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On definitions of the pluricomplex Green function

by Armen Edigarian (Kraków)

Abstract. We give several definitions of the pluricomplex Green function and show
their equivalence.

1. Introduction. We denote by E the unit disc in C. Let D be a
domain in C

n. Put

gD(a, z) := sup{u(z) : u ∈ PSH(D), u < 0,

∃M, r > 0 : u(w) ≤M + log ‖w − a‖, w ∈ B(a, r) ⊂ D}, a, z ∈ D,

where PSH(D) denotes the set of all plurisubharmonic functions on D and
B(a, r) denotes the ball with center at a and radius r. The function gD has
been introduced by M. Klimek (cf. [K]) and is called the pluricomplex Green

function.

In this paper we give several equivalent definitions of the pluricomplex
Green function.

Following E. Poletsky (cf. [P-S], [P1], [P2]) for a domain D ⊂ C
n and

a, z ∈ D, a 6= z, we define

g1
D(a, z) := inf

{ ∑

λ∈ϕ−1(a)

ordλ(ϕ− a) log |λ| :

ϕ ∈ O(E,D), a ∈ ϕ(E), ϕ(0) = z
}
,

g2
D(a, z) := inf

{ ∑

λ∈ϕ−1(a)

ordλ(ϕ− a) log |λ| :

ϕ ∈ O(E,D), a ∈ ϕ(E), ϕ(0) = z
}
,
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g3
D(a, z) := inf

{ ∑

λ∈ϕ−1(a)

log |λ| : ϕ ∈ O(E,D), a ∈ ϕ(E), ϕ(0) = z
}
,

g4
D(a, z) := inf

{ ∑

λ∈ϕ−1(a)

log |λ| : ϕ ∈ O(E,D), a ∈ ϕ(E), ϕ(0) = z
}
,

where O(E,D) denotes the set of all holomorphic mappings E → D and
ordλ(ϕ − a) denotes the order of vanishing of ϕ − a at λ. Note that in the
whole paper for any holomorphic mapping ϕ : E → D by ϕ−1(a) we mean
ϕ−1(a) ∩ E and it is always a finite set provided ϕ is nonconstant.

We put g1
D(a, a) = g2

D(a, a) = g3
D(a, a) = g4

D(a, a) = −∞.

R e m a r k s. 1. For any z ∈ D \ {a} there exists ϕ ∈ O(E,D) such that
ϕ(0) = z and a ∈ ϕ(E) (cf. [J-P], Remark 3.1.1). So, the above functions
are well defined.

2. Note that g1
D ≤ g2

D, g3
D ≤ g4

D, g1
D ≤ g3

D, and g2
D ≤ g4

D.

Define

kD(a, z) := inf{log σ : ∃ϕ ∈ O(E,D) : ϕ(0) = a, ϕ(σ) = z, σ > 0},

g5
D(a, z) := inf

{
1

2π

2π\
0

kD(a, ϕ(eiθ)) dθ :

ϕ ∈ O(E,D), ϕ(0) = z

}
, a, z ∈ D.

Note that g5
D(a, ·) is the envelope of kD(a, ·) in the sense of Poletsky (see

Theorem 11).

The main result of the paper is the following

Theorem 1. Let D be a domain in C
n. Then

gD = g1
D = g2

D = g3
D = g4

D = g5
D.

R e m a r k s. The most difficult problem in Theorem 1 is the equality
gD = g2

D. It was proved in [P1]. We present a much simpler and complete
proof. The equality gD = g4

D was stated in [P2].

2. Definitions and auxiliary results. Let D be a domain in C
n and

let ϕ : E → D be a holomorphic mapping. For a point a ∈ D we define

u(ϕ,a)(λ) :=
∑

ζ∈ϕ−1(a)

ordζ(ϕ − a) log

∣∣∣∣
λ− ζ

1 − ζλ

∣∣∣∣, λ ∈ E,

H(ϕ, a) := u(ϕ,a)(0).

For convenience we put
∑

∅ = 0 in the whole paper. For a constant mapping
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ϕ ≡ a we put u(ϕ,a) ≡ −∞. In this notation we have

g2
D(a, z) = inf{H(ϕ, a) : ϕ ∈ O(E,D), ϕ(0) = z}, a, z ∈ D.

