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Markov operators acting on Polish spaces

by Tomasz Szarek (Katowice)

Abstract. We prove a new sufficient condition for the asymptotic stability of Markov
operators acting on measures. This criterion is applied to iterated function systems.

1. Introduction. The purpose of this paper is to present a sufficient
condition for asymptotic stability of Markov operators. Our goal is to gen-
eralize results of Lasota and Yorke [6] to operators acting on Borel measures
defined on Polish spaces. The results of Lasota and Yorke are based on
the Prokhorov condition which allows one to construct a stationary distri-
bution. In our case we assume that the metric space is complete and sep-
arable (a Polish space) and consequently the space of all probability Borel
measures with a suitable metric is a complete metric space.

We will apply our criterion to Markov operators generated by iterated
function systems. This class of systems was thoroughly studied because of
their close connection with fractals [1], [2], [5], [6], [7], [9].

The organization of the paper is as follows. Section 2 contains some
notation from the theory of Markov operators. In Section 3 we give some
general conditions for asymptotic stability. These conditions are applied to
iterated function systems in Section 4.

2. Preliminaries. Let (X, ̺) be a Polish space, i.e. a separable, com-
plete metric space. This assumption will not be repeated in the statements
of theorems. By Mfin and M1 we denote the sets of Borel measures (non-
negative, σ-additive) on X such that µ(X) < ∞ and µ(X) = 1 respectively.
The elements of M1 are called distributions.

We say that µ ∈ Mfin is concentrated on a Borel set A ⊂ X if µ(X \ A)
= 0. By MA

1 we denote the set of all distributions concentrated on the Borel
set A.
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As usual, we denote by B(X) the space of all bounded Borel measurable
functions f : X → R and by C(X) the subspace of all bounded conti-
nous functions. In both spaces the norm is ‖f‖ = supx∈X |f(x)|. For X
unbounded, a continuous function V : X → [0,∞) is called a Lyapunov

function if

(2.1) lim
̺(x,x0)→∞

V (x) = ∞

for some x0 ∈ X.

An operator P : Mfin → Mfin is called a Markov operator if it satisfies
the following two conditions.

(i) positive linearity:

P (λ1µ1 + λ2µ2) = λ1P (µ1) + λ2P (µ2)

for λ1, λ2 ≥ 0 and µ1, µ2 ∈ Mfin,

(ii) preservation of the norm:

Pµ(X) = µ(X) for µ ∈ Mfin.

It is easy to prove that every Markov operator can be extended to
the space of signed measures

Msig = {µ1 − µ2 : µ1, µ2 ∈ Mfin}.

Namely for every ν ∈ Msig, ν = µ1 − µ2, we set

Pν = Pµ1 − Pµ2.

To simplify notation we write

〈f, ν〉 =
\
X

f(x) ν(dx) for f ∈ C(X), ν ∈ Msig.

An operator P is called a Feller operator if P satisfies (i)–(ii) and there
is a linear operator U : B(X) → B(X) (dual to P ) such that

(2.2) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈ Mfin

and

(2.3) Uf ∈ C(X) for f ∈ C(X).

Assume now that P and U are given. If f : X → R
+ (R+ = [0,∞)) is

a Borel measurable function, not necessarily bounded, we may assume that

Uf(x) = lim
n→∞

Ufn(x)

where (fn), fn ∈ B(X), is an increasing sequence of functions converging
pointwise to f . From the Lebesgue monotone convergence theorem it follows
that Uf satisfies (2.2).



Markov operators acting on Polish spaces 249

In the space Msig we introduce the Fortet–Mourier norm

‖ν‖ = sup{|〈f, ν〉| : f ∈ F}

where F is the subset of C(X) consisting of the functions such that |f | ≤ 1
and |f(x) − f(y)| ≤ ̺(x, y). It is known that the convergence

(2.4) lim
n→∞

‖µn − µ‖ = 0 for µn, µ ∈ M1

is equivalent to the weak convergence of (µn) to µ (see [4]).

