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A set on which the  Lojasiewicz exponent
at infinity is attained

by Jacek Cha̧dzyński and Tadeusz Krasiński ( Lódź)

Abstract. We show that for a polynomial mapping F = (f1, . . . , fm) : Cn → Cm the
 Lojasiewicz exponent L∞(F ) of F is attained on the set {z ∈ Cn : f1(z) · . . . · fm(z) = 0}.

1. Introduction. The purpose of this paper is to prove that the  Lo-
jasiewicz exponent at infinity of a polynomial mapping F : Cn → Cm is
attained on a proper algebraic subset of Cn defined by the components of
F (Thm. 1).

As a corollary we obtain a result of Z. Jelonek on testing sets for proper-
ness of polynomial mappings (Cor. 3) and a formula for the  Lojasiewicz
exponent at infinity of F in the case n = 2, m ≥ 2, in terms of parametriza-
tions of branches (at infinity) of zeroes of the components of F (Thm. 2).
This result is a generalization of the authors’ result for n = m = 2 ([CK],
Main Theorem).

Before the main considerations we show some basic properties of the
 Lojasiewicz exponent at infinity for regular mappings, i.e. for polynomial
mappings restricted to algebraic subsets of Cn. We prove that the exponent
is a rational number, that it is attained on a meromorphic curve (Prop. 1),
and we give a condition equivalent to the properness of regular mappings
(Cor. 2). These properties are analogous to ones, known in folklore, for
polynomial mappings from Cn into Cm. We do not pretend to the originality
of proof methods; we only want to fill gaps in the literature.

The results obtained by Z. Jelonek in [J] played an inspiring role in
undertaking this research. On the other hand, the idea of the proof of the
main theorem was taken from A. P loski ([P2], App.).
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192 J. Cha̧dzyński and T. Krasiński

2. The  Lojasiewicz exponent. Let F : Cn → Cm, n ≥ 2, be a poly-
nomial mapping and let S ⊂ Cn be an unbounded algebraic set. Put

N(F |S) := {ν ∈ R : ∃A > 0, ∃B > 0, ∀z ∈ S (|z| > B ⇒ A|z|ν ≤ |F (z)|)},

where | · | is the polycylindric norm. If S = Cn we define N(F ) := N(F |Cn).
By the  Lojasiewicz exponent at infinity of F |S we mean L∞(F |S) :=

supN(F |S). Analogously L∞(F ) := supN(F ).
Before we pass to properties of the  Lojasiewicz exponent we quote the

known curve selection lemma at infinity (cf. [NZ], Lemma 2). We begin with
a definition. A curve ϕ : (R,+∞)→ Rk is called meromorphic at +∞ if ϕ
is the sum of a Laurent series of the form

ϕ(t) = αpt
p + αp−1t

p−1 + . . . , αi ∈ Rk.

By ‖ · ‖ we denote the euclidian norm in Rk.

Lemma 1 (Curve Selection Lemma). If X ⊂ Rk is an unbounded semi-
algebraic set , then there exists a curve ϕ : (R,+∞)→ Rk, meromorphic at
+∞, such that ϕ(t) ∈ X for t ∈ (R,+∞) and ‖ϕ(t)‖ → ∞ as t→ +∞.

Notice that the  Lojasiewicz exponent at infinity of a regular mapping
F |S does not depend on the norm in Cn. So, in the rest of this section, we
shall use the euclidian norm ‖ · ‖ in the definition of N(F |S).

Let us introduce one more definition. A curve ϕ = (ϕ1, . . . , ϕm) : {t ∈
C : |t| > R} → Cm is called meromorphic at ∞ if ϕi are meromorphic at∞.

Let F : Cn → Cm, n ≥ 2, be a polynomial mapping and let S ⊂ Cn be
an unbounded algebraic set.

Proposition 1. If #(F |S)−1(0) < +∞, then L∞(F |S) ∈ N(F |S) ∩Q.
Moreover , there exists a curve ϕ : {t ∈ C : |t| > R} → Cm, meromorphic at
∞, such that ϕ(t) ∈ S, ‖ϕ(t)‖ → +∞ for t→∞ and

(1) ‖F ◦ ϕ(t)‖ ∼ ‖ϕ(t)‖L∞(F |S) as t→∞.

P r o o f. Notice first that the set

{(z, w) ∈ S × S : ‖F (z)‖2 ≤ ‖F (w)‖2 ∨ ‖z‖2 6= ‖w‖2}

is semi-algebraic in Cn×Cn ∼= R4n. Then by the Tarski–Seidenberg theorem
(cf. [BR], Rem. 3.8) the set

X := {z ∈ S : ∀w ∈ S (‖F (z)‖2 ≤ ‖F (w)‖2 ∨ ‖z‖2 6= ‖w‖2)}
= {z ∈ S : ‖F (z)‖ = min

‖w‖=‖z‖
‖F (w)‖}

is also semi-algebraic and obviously unbounded in Cn∼=R2n. So, by Lemma 1
there exists a curve ϕ̃ : (R,+∞) → X, meromorphic at +∞, such that
‖ϕ̃(t)‖ → +∞ as t→ +∞. Then there exists a positive integer p such that
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ϕ̃ is the sum of a Laurent series

(2) ϕ̃(t) = αpt
p + αp−1t

p−1 + . . . , αi ∈ Cn, αp 6= 0.

