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On existence and uniqueness of solutions

of nonlocal problems for hyperbolic differential-functional

equations in two independent variables

by Tomasz Cz lapiński (Gdańsk)

Abstract. We seek for classical solutions to hyperbolic nonlinear partial differential-
functional equations of the second order. We give two theorems on existence and unique-
ness for problems with nonlocal conditions in bounded and unbounded domains.

1. Introduction. If X,Y are any metric spaces then we denote by
C(X;Y ) the set of all continuous functions from X to Y . Let R+ = [0,∞),

a0, b0 ∈ R+ and a > 0, b > 0. We put Ω = [0, a] × [0, b], Ω̃ = [−a0, a] ×
[−b0, b], Ω0 = [−a0, a] × [−b0, b] \ (0, a] × (0, b] and B = [−a0, 0] × [−b0, 0].

If z : Ω̃ → R then for any (x, y) ∈ Ω we define a function z(x,y) : B → R by
z(x,y)(s, t) = z(x + s, y + t), (s, t) ∈ B.

In this paper we will deal with the following nonlinear hyperbolic differ-
ential-functional equation:

(1) Dxyu(x, y) = f(x, y, u(x,y),Dxu(x, y),Dyu(x, y)), (x, y) ∈ Ω,

where f : Ω × C(B; R) × R
2 → R, together with the nonlocal conditions

u(x,0) +

n∑

i=1

(hi)(x,0)u(x,bi) = φ(x,0), x ∈ [0, a],(2)

u(0,y) +

m∑

j=1

(gj)(0,y)u(aj ,y) = φ(0,y), y ∈ [0, b],(3)

where φ : Ω0 → R, hi : [−a0, a]× [−b0, 0] → R, i = 1, . . . ,m, gj : [−a0, 0]×
[−b0, b] → R, j = 1, . . . ,m, and aj , j = 1, . . . ,m, bi, i = 1, . . . , n, are finite
numbers such that 0 < a1 < . . . < am ≤ a, 0 < b1 < . . . < bn ≤ b. The
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nonlocal conditions (2), (3) may also be written in the form

(2′) u(x, y) +

n∑

i=1

hi(x, y)u(x, bi + y) = φ(x, y),

(x, y) ∈ [−a0, a] × [−b0, 0],

(3′) u(x, y) +

m∑

j=1

gj(x, y)u(aj + x, y) = φ(x, y),

(x, y) ∈ [−a0, 0] × [−b0, b].

R e m a r k 1. Note that the domains on which the nonlocal conditions
(2′), (3′) are considered overlap. To ensure compatibility we need addi-
tional assumptions on the functions hi, gj . In the sequel we will assume
that hi(x, y) = gj(x, y) = 0 for (x, y) ∈ B, i = 1, . . . , n, j = 1, . . . ,m.

If a0 = 0, b0 = 0 then the differential-functional problem (1)–(3) reduces
to a differential nonlocal problem. A problem of this type, in which gj =
0, j = 1, . . . ,m, was considered by L. Byszewski [2]. The nonlocal conditions
were introduced for the first time by J. Chabrowski [3] in the study of
linear parabolic problems. Conditions of this type can be applied in the
theory of elasticity with better results than the initial or Darboux conditions.
Nonlinear differential problems of parabolic type with nonlocal inequalities
together with their physical interpretation were considered by L. Byszewski
[1]. His results concerning nonlocal problems are generalizations of those
given in [4], [7] since in case hi = gj = 0, i = 1, . . . , n, j = 1, . . . ,m, the
nonlocal conditions reduce to the classical Darboux conditions (see also [6],
[8]).

In this paper we consider nonlocal problems for the differential-functional
equation (1), i.e. for the equation in which the right hand side is an operator
on the function space C(B; R) with respect to the third variable. The Dar-
boux problem for nonlinear hyperbolic differential-functional equations in a
Banach space was studied in [5] with the use of the Kuratowski α-measure of
noncompactness. In this paper we give a theorem on existence and unique-
ness of classical solutions of the problem (1)–(3). We also give an analogous
theorem for a problem on an unbounded domain, with Ω, [0, a] and [0, b]
replaced by R

2
+, R+ and R+, respectively. The proof is based on the Banach

fixed-point theorem and it is close to that given in [2].