For the functional H we have the following

Lemma 2. Let ϕ : E → D and h : E → E be holomorphic mappings.

Then for any a ∈ D such that ϕ 6≡ a we have

H(ϕ ◦ h, a) =
\\
E

log |ζ|∆(u(ϕ,a) ◦ h(ζ)).

P r o o f. Note that if ϕ(h(0)) = a then

H
(
ϕ ◦ h, a

)
=
\\
E

log |ζ|∆(u(ϕ,a) ◦ h(ζ)) = −∞.

So, we may assume that ϕ(h(0)) 6= a. Put

ψj(λ) :=
h(λ) − λj

1 − λjh(λ)
, where λj ∈ ϕ−1(a).

Note that ψj ∈ O(E) and ψj(0) 6= 0. Hence using the Jensen formula (see
[R], Theorem 15.18) we have

log |ψj(0)| =
N∑

m=1

log |αm| +
1

2π

2π\
0

log |ψj(e
iθ)| dθ,

where α1, . . . , αN are the zeros of ψj with multiplicities. But on the other
hand by the Riesz representation we have

log |ψj(0)| =
1

2π

2π\
0

log |ψj(e
iθ)| dθ +

\\
E

log |ζ|∆(log |ψj(ζ)|).

Hence,
N∑

m=1

log |αm| =
\\
E

log |ζ|∆(log |ψj(ζ)|).

From this we derive the desired result.

Lemma 3 (cf. [P1], Lemma 3.2). Let v be a plurisubharmonic function

in some neighborhood of E2 such that v(0, 0) 6= −∞ and v(0, eiθ) 6= −∞,
θ ∈ [0, 2π). Then

1

2π

2π\
0

(\\
E

log |ζ|∆ζ(v(e
iαζ, ζ))

)
dα ≤

1

2π

2π\
0

(\\
E

log |ζ|∆ζv(ζ, e
iθ)

)
dθ.

Therefore, there exists α0 ∈ [0, 2π) such that\\
E

log |ζ|∆ζ(v(e
iα0ζ, ζ)) ≤

1

2π

2π\
0

(\\
E

log |ζ|∆ζv(ζ, e
iθ)

)
dθ.
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P r o o f. By the Riesz representation we have

v(0, 0) =
1

2π

2π\
0

v(0, eiθ) dθ +
\\
E

log |ζ|∆ζv(0, ζ)

=
1

4π2

2π\
0

2π\
0

v(eiα, eiθ) dα dθ

+
1

2π

2π\
0

dθ
\\
E

log |ζ|∆ζv(ζ, e
iθ) +

\\
E

log |ζ|∆ζv(0, ζ).

Again by the Riesz representation for any fixed α ∈ [0, 2π) we have

(1) v(0, 0) =
1

2π

2π\
0

v(ei(α+θ), eiθ) dθ +
\\
E

log |ζ|∆ζv(e
iαζ, ζ).

Hence, integrating (1) in α ∈ [0, 2π) we obtain

v(0, 0) =
1

4π2

2π\
0

2π\
0

v(ei(α+θ), eiθ) dθ dα+
1

2π

2π\
0

[\\
E

log |ζ|∆ζv(e
iαζ, ζ)

]
dα.

So,

1

2π

2π\
0

[\\
E

log |ζ|∆ζv(e
iαζ, ζ)

]
dα =

1

2π

2π\
0

dθ
\\
E

log |ζ|∆ζv(ζ, e
iθ)

+
\\
E

log |ζ|∆ζv(0, ζ)

≤
1

2π

2π\
0

dθ
\\
E

log |ζ|∆ζv(ζ, e
iθ).

As a corollary we have the following

Lemma 4. Let ϕ : E → D and h: E2 → E be holomorphic mappings.

Then for any a ∈ D such that a 6∈ ϕ(h({0} × ∂E)) and ϕ(h(0, 0)) 6= a there

exists α0 ∈ [0, 2π) with

H(ϕ ◦ h(eiα0ζ, ζ), a) ≤
1

2π

2π\
0

H(ϕ ◦ h(ζ, eiθ), a) dθ.

P r o o f. Take v := u(ϕ,a) ◦ h. Then the result follows from Lemmas 2
and 3.

