicity at O is the multiplicity mF̄ of F in the maximal cycle Z1.
A component F such that mF̄ = 1 will be said to be a reduced component
of Z1.

First order families of smooth curves are identified from their images by
the fiber map ΦS̄1

as follows.

1.5. Proposition. Let LE be a family of smooth curves. If LE is a
first order family , then there exists a reduced component F 1 of Z1 such
that ΦS̄1

(LE) = F 1 ∩RegS1 ∩Reg |Z1|. If not , then there exists a singular
point O1 of S1 such that ΦS̄1

(LE) = O1.
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P r o o f. Let π1 : X1 → S1 be the minimal desingularization of S1. The
morphism τ1 : X1 → X factoring σ1 ◦ π1 is the composition of the sequence
of point blowing-ups with minimal length such that mOX1 is invertible. It
follows from Proposition 1.1 that ΦX1(LE) is contained in a single reduced
component E1 of ZX1 , namely the strict transform of E if E is a curve, and
that of the exceptional curve created by blowing up E if E is a point. Indeed,
if dimE = 1, mOX is invertible at any Q ∈ ΦX(LE) and if dimE = 0 and
mOX,E = (u, vm), it is easily checked thatm point blowing-ups are necessary
to make the total transform of mOX invertible over a neighborhood of E
and that E1 is the unique reduced component of ZX1 contracted to E.

Now, in view of 1.4, LE is a first order family if and only if the image
of E1 on S1 is a curve. This is because the exceptional points of the strict
transform on S1 of a general hypersurface section are regular points of S1

and that E1 being a reduced component of ZX1 , either π1(E1) is a reduced
component F 1 of ZS̄1

, or the minimal desingularization π1 of S1 contracts
E1 to a singular point O1 of S1.

In the first case, ΦX1(LE) = E1 ∩ Reg |ZX1 | by 1.1(ii), so π1 is an iso-
morphism on a neighborhood of ΦX1(LE) and ΦS̄1

(LE) = π1(ΦX1(LE)) =
F 1 ∩ RegS1 ∩ Reg |Z1|.

A small family of smooth curves may be a first order family as well. A
first corollary of Proposition 1.5 is that the families enjoying both properties
are in one-to-one correspondence with the nonsingular sheets of S at O.

1.6. Corollary. A small family of smooth curves is a first order family
if and only if O is a nonsingular point of the sheet of S on which it lies.
Conversely , any nonsingular sheet of S at O carries such a family.

P r o o f. While proving Proposition 1.5, we have shown that the family
LE is a first order family if and only if the image on S1 of the reduced
component E1 of ZX1 containing ΦX1(LE) is a curve F 1.

Now by the projection formula, (ZX1 ·E1) = (Z1 ·F 1) 6= 0 if this happens
(since, up to sign, it coincides with the number of branches of the general
hypersurface section whose strict transforms meet F 1) and is 0 if π1(E1) is
a point.

For a small family such that mOX,E = (u, vm), the intersection number
(ZX1 · E1) does not vanish if and only if m = 1. Indeed, the intersection
matrix of the components of |ZX1 | which project to E is read off the weighted
dual graph

E1•
−2

E2•
−2

Em−1•
−2

Em•
−2

� � � � � � � � � � � � �

Ei being the strict transform of the exceptional curve created by the ith
blowing-up and one has ZX1 ≡ E1 + 2E2 + . . . + mEm up to curves which
do not intersect E1.
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So, if LE is both a first order family and small and if it lies on the sheet
S of S, OX,E is a free module of rank 1 over OS,O. Therefore OX,E and
OS,O coincide and S is regular at O.

The converse is clear.

Another corollary of Proposition 1.5 is a characterization of the first
order families in terms of Z1. More precisely, we have:

1.7. Corollary. The map ΦS̄1
induces a one-to-one correspondence

between first order families of smooth curves and reduced components of Z1.
A reduced component of Z1 comes from a small family if and only if it is a
nonsingular rational curve lying on RegS1 with self-intersection −1.

P r o o f. The second part of the assertion follows from the fact that, if
LE is small, then the morphism τ1 : X1 → X coincides with the blowing-up
of E over a neighborhood of E, so the restriction of π1 to a neighborhood
of F 1 is an isomorphism.