2. Theorems. By C1(Ω; R) we denote the space of all functions u ∈
C(Ω; R) which have continuous derivatives Dxu,Dyu on Ω. Let U be the

set of all functions u ∈ C(Ω̃; R) which are C1 on Ω and such that the mixed
derivative Dxyu exists and is continuous on Ω, and let ‖ · ‖ denote the usual
supremum norm in C(B; R).
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Theorem 1. Suppose that

(i) f ∈ C(Ω × C(B, R) × R
2; R) and there is a nonnegative constant L

such that for all (x, y) ∈ Ω, z, z ∈ C(B; R), p, p, q, q ∈ R, we have

(4) |f(x, y, z, p, q) − f(x, y, z, p, q)| ≤ L{‖z − z‖ + |p − p| + |q − q|};

(ii) φ ∈ C(Ω0; R) and φ(0, ·) ∈ C1([0, a]; R), φ(·, 0) ∈ C1([0, b]; R);

(iii) hi ∈ C1([−a0, a] × [−b0, 0]; R), i = 1, . . . , n, gj ∈ C1([−a0, 0] ×
[−b0, b]; R), j = 1, . . . ,m, and

(5) hi(x, y) = 0, gj(x, y) = 0, (x, y) ∈ B, i = 1, . . . , n, j = 1, . . . ,m;

(iv) K,M are nonnegative constants such that for all (x, y) ∈ Ω, i =
1, . . . , n, j = 1, . . . ,m, we have

(6)
|hi(x, y)| ≤ N, |Dxhi(x, y)| ≤ N,

|gj(x, y)| ≤ M, |Dygj(x, y)| ≤ M ;

(v) there is a positive constant C such that

(7)
L(2C + 1)

C2
+ 2nNeCbn + 2mMeCam < 1.

Then there is a unique solution of the problem (1)–(3) in the class U .

P r o o f. Let Û be the set of all functions u ∈ C(Ω̃; R) which are C1 on

Ω. In Û we introduce the norm

‖u‖C = ‖u‖C,0 + ‖u‖C,1 + ‖u‖C,2,

where

‖u‖C,0 = sup
(x,y)∈Ω̃

e−C(x+y)|u(x, y)|,

‖u‖C,1 = sup
(x,y)∈Ω

e−C(x+y)|Dxu(x, y)|,

‖u‖C,2 = sup
(x,y)∈Ω

e−C(x+y)|Dyu(x, y)|.

We define the following operator on Û :

(8) (Tu)(x, y) = φ(x, 0) + φ(0, y) − φ(0, 0)

−

n∑

i=1

hi(x, 0)u(x, bi) −

m∑

j=1

gj(0, y)u(aj , y)

+

x\
0

y\
0

f(s, t, u(s,t),Dxu(s, t),Dyu(s, t)) dt ds,

(x, y) ∈ Ω,
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(9) (Tu)(x, y) = φ(x, y) −

n∑

i=1

hi(x, y)u(x, bi + y),

(x, y) ∈ [−a0, a] × [−b0, 0),

(10) (Tu)(x, y) = φ(x, y) −
m∑

j=1

gj(x, y)u(aj + x, y),

(x, y) ∈ [−a0, 0) × [−b0, b].

The above definition is correct even though the domains in (9) and (10)
overlap. Indeed, if (x, y) ∈ B then by (5) we see that (Tu)(x, y) = φ(x, y)
in (9) as well as in (10).

It is easy to see that if u ∈ Û then Tu is continuous on Ω̃ \Ω and C1 on

Ω. The continuity of Tu on Ω̃, i.e. the continuity on {0}×[0, b]∪[0, a]×{0},

follows immediately from (5). Therefore, T maps Û into itself.
If u ∈ U is a solution of the problem (1)–(3) then integrating (1) on

[0, x] × [0, y] and making use of (2), (3) we find that u is a fixed point of

T . Conversely, if u ∈ Û is a fixed point of T then from (8) we see that u

has a continuous derivative Dxyu on Ω, and that equation (1) holds true.
Morover, (2), (3) follow immediately from (9), (10). Thus we will seek for a
fixed point of the operator T .