Recall that a holomorphic function φ : E → E is called inner if |φ∗(ζ)| =
limr→1 |φ(rζ)| = 1 for almost all ζ ∈ ∂E. Any Blaschke product is an inner
function. A simple example of an inner function but not a Blaschke product
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is the function e(λ, c) := ec(λ−1)/(λ+1), c > 0. It plays an important role in
our considerations. Put

lk(λ, c) =
λ+ e−c/k

1 + e−c/kλ
, λ ∈ E, c > 0, k ∈ N.

We have

Lemma 5. (a) For fixed c > 0 and τ ∈ E \ {0} the function

φ(λ) =
e(λ, c) − τ

1 − τe(λ, c)

is a Blaschke product.

(b) For fixed c > 0 we have lk(λ, c) → 1 and lkk(λ, c) → e(λ, c) locally

uniformly on E as k → ∞.

P r o o f. (a) Note that φ is an inner function. By Theorem 2 in Chapter III
of [N], any inner function which has no zero radial limits is a Blaschke
product. By simple calculations we see that φ has no zero radial limits.

(b) It is enough to note that

lk(λ, c) = 1 + (1 − e−c/k)
λ− 1

1 + e−c/kλ
.

Recall the following approximation result:

Lemma 6. Let F ∈ C(V × ∂E) and F (·, ζ) ∈ O(V ), ζ ∈ ∂E, where V is

a domain in C
m. For ν = 1, 2, . . . put

Fν(ξ, ζ) :=
1

2πν

ν−1∑

j=0

j∑

k=−j

( 2π\
0

F (ξ, eiθ)

eiθ(k+1)
dθ

)
ζk.

Then:

(1) Fν are holomorphic w.r.t. ξ ∈ V and rational w.r.t. ζ with pole of

order ≤ ν − 1 at ζ = 0;

(2) {Fν} converges locally uniformly to F on V × ∂E;

(3) if F (0, ζ) ≡ 0, then Fν(0, ζ) ≡ 0, ζ ∈ ∂E.

P r o o f. It is enough to prove (2), because (1) and (3) are evident.

Put

Kν(x) :=
1

ν

[
sin ν

2
x

sin 1
2x

]2

.

Then (see [H], Chapter II) 1
2π

T2π
0
Kν(θ) dθ = 1 and

Fν(ξ, e
it) =

1

2π

2π\
0

F (ξ, eiθ)Kν(t− θ) dθ =
1

2π

2π\
0

F (ξ, ei(t−θ))Kν(θ) dθ.
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For δ > 0 we have

Fν(ξ, e
it) − F (ξ, eit) =

1

2π

π\
−π

(F (ξ, ei(t−θ)) − F (ξ, eit))Kν(θ) dθ

=
1

2π

δ\
−δ

(F (ξ, ei(t−θ)) − F (ξ, eit))Kν(θ) dθ

+
1

2π

\
π>|θ|≥δ

(F (ξ, ei(t−θ)) − F (ξ, eit))Kν(θ) dθ.

Suppose that K = L× ∂E, where L ⋐ V . Then

|Fν(ξ, e
it) − F (ξ, eit)|

≤ sup
−δ<θ<δ

|F (ξ, ei(t−θ)) − F (ξ, eit)| + 2‖F‖K sup
π>|θ|≥δ

Kν(θ),

where ‖F‖K := sup(ξ,ζ)∈K |F (ξ, ζ)|. Recall that limν→∞ supπ>|θ|≥δKν(θ)
= 0. Since F is a continuous mapping, we conclude the proof.

3. Proof of Theorem 1. We will prove Theorem 1 in several lemmas.
We prove consecutively that g1

D = g2
D = g3

D = g4
D (Lemma 7), g5

D ≥ g2
D

(Lemma 9), gD = g5
D (Lemma 10), and finally, gD ≤ g4

D (Lemma 12). In
this way we will have proved Theorem 1. In the whole section we assume
that the domain D and points a, z ∈ D are fixed. Note that if a = z then
the assertion of Theorem 1 is evident, because all the functions are equal to
−∞. So, we may assume that a 6= z.

Lemma 7. g1
D(a, z) = g2

D(a, z) = g3
D(a, z) = g4

D(a, z).