1.8. Therefore, depending on whether the family LE is a first order
family or not, the set TE of tangent lines to Γ ∈ LE consists of all but
possibly finitely many special lines through O on an irreducible component
of CS,O or of a single special line of this tangent cone.

Note that in the first case, TE may contain special lines of CS,O. In the
last case, let O1 ∈ S1 be the common tangent direction to every Γ ∈ LE and
let E1 be the irreducible exceptional curve on the minimal desingularization
X1 of S1 (or S1) containing ΦX1(LE); according to 1.3, E1 gives rise to a
family L1 of smooth curves on (S1, O1) which contains the strict transform
of every Γ ∈ LE . If L1 is not a first order family, the strict transform E2

of E1 on the minimal desingularization X2 of the surface S2 obtained by
blowing up O1 in S1 is contracted to a point O2 ∈ S2 which is the common
tangent direction to every Γ ∈ L1 and corresponds to a family L2 of smooth
curves on (S2, O2) which contains the strict transform on S2 of every Γ ∈ L1,
hence of every Γ ∈ LE . And so on... so long as a first order family Li does
not show up. Note that none of the Li, i ≥ 1, is small. This leads to the
following definition and “dévissage” of LE .

1.9. Definition. A chain of infinitely near points of O on (S,O) (i.e. a
sequence (finite or infinite) of points {O0 = O,O1, . . . , Oi, . . .} such that for
each i > 0, Oi is mapped to Oi−1 by the blowing-up σi : Si → Si−1 of Oi−1

and S0 = S) will be said to be special if for each i > 0, Oi is the direction
of a special line on CSi−1,Oi−1 .

1.10. Theorem. Let LE be a family of smooth curves. There exists a
finite special chain {Oi}0≤i≤l of infinitely near points of O on (S,O) and
a reduced component F l+1 of the maximal cycle Zl+1 of σ1 ◦ . . . ◦ σl+1,
σl+1 : Sl+1 → Sl being the normalized blowing-up of Ol, such that :
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(i) ΦSi
(LE) = Oi, 1 ≤ i ≤ l,

(ii) ΦS̄l+1
(LE) = F l+1 ∩ RegSl+1 ∩ Reg |Zl+1|.

In addition, if LE is not small , the birational map π−1 ◦ σ1 ◦ . . . ◦ σl+1

identifies neighborhoods of ΦS̄l+1
(LE) and ΦX(LE).

P r o o f. Pick a curve Γ in LE and let {Oi}i∈N be the chain of infinitely
near points of O lying on Γ . Since Γ is smooth and generically contained
in RegS, there exists an integer N such that ON ∈ RegSN ([L], Propo-
sition 1.28, [L/T], Chap. II, Theorem 2.13). So CSN ,ON

carries no special
lines at all and the infinite chain {Oi}i∈N may not be special.

Therefore the smallest i such that the family Li of 1.8 is a first order
family (or equivalently the strict transform Ei+1 of E1 on the minimal desin-
gularization Xi+1 of Si+1 is not contracted to a point on Si+1) is an integer
l ≥ 0. As a consequence of Proposition 1.5, the chain {Oi}0≤i≤l is special
and (i) holds.

Let us now prove (ii). The minimal desingularizations πi : Xi → Si,
1 ≤ i ≤ l, and πl+1 : Xl+1 → Sl+1 are the vertical arrows of a sequence of
commutative diagrams:

Xl+1 Xl
. . . X2 X1 X

Sl+1 Sl . . . S2 S1 S

τl+1 //

π̄l+1

��
πl

��

// // τ2 //

π2

��

τ1 //

π1

��
π

��
σ̄l+1

// // //
σ2

//
σ1

//

where τi+1 is the sequence of point blowing-ups with minimal length mak-
ing the inverse image ideal sheaf miOXi

of the maximal ideal mi of OSi,Oi

invertible, 0 ≤ i ≤ l.
Applying 1.1(ii) to πi, we see that miOXi is invertible at anyQ ∈ ΦXi(Li)