Since #(F |S)−1(0) < ∞, there exists an integer q such that F ◦ ϕ̃ is the
sum of a Laurent series

(3) F ◦ ϕ̃(t) = βqt
q + βq−1t

q−1 + . . . , βi ∈ Cm, βq 6= 0.

From (2) and (3) we have

(4) ‖F ◦ ϕ̃(t)‖ ∼ ‖ϕ̃(t)‖λ as t→ +∞,

where λ := q/p. Let Γ̃ := {z∈Cn : z = ϕ̃(t), t ∈ (R,+∞)}. Then from (4),

(5) ‖F (z)‖ ∼ ‖z‖λ as ‖z‖ → +∞, z ∈ Γ̃ .

Now, we shall show that L∞(F |S) = λ. From (5) we have L∞(F |S) ≤ λ.
Since Γ̃ ⊂ X is unbounded, there exist positive constants A, B such that
‖F (z)‖ ≥ A‖z‖λ for every z ∈ S and ‖z‖ > B. Then λ ∈ N(F |S) and in
consequence L∞(F |S) ≥ λ. Summing up, L∞(F |S) = λ ∈ N(F |S) ∩Q.

Now, we shall prove the second part of the assertion. Let ϕ be an exten-
sion of ϕ̃ to the complex domain, that is,

(6) ϕ(t) = αpt
p + αp−1t

p−1 + . . . ,

where t ∈ C and |t| > R. Obviously, series (6) is convergent and, as above,
αi ∈ Cn, αp 6= 0. Hence ϕ is a curve, meromorphic at ∞, and clearly
‖ϕ(t)‖ → +∞ as t → ∞. Moreover, F ◦ ϕ is an extension of F ◦ ϕ̃ to the
complex domain and

(7) F ◦ ϕ(t) = βqt
q + βq−1t

q−1 + . . . ,

where t ∈ C and |t| > R. Obviously, the series (7) is convergent and, as
above, βi ∈ Cm, βq 6= 0. From (6), (7) and the definition of λ we get (1).
Since S is an algebraic subset of Cn and ϕ̃(t) ∈ S for t ∈ (R,+∞), also
ϕ(t) ∈ S for t ∈ C, |t| > R.

This ends the proof of the proposition.

Let F : Cn → Cm, n ≥ 2, be a polynomial mapping and S ⊂ Cn an
algebraic unbounded set.

Directly from Proposition 1 we get

Corollary 1. L∞(F |S) > −∞ if and only if #(F |S)−1(0) < +∞.

From Proposition 1 we also easily get

Corollary 2. The mapping F |S is proper if and only if L∞(F |S) > 0.

In fact, if L∞(F |S) > 0, then obviously F |S is a proper mapping. If,
in turn, L∞(F |S) ≤ 0 then from the second part of Proposition 1 and
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Corollary 1 it follows that there exists a sequence zn ∈ S such that ‖zn‖ →
+∞ and the sequence F (zn) is bounded. Hence F |S is not a proper mapping
in this case.

3. The main result. Now, we formulate the main result of the paper.

Theorem 1. Let F = (f1, . . . , fm) : Cn → Cm, n ≥ 2, be a polynomial
mapping and S := {z ∈ Cn : f1(z) · . . . · fm(z) = 0}. If S 6= ∅, then

(8) L∞(F ) = L∞(F |S).

The proof will be given in Section 4.
Directly from Theorem 1 and Corollary 2 we get

Corollary 3 ([J], Cor. 6.7). If F = (f1, . . . , fm) : Cn → Cm, n ≥ 2,
is a polynomial mapping and S := {z ∈ Cn : f1(z) · . . . · fm(z) = 0} is not
empty , then F is proper if and only if F |S is proper.

Another corollary from Theorem 1 is an effective formula for the  Lo-
jasiewicz exponent, generalizing an earlier result of the authors ([CK], Main
Theorem).

Let us introduce some notions. If Ψ : {z ∈ C : |z| > R} → Ck is the sum
of a Laurent series of the form

Ψ(t) = αpt
p + αp−1t

p−1 + . . . , αi ∈ Ck, αp 6= 0,

then we put degΨ := p. Additionally, degΨ := −∞ if Ψ = 0. For an
algebraic curve in C2, the notions of its branches in a neighbourhood of ∞
and parametrizations of these branches are defined in [CK].

Let now F = (f1, . . . , fm) : C2 → Cm be a polynomial mapping and
S := {z ∈ C2 : f1(z) · . . . · fm(z) = 0}. Assume that S 6= ∅ and S 6= C2.

Theorem 2. If Γ1, . . . , Γs are branches of the curve S in a neighbourhood
Y of infinity and Φi : Ui → Y , i = 1, . . . , s, are their parametrizations, then

(9) L∞(F ) =
s

min
i=1

degF ◦ Φi
degΦi

.