P r o o f. It is enough to prove that

(1) g1
D(a, z) = g2

D(a, z),

(2) g3
D(a, z) = g4

D(a, z),

(3) g2
D(a, z) = g4

D(a, z).

(1)–(2) We know that g1
D(a, z) ≤ g2

D(a, z) (resp. g3
D(a, z) ≤ g4

D(a, z)).
Fix A > g1

D(a, z) (resp. A > g3
D(a, z)).

There exists a holomorphic mapping ϕ : E → D such that ϕ(0) = z,
a ∈ ϕ(E), and

∑

λ∈ϕ−1(a)

ordλ(ϕ− a) log |λ| < A (resp.
∑

λ∈ϕ−1(a)

log |λ| < A).

Let ϕ−1(a) = {λj : j = 1, 2, . . .}, where λj ’s are counted with multiplic-
ities (resp. without multiplicities). We may assume that |λ1| ≤ |λ2| ≤ . . .

There exists N > 0 such that
∑N
j=1 log |λj | < A. Let ϕ̃(λ) = ϕ(Rλ), where
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R ∈ (|λN |, 1). Note that ϕ̃ ∈ O(E,D) and ϕ̃(0) = z. Then we have

∑

λ∈ϕ̃−1(a)

ordλ(ϕ̃− a) log |λ| ≤
N∑

j=1

(log |λj | − logR)

(resp.
∑

λ∈ϕ̃−1(a)

log |λ| ≤
N∑

j=1

(log |λj | − logR)).

So, if R is close enough to 1 then

g2
D(a, z) ≤

∑

λ∈ϕ̃−1(a)

ordλ(ϕ̃− a) log |λ| < A

(resp. g4
D(a, z) ≤

∑

λ∈ϕ̃−1(a)

log |λ| < A).

Hence, g2
D(a, z) ≤ g1

D(a, z) (resp. g4
D(a, z) ≤ g3

D(a, z)).

(3) Let ϕ : E → D be a holomorphic mapping such that ϕ(0) = z 6= a
and a ∈ ϕ(E). Suppose that ϕ(µ) = a and ordµ(ϕ − a) = m. Note that
µ 6= 0. Let

ψ(λ) :=
ϕ(λ) − a

(λ− µ)m
(λ− µ1) . . . (λ− µm) + a, λ ∈ E,

where µ1, . . . , µm are pairwise different, µ1 . . . µm = µm, and µ1, . . . , µm
are very close to µ (1). Note that if µ1, . . . , µm are close enough to µ then
ψ ∈ O(E,D) and ψ(0) = ϕ(0) = z. Moreover, ψ(λ0) = a iff ϕ(λ0) = a and
λ0 6= µ, or λ0 ∈ {µ1, . . . , µm}, and

∑

λ∈ϕ−1(a)

ordλ(ϕ− a) log |λ| =
∑

λ∈ψ−1(a)
λ6∈{µ1,...,µm}

ordλ(ψ − a) log |λ| +
m∑

j=1

log |µj |.

Note that the multiplicities of ψ at µj , j = 1, . . . ,m, are equal to 1. Applying
this technique N times, where N is the number of zeros of ϕ − a in E, we
obtain the result.

The following result is basic for the proof of Theorem 1.

Lemma 8. Let Φ : E → D be a holomorphic mapping such that Φ(0) = z
and a 6∈ Φ(∂E). Then

(2)
1

2π

2π\
0

kD(a, Φ(eiθ)) dθ ≥ g2
D(a, z).

(1) For instance, if µ = reiθ then let µj = re
iθj , j = 1, . . . ,m, where θ1,. . . ,θm are

pairwise different, close to θ, and such that θ1 + . . .+ θm = mθ.
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R e m a r k. From the definitions we see that kD(a,w) ≥ g2
D(a,w), w ∈ D.

So, a priori (2) states less than the subaverage property of the function
g2
D(a, ·). But it turns out that (2) is sufficient to show that g2

D(a, ·) is a
plurisubharmonic function, hence has the subaverage property. It is worth
noting that we assume that −∞ is a plurisubharmonic function.

Before we present the proof of Lemma 8 note the following immediate
corollary.