for 1 ≤ i ≤ l. Since ΦXi(LE) ⊂ ΦXi(Li), the strict transform El+1 of E1 is
the only irreducible component of the support of the maximal cycle ZXl+1

of π ◦ τ1 ◦ . . . ◦ τl+1 containing ΦXl+1(LE) and moreover τl+1 ◦ . . . ◦ τ2 is
an isomorphism on a neighborhood of ΦXl+1(LE). Now E1 being a reduced
component of the maximal cycle ZX1 of π ◦τ1, El+1 is a reduced component
of ZXl+1 . In addition, applying 1.1(ii) to π ◦ τ1 ◦ . . . ◦ τl+1, we find that
ΦXl+1(LE) = El+1 ∩ Reg |Zl+1|.

But the image F l+1 of El+1 on Sl+1 being a curve, this equality forces
πl+1 to be an isomorphism on a neighborhood of ΦXl+1(LE). Consequently,
F l+1 is a reduced component of the maximal cycle Zl+1 of σ1 ◦ . . . ◦ σl+1

and (ii) holds.
To complete the proof of the theorem, it is enough to observe that τ1 is

an isomorphism at any Q ∈ ΦX1(LE) if LE is not small.
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1.11. R e m a r k. Since the first order family Ll on (Sl, Ol) contains
the strict transform of every Γ ∈ LE , the description of ΦS̄l+1

(LE) inside
F l+1 given above combined with that of ΦS̄l+1

(Ll) given in Proposition 1.5
implies that F l+1 is also a reduced component of the maximal cycle of σl+1.
Moreover, it shows that the strict transform on Sl of almost all Γ ∈ LE is
a smooth branch of a general hypersurface section of (Sl, Ol). We will say
that the family LE has order l + 1.

In view of the universal property of normalization, any chain C =
{Oi}0≤i≤l of infinitely near points of O on (S,O) yields a commutative
diagram:

Sl . . . S2 S1 S

Sl+1

Sl . . . S2 S1 S
��

// // //

��

//

�� ��

qq
qq
q 88

σ̄l+1

MMMMM && // //
σ2

//
σ1

//

where σi is the blowing-up of Oi−1, 1 ≤ i ≤ l, σl+1 is the normalized
blowing-up of Ol and the vertical arrows are normalizations. More precisely,
mi being the maximal ideal of OSi,Oi , the map from Si+1 to Si is the
normalized blowing-up of miOS̄i

.
We have the following characterization of the families of order l+1 going

through a given special chain with l+1 points in terms of the maximal cycle
Zσ1◦...◦σ̄l+1 , parallel to Corollary 1.7.

1.12. Corollary. Given a special chain C = {Oi}0≤i≤l of infinitely
near points of O on (S,O), the fiber map ΦS̄l+1

induces a one-to-one cor-
respondence between families of smooth curves of order l + 1 going through
the points of C and reduced components of the maximal cycle Zl+1 of σ1 ◦
. . . ◦ σl+1 contracted to a singular point Oi of Si above Oi, 1 ≤ i ≤ l. Such
a component comes from a small family if and only if F l+1 is contracted to
a regular point O of S.

P r o o f. Let Xi (resp. X0 = X) be the minimal desingularization of Si,
1 ≤ i ≤ l + 1 (resp. S0 := S).

The reduced component F l+1 of Zl+1 associated with the family LE in
Theorem 1.10 has the required property since the Zariski closure of its image
on Xi (resp. X) is a curve Ei contracted to Oi for 1 ≤ i ≤ l (resp. E).

Conversely, consider a reduced component F l+1 of Zl+1 contracted to a
point Ol ∈ Sl above Ol and let Ei be the Zariski closure of its image on
Xi, 0 ≤ i ≤ l+ 1. Now pick a curve Γ0 ∈ L whose strict transform on Xl+1

intersects El+1 and no other exceptional curve of Xl+1 over O. Such a curve
exists by Proposition 1.1(ii). For any i, 0 ≤ i ≤ l, the strict transform Γi of
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Γ0 on Si is smooth, generically contained in RegSi and it goes through Oi.
The exceptional point of its strict transform on Xi, ΦXi

(Γi), lies on Ei and
projects to the image Oi of Ol on Si.