P r o o f. Define λi := degF ◦Φi/degΦi. If λi = −∞ for some i, then (9)
holds. So, assume that λi 6= −∞, i = 1, . . . , s. Then

|F (z)| ∼ |z|λi as |z| → +∞, z ∈ Γi.

Hence, taking into account the equality S ∩ Y = Γ1 ∪ . . . ∪ Γs we get (9).

4. Proof of the main theorem. Let us begin with a lemma on polyno-
mial mappings from C into Cm. It is a generalization of a result by A. P loski
([P1], Lemma 3.1) and plays a key role in the proof of the main theorem.
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Lemma 2. Let Φ = (ϕ1, . . . , ϕm) : C→ Cm be a polynomial mapping and
ϕ := ϕ1 · . . . · ϕm. If ϕ is a polynomial of positive degree and T is its set of
zeroes, then for every t ∈ C,

|Φ(t)| ≥ 2− degΦ min
τ∈T
|Φ(τ)|.

P r o o f. Fix t0 ∈ C. Let minτ∈T |t0−τ | be attained for some τ0 ∈ T . If ϕi
is a polynomial of positive degree and has the form ϕi(t) = ci

∏degϕi

j=1 (t−τij),
then we have

2|t0 − τij | = |t0 − τij |+ |t0 − τij | ≥ |t0 − τ0|+ |t0 − τij | ≥ |τ0 − τij |.
Hence

2degϕi |ϕi(t0)| ≥ |ϕi(τ0)|.
Obviously, this inequality is also true for ϕi being a constant. Since degΦ ≥
degϕi, from the above we get

2degΦ|Φ(t0)| ≥ |Φ(τ0)| ≥ min
τ∈T
|Φ(τ)|,

which ends the proof.

In the sequel, z = (z1, . . . , zn) ∈ Cn, n ≥ 2, and for every i ∈ {1, . . . , n}
we put z′i := (z1, . . . , zi−1, zi+1, . . . , zn).

We state an easy lemma without proof.

Lemma 3. Let f : Cn → C be a non-constant polynomial function and S
its set of zeroes. If deg f = degzi

f for every i ∈ {1, . . . , n}, then there exist
constants C ≥ 1, D > 0 such that for every i ∈ {1, . . . , n},

|zi| ≤ C|z′i| for z ∈ S and |z′i| > D.

P r o o f o f T h e o r e m 1. Without loss of generality we may assume
that

(i) S 6= Cn,
(ii) #(F |S)−1(0) <∞.

In fact, if (i) does not hold then (8) is obvious, whereas if (ii) does not
hold then (8) follows from Corollary 1.

Obviously N(F ) ⊂ N(F |S). So, to prove (8) it suffices to show

(10) N(F |S) ⊂ N(F ).

Put f := f1 · . . . ·fm. From (i) we have deg f > 0. Since the sets N(F |S)
and N(F ) are invariant with respect to linear changes of coordinates in Cn
we may assume that

(11) deg f = degzi
f, i = 1, . . . , n.

This obviously implies

(12) deg fj = degzi
fj , j = 1, . . . ,m, i = 1, . . . , n.
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It follows from (ii) and Corollary 1 that N(F |S) is not empty. Take
ν ∈ N(F |S). Then there exist A > 0, B > 0 such that

(13) |F (ζ)| ≥ A|ζ|ν for ζ ∈ S, |ζ| > B.

By (11) and Lemma 3 there exist C ≥ 1, D > 0 such that for every i ∈
{1, . . . , n},
(14) |zi| ≤ C|z′i| for z ∈ S, |z′i| > D.

Put A1 := 2− degFAmin(1, Cν) and B1 := max(B,D). Take arbitrary
z̊ ∈ Cn such that |̊z| > B1. Clearly, |̊z| = |̊z′i| for some i. Define ϕj(t) :=
fj (̊z1, . . . , z̊i−1, t, z̊i+1, . . . , z̊n), Φ := (ϕ1, . . . , ϕm). Then from (12) we have

(15) degF = degΦ.

Moreover, from (11) it follows that ϕ := ϕ1 · . . . · ϕm is a polynomial of
positive degree. Then, from Lemma 2 (T is defined as in Lemma 2) and
(15) we have

(16) |F (̊z)| = |Φ(̊zi)| ≥ 2− degΦ min
τ∈T
|Φ(τ)| = 2− degF |F (ζ̊)|

for some ζ̊ = (̊z1, . . . , z̊i−1, τ0, z̊i+1, . . . , z̊n), τ0 ∈ T . So, ζ̊∈S. Since |̊z| > B1

and |ζ̊| ≥ |̊z′i| = |̊z|, from (16) and (13) we get

(17) |F (̊z)| ≥ 2− degFA|ζ̊|ν ,
whereas from (14),

(18) |̊z| ≤ |ζ̊| ≤ C |̊z|.
Considering two cases, when ν ≥ 0 and ν < 0, from (17) and (18) we easily
get

|F (̊z)| ≥ A1 |̊z|ν .
Since z̊ is arbitrary we have ν ∈ N(F ).

This ends the proof of the theorem.
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