Lemma 9. g5
D(a, z) ≥ g2

D(a, z).

P r o o f o f L e m m a 8. Take any A ∈ R such that

1

2π

2π\
0

kD(a, Φ(eiθ)) dθ < A.

It is sufficient to show that g2
D(a, z) ≤ A. Note that kD(a, Φ(·)) is an upper

semicontinuous function in E (see the proof of Lemma 10). Hence, we can
find a continuous function q : ∂E → R such that kD(a, Φ(ξ)) < q(ξ), ξ ∈ ∂E,
and

1

2π

2π\
0

q(eiθ) dθ < A.

For any ξ ∈ ∂E there exist ϕξ ∈ O(E,D) and σξ ∈ (0, 1) such that ϕξ(0) =
Φ(ξ), ϕξ(σξ) = a, and

log σξ < q(ξ).

Note that for any ξ ∈ ∂E there exists t(ξ) > 0 such that for any ζ ∈
B(ξ, t(ξ)) we may define a mapping ϕξ,ζ ∈ O(E,D) as follows:

ϕξ,ζ(λ) := ϕξ(λ) + (Φ(ζ) − Φ(ξ))(1 − λ/σξ), λ ∈ E.

Observe that ϕξ,ζ(0) = Φ(ζ) and ϕξ,ζ(σξ) = ϕξ(σξ) = a. Taking smaller
t(ξ) > 0 if necessary we have

log σξ < q(ζ), ζ ∈ B(ξ, t(ξ)),

and ϕξ,ζ(E) ⋐ D for any ζ ∈ ∂E ∩ B(ξ, t(ξ)). Taking even smaller t(ξ),
we may choose ξ1, . . . , ξl such that ∂E ⊂ Vξ1 ∪ . . . ∪ Vξl

and Vξk
∩ Vξj

= ∅
if 1 < |k − j| < l − 1, k, j = 1, . . . , l, where Vξj

:= B(ξ, t(ξ)). We put
δ := minj=1,...,l σξj

and C := ‖q‖.
Fix ε > 0. Note that there exists r1 > 1 such that Φ,ϕξj ,ζ ∈ O(r1E,D)

for ζ ∈Vξj
, j = 1, . . . , l. We may assume that log r1 < ε. Take 0 < t′(ξj) <

t(ξj), j = 1, . . . , l, such that for Ij := ∂E∩B(ξj , t′(ξj)) we have Ij∩Ik = ∅ for

j 6= k and m(
⋃l
j=1 Ij) > 2π− ε, where m denotes the Lebesgue measure on

∂E. Take a closed subset Γ ⊂
⋃
Ij and a continuous function τ : ∂E → [0, 1]

such that m(Γ ) > 2π − ε, τ = 1 on Γ , and τ = 0 outside
⋃
Ij .
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For ζ ∈ ∂E put

σ(ζ) :=

{
σξj

/τ(ζ) if σξj
/r1 < τ(ζ) and ζ ∈ Ij ,

r1 otherwise.

Note that σ is a continuous function on ∂E and if σ(ζ) < r1 then
τ(ζ)σ(ζ) = σξj

.

For λ ∈ r1E and ζ ∈ ∂E we put

ψ(λ, ζ) :=

{
ϕξj ,ζ(τ(ζ)λ) if ζ ∈ Ij ,

Φ(ζ) if ζ 6∈
⋃l
j=1 Ij .

Note that ψ(λ, ζ) is holomorphic with respect to λ and continuous with
respect to (λ, ζ). Moreover, ψ(·, ζ) ∈ O(r1E,D) and ψ(0, ζ) = Φ(ζ) when
ζ ∈ ∂E,

(3) ψ(σ(ζ), ζ) = a if σ(ζ) < r1,

and

1

2π

2π\
0

log σ(eiθ) dθ <
1

2π

\
Γ

log σ(eiθ) dθ + log r1

<
1

2π

2π\
0

q(eiθ) dθ + ε−
1

2π

\
[0,2π)\Γ

q(eiθ) dθ

< A+ ε+ Cε.