Now observe that for any such i, if Oi ∈ SingSi and Ei is a point, then
Ei+1 is also a point. Indeed, if so, then Ei is not an isolated point of the
exceptional fiber of Xi → Si over Oi and by Proposition 1.1(ii) applied to
(Si, Oi) and Ei = ΦXi(Γi), the morphism τi+1 : Xi+1 → Xi does not factor
through the blowing-up of Ei; hence Ei+1 may not be a curve.

Therefore, El+1 being a curve, if we assume that Oi ∈ SingSi, 1 ≤ i ≤ l,
then E1 is a curve and E0 is a curve or a point depending on whether
O ∈ SingS or not. In any case, E0 is an irreducible component of the
exceptional fiber of X → S over O, which gives rise to a family LE0 of
smooth curves containing Γ0.

Now if k + 1 denotes its order, we may not have k + 1 < l + 1 since
Theorem 1.10(ii) would imply that Ok+1 ∈ RegSk+1, but by assumption
this is a singular point. We may not have l + 1 < k + 1 either since by the
direct analysis just settled, we would have Ol+1 ∈ SingSl+1 but this is a
regular point by construction. Therefore k = l and the given chain C is the
one associated with LE0 . Finally, since no point of ΦS̄l+1

(LE0) lies on two
distinct irreducible components of |Zl+1| and ΦS̄l+1

(Γ0) ∈ F l+1, the reduced
component of |Zl+1| attached to LE0 is F l+1.

We close this section by one remark and some examples.

1.13. Any chain (finite or infinite) of infinitely near points of O on (S,O)
may also be regarded as a chain of infinitely near points of O on a formal
nonsingular space (Z,O) containing (S,O). The points in the chain lie on a
smooth formal curve on (Z,O) if and only if any Q ∈ C distinct from O is
proximate to exactly one point in C, its antecedent. Recall that according
to Enriques’ terminology, Q is said to be proximate to P if Q is infinitely
near P and lies on the strict transform of the exceptional divisor created by
blowing up P . We will say that such a chain is regular.

If (S,O) has an isolated singularity at O, any chain of infinitely near
points of O on (S,O) which is both special and regular is finite, once again
by [L/T] or [L], hence there exist only finitely many such chains.

1.14. The families of smooth curves on a normal surface singularity are
in one-to-one correspondence with the reduced components of the maximal
cycle of its minimal desingularization π by 1.2. For a rational surface singu-
larity, the maximal cycle of π and the fundamental cycle of its weighted dual
graph Γ coincide [A]. Among rational surface singularities, we have three
increasingly restrictive conditions:

sandwiched 6⊇ minimal 6⊇ cyclic quotients
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depending only on Γ ; see [S]. Minimal ones are those having a reduced
fundamental cycle.

The fundamental cycle of a sandwiched singularity has at least one re-
duced component. Indeed, there exists a nonsingular graph Γ ∗ containing
Γ such that the curves represented by vertices in Γ ∗ \ Γ are exactly those
with self-intersection −1; Γ ∗ is the weighted dual graph of a configuration
of curves which blow down to a nonsingular point O. Blowing up O creates
a component represented by a vertex in Γ and having multiplicity one in the
fundamental cycle Z∗ of Γ ∗. The minimality property of the fundamental
cycle Z of Γ implies that the cycle obtained from Z∗ by deleting the (−1)
curves is greater than or equal to Z.

1.15. Corollary. Any sandwiched singularity contains a smooth curve.

The rational double points Dn, En are not sandwiched. By inspecting
their fundamental cycles, one finds respectively 3, 2, 1 families of smooth
curves on Dn, E6, E7.

Among nonrational singularities, the complete intersection defined by
d−2 general elements of a finitely supported ideal in C[[X1, . . . , Xd]] provides
an example of a surface singularity whose general hypersurface section is a
union of smooth branches.

A small family of smooth curves appears on the germ at the origin of the
Whitney umbrella x2 − y2z = 0 since its normalization is given by x = uv,
y = v, z = v2.