If u, u ∈ Û then by (4), (6), (8)–(10), we have

|(Tu)(x, y) − (Tu)(x, y)|

≤ L

x\
0

y\
0

[‖u(s,t) − u(s,t)‖

+ |Dxu(s, t) − Dxu(s, t)| + |Dyu(s, t) − Dyu(s, t)|] dt ds

+

n∑

i=1

|hi(x, 0)| · |u(x, bi) − u(x, bi)| +

m∑

j=1

|gj(0, y)| · |u(aj , y) − u(aj , y)|

≤ L

x\
0

y\
0

[‖u − u‖C,0 + ‖u − u‖C,1 + ‖u − u‖C,2]e
C(s+t) dt ds

+

n∑

i=1

NeC(bi+x+y)‖u − u‖C,0 +

m∑

j=1

MeC(aj+x+y)‖u − u‖C,0

≤ eC(x+y)

×

{
L

C2
‖u − u‖C + [nNeCbn + mMeCam ]‖u − u‖C,0

}
for (x, y) ∈ Ω,
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|(Tu)(x, y) − (Tu)(x, y)|

≤
n∑

i=1

|hi(x, y)| · |u(x, bi + y) − u(x, bi + y)|

≤

n∑

i=1

NeC(bi+x+y)‖u − u‖C,0

≤ eC(x+y)nNeCbn‖u − u‖C,0 for (x, y) ∈ [−a0, a] × [−b0, 0],

and

|(Tu)(x, y) − (Tu)(x, y)|

≤

m∑

j=1

|gj(x, y)| · |u(aj + x, y) − u(aj + x, y)|

≤
m∑

j=1

MeC(aj+x+y)‖u − u‖C,0

≤ eC(x+y)mMeCam‖u − u‖C,0 for (x, y) ∈ [−a0, 0] × [−b0, b].

From the above estimates we get

(11) ‖Tu − Tu‖C,0 ≤
L

C2
‖u − u‖C + [nNeCbn + mMeCam ]‖u − u‖C,0.

In the same manner from (4), (6), (8), and from the estimates

|Dx(Tu)(x, y) − Dx(Tu)(x, y)|

≤ L

y\
0

[‖u(x,t) − u(x,t)‖

+ |Dxu(x, t) − Dxu(x, t)| + |Dyu(x, t) − Dyu(x, t)|] dt

+
n∑

i=1

|Dxhi(x, 0)| · |u(x, bi) − u(x, bi)|

+

n∑

i=1

|hi(x, 0)| · |Dxu(x, bi) − Dxu(x, bi)|

and

|Dy(Tu)(x, y) − Dy(Tu)(x, y)|

≤ L

x\
0

[‖u(s,y) − u(s,y)‖

+ |Dxu(s, y) − Dxu(s, y)| + |Dyu(s, y) − Dyu(s, y)|] ds
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+

m∑

j=1

|Dygj(0, y)| · |u(aj , y) − u(aj , y)|

+
m∑

j=1

|gj(0, y)| · |Dyu(ai, y) − Dyu(ai, y)|,

which hold true for (x, y) ∈ Ω, we get

‖Tu − Tu‖C,1 ≤
L

C
‖u − u‖C + nNeCbn‖u − u‖C,0(12)

+ nNeCbn‖u − u‖C,1,

‖Tu − Tu‖C,2 ≤
L

C
‖u − u‖C + mMeCam‖u − u‖C,0(13)

+ mMeCam‖u − u‖C,2.

Therefore, by (11)–(13), we get

‖Tu − Tu‖C ≤

{
L(2C + 1)

C2
+ 2nNeCbn + 2mMeCan

}
‖u − u‖C .

This together with (7) yields that T is a contraction. By the Banach fixed

point theorem we conclude that T has a unique fixed point in Û , which
completes the proof of Theorem 1.

R e m a r k 2. The proof of Theorem 1 still goes when the condition (iii)
is replaced by: For all i = 1, . . . , n, j = 1, . . . ,m, we have

(a) hi ∈ C([−a0, a] × [−b0, 0]; R), gj ∈ C([−a0, 0] × [−b0, b]; R);

(b) hi is C1 on [0, a] × [−b0, 0] and gj is C1 on [−a0, 0] × [0, b];

(c) hi(x, y) = gj(x, y) = 0, for (x, y) ∈ B.