Now we want to approximate ψ and σ by holomorphic (actually mero-
morphic) mappings. But applying Lemma6 to ψ and σ we may loose the im-
portant relation (3). So, we “separate” in ψ the part related to (3). Namely,
we have

ψ(λ, ζ) = a
λ

σ(ζ)
+

(
1 −

λ

σ(ζ)

)
Φ(ζ) + (λ− σ(ζ))ψ0(λ, ζ),

where

ψ0(λ, ζ) :=
ψ(λ, ζ) − a λ

σ(ζ)

λ− σ(ζ)
+
Φ(ζ)

σ(ζ)
.

Note that ψ0(λ, ζ) extends as a continuous mapping in r1E × ∂E and holo-
morphic with respect to λ.

We denote by σν(ζ) and ψ0ν(λ, ζ) the approximations of σ(ζ) and
ψ0(λ, ζ) given by Lemma 6 and define

ψν(λ, ζ) := a
λ

σν(ζ)
+

(
1 −

λ

σν(ζ)

)
Φ(ζ) + (λ− σν(ζ))ψ0ν(λ, ζ).
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If ν is large enough, then

• minζ∈∂E |σν(ζ)| > δ/2,
• ψν(·, ζ) ∈ O(r2E,D) for ζ ∈ ∂E, where 1 < r2 < r1,
• maxζ∈Γ |σν(ζ)| < 1,

•
1

2π

2π\
0

log |σν(e
iθ)| dθ <

1

2π

2π\
0

log σ(eiθ) dθ + ε < A+ 2ε+ Cε.

We fix ν so large that the above conditions are satisfied.
Note that there exists ̺ > 1 such that min1/̺<|ζ|<̺ |σν(ζ)| > δ/2, and,

therefore ψν(σν(ζ), ζ) = a if 1/̺ < |ζ| < ̺.
Let ζ1, ζ2, . . . be the zeros of σν in E counted with multiplicity. Note that

|ζj | < 1/̺ and it is a finite sequence. It is easy to see from Lemma 6 that

ζ2ν−2
∏(

ζ − ζj

1 − ζjζ

)
ψν(λ, ζ)

is a holomorphic mapping in (r3E)2, where 1 < r3 < min{r2, ̺}. We know
that ψν(0, ζ) = Φ(ζ) and, therefore, ψν(0, ·) is a holomorphic mapping on
r3E. Hence, for any k ≥ 2ν − 2,

f(λ, ζ) := ψν

(
λζk

∏(
ζ − ζj

1 − ζjζ

)
, ζ

)

is a holomorphic mapping in (r4E)2, where 1 < r4 < r3 is such that

λζk
∏(

ζ − ζj

1 − ζjζ

)
∈ r3E for (λ, ζ) ∈ (r4E)2.

Note that r4 depends on k. We want to show that we can take k so large
that f ∈ O((r4E)2,D). Note that there exists a neighborhood W1 ⊂ C of
∂E such that ψν(r3E ×W1) ⊂ D and a neighborhood W2 ⊂ C of 0 such
that ψν(W2 × r3E) ⊂ D. We can take k so large that
(
λζk

∏(
ζ − ζj

1 − ζjζ

)
, ζ

)
∈ (r3E ×W1) ∪ (W2 × r3E) if (λ, ζ) ∈ (r4E)2.

For such fixed k we have f ∈ O((r4E)2,D). Put

σ̃(ζ) :=
σν(ζ)

ζk
∏ ( ζ−ζj

1−ζjζ

) .

Let us collect the facts that we have just proved and that we shall need
in the sequel (we change the notation, putting σ in place of σ̃ and r0 in place
of r4).

There exist a holomorphic mapping f : (r0E)2 → D, r0 > 1, and a

holomorphic function σ ∈ O(r0E \ (1/r0)E) such that



Pluricomplex Green function 243

•
1

2π

2π\
0

log |σ(eiθ)| dθ < A+ 2ε+ Cε,

• f(σ(ζ), ζ) = a if |σ(ζ)| < r0 and 1/r0 < |ζ| < r0,
• minζ∈∂E |σ(ζ)| > δ/2,
• maxζ∈Γ |σ(ζ)| < 1,
• f(0, ζ) = Φ(ζ), ζ ∈ r0E.