The Markov operator is called nonexpansive if

(2.5) ‖Pµ1 − Pµ2‖ ≤ ‖µ1 − µ2‖ for µ1, µ2 ∈ M1.

Let P be a Markov operator. A measure µ ∈ Mfin is called stationary

or invariant if Pµ = µ, and P is called asymptotically stable if there exists
a stationary distribution µ⋆ such that

(2.6) lim
n→∞

‖Pnµ − µ⋆‖ = 0 for µ ∈ M1.

Clearly the distribution µ⋆ satisfying (2.6) is unique.

The operator P is called globally concentrating if it has the following
property: for every ε > 0 and every bounded Borel set A ⊂ X there exists
a bounded Borel set B ⊂ X and an integer n0 such that

(2.7) Pnµ(B) ≥ 1 − ε for n ≥ n0, µ ∈ MA
1 .

The operator P is called locally concentrating if for every ε > 0 there
exists α > 0 such that for every bounded Borel set A ⊂ X there exists a
Borel set C ⊂ X with diam C < ε and an integer n0 satisfying

(2.8) Pnµ(C) ≥ α for n ≥ n0, µ ∈ MA
1 .

R e m a r k. One can construct a Markov operator which is locally con-
centrating but is not globally concentrating.

It will be shown in Section 4 that for some IFS (S, p), the corresponding
Markov operator is both locally and globally concentrating.

3. Asymptotic stability on Polish spaces. We prove the following
criterion of stability.

Theorem 3.1. Assume that P is a nonexpansive locally and globally

concentrating Markov operator. Then P is asymptotically stable.

P r o o f. First we prove that for every µ ∈ M1 the sequence (Pnµ : n ∈
N) is convergent. Since the distributions defined on a Polish space with the
Fortet–Mourier norm form a complete metric space, it is sufficient to check
that the sequence (Pnµ : n ∈ N) satisfies the Cauchy condition. The Cauchy
condition can be expressed in the following way: there is N ∈ N such that
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(3.1) ‖PNµ1 − PNµ2‖ ≤ ε

for every µ1, µ2 ∈ {Pnµ : n ∈ N}.

The proof of (3.1) will be done in three steps.

Step I. We show that for every µ ∈ M1 and ε > 0 there exists a bounded
Borel set B ⊂ X such that

(3.2) Pnµ(B) ≥ 1 − ε for n ∈ N.

Fix ε > 0. In fact, we may take a bounded Borel set A ⊂ X such that
µ(A) ≥ 1 − ε/2. Then µ ≥ (1 − ε/2)µA, where µA ∈ MA

1 is of the form

µA(C) =
µ(C ∩ A)

µ(A)
.

By the global concentrating property of P there exists a bounded Borel set
B ⊂ X such that

PnµA(B) ≥ 1 − ε/2 for n ≥ n0(A).

Thus

Pnµ(B) ≥ 1 − ε for n ≥ n0(A).

Enlarging the set B we obtain (3.2).

Step II. We prove that the Cauchy condition is implied by the following:
for every bounded Borel set A ⊂ X and ε > 0 there exists an integer N
satisfying

‖PNµ1 − PNµ2‖ ≤ ε for µ1, µ2 ∈ MA
1 .

Fix ε > 0. By Step I we can choose a bounded Borel set A such that
µi(A) ≥ 1 − ε/4 for every µi ∈ {Pnµ : n ∈ N}, i = 1, 2. Thus

µi =

(

1 −
ε

4

)

µA
i +

ε

4
γi,

where µA
i , γi ∈ M1 and are of the form

µA
i (C) =

µi(C ∩ A)

µi(A)
, γi(C) =

4

ε

[

µi(C) −

(

1 −
ε

4

)

µA
i (C)

]

.

From the nonexpansiveness of P and the inequality ‖γ1 − γ2‖ ≤ 2 it follows
that

‖PNµ1 − PNµ2‖ ≤

(

1 −
ε

4

)

‖PNµA
1 − PNµA

2 ‖ +
ε

4
‖γ1 − γ2‖

≤

(

1 −
ε

4

)

‖PNµA
1 − PNµA

2 ‖ +
ε

2
.