Now, we consider the problem (1)–(3) with Ω, [0, a] and [0, b] replaced by
R

2
+, R+ and R+, respectively. Consequently, in the definitions of the spaces

U , Û , of the operator T , and of the norm ‖ · ‖C , we replace Ω, Ω̃ and Ω0 by
R

2
+, [−a0,∞) × [−b0,∞) and [−a0,∞) × [−b0,∞) \ (0,∞)2, respectively.

Theorem 2. Suppose that

(i) f ∈ C(R2
+ × C(B; R) × R

2; R) and there is a nonnegative constant

L such that for all (x, y) ∈ R+, z, z ∈ C(B, R), p, p, q, q ∈ R, we have

(14) |f(x, y, z, p, q) − f(x, y, z, p, q)| ≤ L{‖z − z‖ + |p − p| + |q − q|};

(ii) φ ∈ C([−a0,∞) × [−b0,∞) \ (0,∞)2; R) and φ(0, ·) ∈ C1(R+; R),
φ(·, 0) ∈ C1(R+, R);

(iii) hi ∈ C1([−a0,∞) × [−b0, 0]; R), i = 1, . . . , n, gj ∈ C1([−a0, 0] ×
[−b0,∞); R), j = 1, . . . ,m, and

hi(x, y) = 0, gj(x, y) = 0, (x, y) ∈ B, i = 1, . . . , n, j = 1, . . . ,m;
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(iv) there are nonnegative constants M , N such that for all (x, y) ∈ R
2
+,

i = 1, . . . , n, j = 1, . . . ,m, we have

(15)
|hi(x, y)| ≤ N, |Dxhi(x, y)| ≤ N,

|gj(x, y)| ≤ M, |Dygj(x, y)| ≤ M ;

(v) there is a positive constant C such that

L(2C + 1)

C2
+ 2nNeCbn + 2mMeCam < 1;

(vi) there are nonnegative constants K1,K2 such that

|φ(x, 0)| ≤ K1e
Cx, |Dxφ(x, 0)| ≤ K1e

Cx for x ∈ R+

|φ(0, y)| ≤ K1e
Cy , |Dyφ(0, y)| ≤ K1e

Cy for y ∈ R+,
(16)

|f(x, y, 0, 0, 0)| ≤ K2e
C(x+y) for (x, y) ∈ R+(17)

Then there is a unique solution of the problem (1)–(3) in the class of func-

tions u ∈ U such that ‖u‖ < ∞.

P r o o f. Let Ũ be the space of functions u ∈ Û such that ‖u‖C < ∞. We

first prove that the operator T defined by (8)–(10) maps Ũ into itself. By

the same argument as in the proof of Theorem 1, if u ∈ Ũ then Tu ∈ Û . It
remains to show that ‖Tu‖C < ∞. Note that

(18) (Tu)(x, y)

= φ(x, 0) + φ(0, y) − φ(0, 0)

−

n∑

i=1

hi(x, 0)u(x, bi) −

m∑

j=1

gj(0, y)u(aj , y)

+

x\
0

y\
0

[f(s, t, u(s,t),Dxu(s, t),Dyu(s, t)) − f(s, t, 0, 0, 0)] dt ds

+

x\
0

y\
0

f(s, t, 0, 0, 0) dt ds for (x, y) ∈ R
2
+,

and hence, by (14)–(17), we get

|(Tu)(x, y)| ≤ |φ(x, 0)| + |φ(0, y)| + |φ(0, 0)|

+
n∑

i=1

|hi(x, 0)| · |u(x, bi)| +
m∑

j=1

|gj(0, y)| · |u(aj , y)|

+ L

x\
0

y\
0

[‖u(s,t)‖ + |Dxu(s, t)| + |Dyu(s, t)|] dt ds

+

x\
0

y\
0

|f(s, t, 0, 0, 0)| dt ds
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≤ K1e
Cx + K1e

Cy + K1 +

n∑

i=1

NeC(bi+x)‖u‖C,0

+

m∑

j=1

MeC(aj+y)‖u‖C,0

+ L

x\
0

y\
0

[‖u‖C,0 + ‖u‖C,1 + ‖u‖C,2]e
C(s+t) dt ds +

x\
0

y\
0

K2e
C(s+t) dt ds

≤ 3K1e
C(x+y) + [nNeCbn + mMeCam ]‖u‖C,0e

C(x+y)

+
1

C2
[L‖u‖C + K2]e

C(x+y) for (x, y) ∈ R
2
+.