Note that f(0, 0) = Φ(0) = z and a 6∈ f({0} × ∂E), hence there exists
̺0 > 0 such that a 6= f(ξ, ζ) for any ξ ∈ ̺0E and any ζ ∈ C such that
1 − ̺0 < |ζ| < 1 + ̺0.

Fix ζ0 ∈ Γ and η0 ∈ ∂E. For c > 0 consider the function

φc(λ) :=
η0e(λ, c) − σ(ζ0)

1 − σ(ζ0)η0e(λ, c)
.

We have |σ(ζ0)| < 1, so φc is holomorphic in E. But also σ(ζ0) 6= 0, hence
by Lemma 5, φc is a Blaschke product. Therefore |φc(0)| =

∏∞
j=1 |λj |, where

the λj are the zeros of φc counted with multiplicity. Note that

|φc(0)| =

∣∣∣∣
η0e

−c − σ(ζ0)

1 − σ(ζ0)η0e−c

∣∣∣∣ → |σ(ζ0)| as c→ ∞.

So, there exists c > 0 such that log |φc(0)| < log |σ(ζ0)| + ε and e−c < ̺0.
Fix such a c > 0. We can take s ∈ N so large that

s∑

j=1

log |λj | < log |σ(ζ0)| + ε.

We may find r < 1 such that
s∑

j=1

log
|λj |

r
< log |σ(ζ0)| + ε,

and maxj=1,...,s |λj | < r < 1. Fix such an r < 1.
There is a neighborhood U0 of ζ0 such that |σ(ζ)| < 1 for ζ ∈ U0. By

Lemma 5 for large enough k we have ζ0lk(rξ, c) ∈ U0. Therefore, for ξ ∈ ∂E
we have

(4) f(σ(ζ0lk(rξ, c)), ζ0lk(rξ, c)) = a.

Consider the functions gk(ξ) = η0l
k
k(rξ, c) − σ(ζ0lk(rξ, c)) and g∞(ξ) =

η0e(rξ, c) − σ(ζ0) for ξ ∈ E. Note that gk → g∞ uniformly on E. We know
that g∞(λj/r) = 0, j = 1, . . . , s. By the Hurwitz theorem for large enough k
we know that gk has zeros λ′1/r, . . . , λ

′
s/r close to λ1/r, . . . , λs/r such that

s∑

j=1

log
|λ′j |

r
< log |σ(ζ0)| + ε.
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So, f(η0l
k
k(λ

′
j , c), ζ0lk(λ

′
j , c)) = a, j = 1, . . . , s (use (4)). Therefore, for large

enough k it follows that 1 − ̺0 < e−c/k and

(5) H(f(η0l
k
k(rξ, c), ζ0lk(rξ, c)), a) < log |σ(ζ0)| + ε.

Hence, for any fixed ζ0 ∈ Γ and η0 ∈ ∂E there exist k ∈ N and r < 1, c > 0
such that (5) is satisfied. Therefore we may find k ∈ N, r < 1, c > 0, and
Q ⊂ ∂E × Γ such that m(Q) > 4π2 − 4πε and for any (η, ζ) ∈ Q, (5) is
satisfied, e−c < ̺0, and 1 − ̺0 < e−c/k.

Let Q∗ denote the image of Q under the mapping (η, ζ) → (ηζ−k, ζ). The
Jacobian of this mapping is equal to 1 on ∂E × ∂E, hence m(Q∗) = m(Q).
So, there exists ν ∈ ∂E such that

m({ζ ∈ ∂E : (ν, ζ) ∈ Q∗}) > 2π − 2ε.

Note that

H(f(νζklkk(rξ, c), ζlk(rξ, c)), a) < log |σ(ζ)| + ε

on S := {ζ ∈ ∂E : (ν, ζ) ∈ Q∗} ⊂ Γ and m(S) > 2π − 2ε. Consider the
mapping ϕ(ξ) := f(νξk, ξ), ξ ∈ E. Note that ϕ(0) = f(0, 0) = Φ(0) = z.
Put

h(ξ, ζ) = ζlk(rξ, c) = ζ
rξ + e−c/k

1 + re−c/kξ
, ξ, ζ ∈ ∂E.