2. Wedges centered at a smooth curve

2.1. Following freely a classical terminology (compare for example with
[W], I.5) we will say that a local continuous morphism ϕ from OS,O to a
formal power series ring R in two variables with coefficients in the residue
field k of S at O is a wedge on (S,O) if the kernel of ϕ is a minimal prime ideal
of OS,O. This is also equivalent to saying that the image of the associated
morphism (B2, 0) := specR → (S,O) is Zariski dense in some sheet (or
analytically irreducible component) of (S,O).

We will say that the wedge ϕ is centered at a parametrized curve on
(S,O) given by h : OS,O → k[[t]] if h factors through ϕ, that is, if it can be
lifted to B2.

This section is aimed at proving that a morphism (B2, 0)→ (S,O) given
by a wedge centered at a curve in L factors through the minimal desin-
gularization of (S,O). This will be an easy consequence of the analysis in
Section 1 and of the following observation.

2.2. Proposition. Let p : (B2, 0)→ (S,O) be given by a wedge centered
at a curve Γ in L.
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(i) If p−1(O) is a curve, then p factors through the blowing-up of O.
(ii) If p−1(O) = 0, then the normalization of the sheet of (S,O) on

which Γ lies is nonsingular.

P r o o f. The argument already used to prove Proposition 1.1(ii) remains
valid if ϕ−1(O) is a curve. So, m denoting the maximal ideal of OS,O, mR
is generated by one of the elements in a regular system of parameters of R,
hence (i).

Assume now that p−1(O) = 0 and let S denote the normalization of S.
The curve Γ being smooth and generically contained in RegS, the same
holds for its strict transform Γ on S. Now by the universal property of
normalization, the wedge defining p factors through the local ring B of S at
the exceptional point Q of Γ , giving rise to an injective wedge ϕ : B → R
on (S,Q) which is centered at Γ . The local ring OS,O being complete by
hypothesis, B is a complete local domain, hence R is a finite B-module. So
the morphism p : (B2, 0)→ (S,Q) given by ϕ is finite and surjective and p
induces an isomorphism from a smooth curve ∆ on (B2, 0) to Γ .

The ring R being factorial, ∆ is a principal divisor on (B2, 0). Here as
in the algebraic context, the rational equivalence of cycles pushes forward;
the induced morphism p|∆ : ∆→ Γ being unramified, Γ is also a principal
divisor. In fact, K being the fraction field of B, R⊗BK is a finite-dimensional
vector space over K and if ∆ = div s, one can check that Γ = divN(s) where
N(s) is the determinant of the K-linear endomorphism of R⊗BK given by
multiplication by s ⊗ 1. As a consequence, the multiplicity of Γ , which is
one by assumption, is not smaller than the multiplicity of B. Therefore B
is regular. In other words, the normalization of the sheet of (S,O) on which
Γ lies is nonsingular.

Observe that in case (ii), the family of smooth curves containing Γ is
small. We are now ready to prove:

2.3. Theorem. If a morphism p : (B2, 0) → (S,O) is given by a wedge
centered at a smooth curve Γ whose generic point lies in RegS, then p
factors through the minimal desingularization X of (S,O).

P r o o f. Let LE be the family of smooth curves on (S,O) which con-
tains Γ . If LE is small, the claim follows immediately from the universal
property of normalization, since the normalization of the sheet containing
LE is nonsingular. If not, let l + 1 ≥ 1 be the order of the family LE ; if
Q := ΦX(Γ ), then Theorem 1.10 asserts that the morphism OS,O → OX,Q
coincides (up to OS,O-isomorphism) with the composed morphism

OS,O → OS1,O1 → . . .→ OSl,Ol
→ OS̄l+1,P

where {Oi}0≤i≤l is the finite special chain of infinitely near points of O
provided by LE , σi : Si → Si−1, 1 ≤ i ≤ l, is the blowing-up of Oi, σl+1 is
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the normalized blowing-up of Ol and P := Φσ1◦...◦σ̄l+1(Γ ). Here the claim
follows from Proposition 2.2 and once again from the universal property of
normalization, since LE is not small and for any i, 1 ≤ i ≤ l, the family Li
of smooth curves on (Si, Oi) containing the strict transform of Γ on Si is
not small either by 1.8.
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