Since the above estimate also holds for (x, y) ∈ [−a0,∞)× [−b0,∞)\(0,∞)2

we see that

(19) ‖Tu‖C,0 ≤ 3K1 + [nNeCbn + mMeCam ]‖u‖C,0 +
1

C2
[L‖u‖C + K2].

Analogously, by (14)–(18), and by the estimates

|Dx(Tu)(x, y)| ≤ |Dxφ(x, 0)|

+

n∑

i=1

|Dxhi(x, 0)| · |u(x, bi)| +

n∑

i=1

|hi(x, 0)| · |Dxu(x, bi)|

+

y\
0

|f(x, t, u(x,t),Dxu(x, t),Dyu(x, t)) − f(x, t, 0, 0, 0)| dt

+

y\
0

|f(x, t, 0, 0, 0)| dt

≤ K1e
Cx +

n∑

i=1

NeC(bi+x)[‖u‖C,0 + ‖u‖C,1]

+ L

y\
0

[‖u‖C,0 + ‖u‖C,1 + ‖u‖C,2]e
C(x+t) dt

+

y\
0

K2e
C(x+t) dt

≤ K1e
C(x+y) + nNeCbn [‖u‖C,0 + ‖u‖C,1]e

C(x+y)

+
1

C

[
L‖u‖C + K2

]
eC(x+y)

and

|Dy(Tu)(x, y)| ≤ |Dyφ(0, y)|

+
m∑

j=1

|Dygj(0, y)| · |u(aj , y)| +
m∑

j=1

|gj(0, y)| · |Dyu(aj , y)|
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+

x\
0

|f(s, y, u(s,y),Dxu(s, y),Dyu(s, y))− f(x, t, 0, 0, 0)| ds

+

x\
0

|f(s, y, 0, 0, 0)| ds

≤ K1e
Cy +

m∑

j=1

MeC(aj+y)[‖u‖C,0 + ‖u‖C,2]

+ L

x\
0

[‖u‖C,0 + ‖u‖C,1 + ‖u‖C,2]e
C(s+y) ds +

x\
0

K2e
C(s+y) ds

≤ K1e
C(x+y) + mMeCam [‖u‖C,0 + ‖u‖C,2]e

C(x+y)

+
1

C
[L‖u‖C + K2]e

C(x+y),

which hold for (x, y) ∈ R
2
+, we get

‖Tu‖C,1 ≤ K1 + nNeCbn[‖u‖C,0 + ‖u‖C,1] +
1

C
[L‖u‖C + K2],(20)

‖Tu‖C,2 ≤ K1 + mMeCbm[‖u‖C,0 + ‖u‖C,2] +
1

C
[L‖u‖C + K2].(21)

Thus from (19)–(21) we obtain

‖Tu‖C ≤ 5K1 +
1 + 2C

C2
K2 +

{
L(1 + 2C)

C2
+ 2nNeCbn + 2mMeCan

}
‖u‖C ,

which yields ‖Tu‖C < ∞. Therefore, the operator T maps Ũ into itself.

As in the proof of Theorem 1 we show that u ∈ U , ‖u‖C < ∞, is
a solution of the problem (1)–(3) if and only if it is a fixed point of the
operator T . Repeating the coresponding computations from Theorem 1 we
prove that T is a contraction. Applying the Banach fixed point theorem
completes the proof of Theorem 2.

R e m a r k 3. Theorem 2 remains valid with condition (iii) in a weaker
form, analogous to that stated in Remark 2.
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80-952 Gdańsk, Poland
E-mail: czltsz@ksinet.univ.gda.pl
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