Note that h(ξ, ζ) ∈ O(E2), a 6∈ ϕ(h({0} × ∂E)), and ϕ(h(0, 0)) = z 6= a.
Therefore, by Lemma 4 there exists α0 ∈ [0, 2π) such that

H(ϕ ◦ h(eiα0ζ, ζ), a) ≤
1

2π

2π\
0

H(ϕ ◦ h(ζ, eiθ), a) dθ.

Put ϕ̃(ξ) := ϕ(h(eiα0ξ, ξ)). Then ϕ̃ ∈ O(E,D), ϕ̃(0) = z, and

H(ϕ̃, a) = H(ϕ ◦ h(eiα0ξ, ξ), a) ≤
1

2π

2π\
0

H(ϕ ◦ h(ξ, eiθ), a) dθ

≤
1

2π

\
S

H(ϕ ◦ h(ξ, eiθ), a) dθ <
1

2π

\
S

log |σ(eiθ)| dθ + ε

=
1

2π

2π\
0

log |σ(eiθ)| dθ + ε−
1

2π

\
[0,2π)\S

log |σ(eiθ)| dθ

< A+ 3ε+ Cε−
ε

π
log

δ

2
.

Hence, g2
D(z) < A+ 3ε+Cε− (ε/π) log(δ/2). Since ε > 0 was arbitrary the

proof is complete.

Lemma 10. gD(a, z) = g5
D(a, z).
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Before we go into the proof of Lemma 10 recall the following result
(see [P2]):

Theorem 11 (Poletsky). Let G be a domain in C
n and let u be an upper

semicontinuous function in G. Then

ũ(w) = inf

{
1

2π

2π\
0

u(φ(eiθ)) dθ : φ ∈ O(E,G), φ(0) = w

}
, w ∈ G,

is a plurisubharmonic function in G. Moreover , it is equal to the supremum

of all plurisubharmonic functions v such that v ≤ u.

P r o o f o f L e m m a 10. Let us show first that for any a ∈ D the
function kD(a, ·) is upper semicontinuous in D.

Let z0 6= a and kD(a, z0) < A. There exists a holomorphic mapping
ϕ : E → D such that ϕ(0) = z0, ϕ(σ) = a, σ > 0, and log σ < A. Let

ϕw(λ) := ϕ(λ) + (w − z0)(1 − λ/σ), λ ∈ E.

For some neighborhood V of z0 we have ϕw(E) ⊂ D, w ∈ V . Note that
ϕw(0) = w and ϕw(σ) = a. Hence,

kD(a,w) < A, w ∈ V.

Assume now that z0 = a. Then kD(a, z0) = −∞. Fix A < 0 and let
ϕw(λ) := w + λe−A(a − w). Note that ϕw(0) = w and ϕw(eA) = a. For
some neighborhood V of a we have ϕw(E) ⊂ D, w ∈ V . Hence, kD(a,w) ≤
log eA = A, w ∈ V .

Hence, by Theorem 11, we conclude that g5
D is a plurisubharmonic func-

tion which is a supremum over all plurisubharmonic functions not greater
than kD. But so is gD, because gD(a,w) ≤ kD(a,w) ≤ log ‖w − a‖ − logR,
w ∈ B(a,R), where R is such that B(a,R) ⊂ D.

Lemma 12. gD(a, z) ≤ g4
D(a, z).

P r o o f. Let u ∈ PSH(D), u < 0, be such that for some M > 0 we have

u(w) ≤M + log ‖w − a‖ for w near a.

Take ϕ ∈ O(E,D) with ϕ(0) = z and a ∈ ϕ(E). Let λj , j = 1, . . . , N ,
denote the solutions in E of the equation ϕ(λ) = a without multiplicity
(if one takes solutions with multiplicities then one will get the inequality
gD(a, z) ≤ g2

D(a, z), cf. [J-P], Chapter 4). Define

f(λ) :=
N∏

j=1

λ− λj

1 − λjλ
.

Put v := u ◦ ϕ − log |f |. It is clear that v is a subharmonic function in
E \ {λ1, . . . , λN} and v is locally bounded above on E. Hence v extends
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subharmonically to E. By the maximum principle v ≤ 0. In particular,

u(z) = u(ϕ(0)) ≤ log |f(0)| =
N∑

j=1

log |λj |.

Hence gD(a, z) ≤ g4
D(a, z).
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