Consequently, the Cauchy condition holds.
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Step III. By Step II it is enough to prove that for every bounded Borel
set A ⊂ X and ε > 0 we can choose an integer N such that

‖PNµ1 − PNµ2‖ ≤ ε for µ1, µ2 ∈ MA
1 .

Fix ε>0. Let α be such that (2.8) is satisfied for ε/4. Let δ < αε/4, A0 =
A and µ0

i = µi for i = 1, 2. By an induction argument we define a sequence
(nk)k≥1 of integers, sequences (Ak)k≥0, (Ck)k≥1 of bounded Borel sets,
diam Ck < ε/4 for k ∈ N, and sequences (µk

i )k≥0, (νk
i )k≥1, (λk

i )k≥1, (τk
i )k≥1

of distributions, i = 1, 2, such that µk
i ∈ MAk

1 , νk
i ∈ MCk

1 and

Pnkµk−1
i = (1 − δ)λk

i + δτk
i ,(3.3)

λk
i = (1 − α)µk

i + ανk
i(3.4)

and nk, Ak, Ck depend only on Ak−1.

Let A0 = A and µ0
i = µi for i = 1, 2. If k ≥ 1 is fixed and µk−1

i , Ak−1 are
given, we choose, according to the global and local concentrating property
of P , an integer nk and sets Ak, Ck such that

Pnkµk−1
i (Ak) ≥ 1 − δ, Pnkµk−1

i (Ck) ≥ α for i = 1, 2,

where nk, Ak, Ck depend only on Ak−1, and diam Ck < ε/4. Without loss of
generality we assume that Ck ⊂ Ak. Then we define

λk
i (B) =

Pnkµk−1
i (B ∩ Ak)

Pnkµk−1
i (Ak)

,

τk
i (B) =

1

δ
[Pnkµk−1

i (B) − (1 − δ)λk
i (B)].

Obviously, λk
i (Ck) ≥ α and we can define

νk
i (B) =

λk
i (B ∩ Ck)

λk
i (Ck)

, µk
i (B) =

1

1 − α
[λk

i (B) − ανk
i (B)].

It is clear that µk
i ∈ MAk

1 and νk
i ∈ MCk

1 . Since νk
i (X − Ck) = 0 we have

‖νk
1 − νk

2 ‖ = sup
f∈F

∣

∣

∣

\
X

f dνk
1 −
\
X

f dνk
2

∣

∣

∣
(3.5)

= sup
f∈F

∣

∣

∣

\
C

f dνk
1 −
\
C

f dνk
2 | ≤ diam Ck ≤

ε

4
.

Setting a = (1 − δ)(1 − α) and using equations (3.3), (3.4), it is easy to
verify, by an induction argument, that

Pn1+n2+...+nkµi = akµk
i + (1 − δ)αak−1νk

i + δak−1τk
i

+ (1 − δ)αak−2Pnkνk−1
i + δak−2Pnkτk−1

i

+ . . . + (1 − δ)αPn2+...+nkν1
i + δPn2+...+nkτ1

i .
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Since P is nonexpansive this implies

‖Pn1+n2+...+nk(µ1 − µ2)‖

≤ ak‖µk
1 − µk

2‖ + (1 − δ)αak−1‖νk
1 − νk

2 ‖ + δak−1‖τk
1 − τk

2 ‖

+ (1 − δ)αak−2‖νk−1
1 − νk−1

2 ‖ + δak−2‖τk−1
1 − τk−1

2 ‖

+ . . . + (1 − δ)α‖ν1
1 − ν1

2‖ + δ‖τ1
1 − τ1

2 ‖.

From this, condition (3.5) and the obvious inequalities ‖µk
1 − µk

2‖ ≤ 2 and
‖τ1

1 − τ1
2 ‖ ≤ 2, it follows that

‖Pn1+...+nk(µ1 − µ2)‖ ≤
2

3
ε + 2ak.

By Step II the sequence (Pnµ : n ∈ N) satisfies the Cauchy condition.
Thus (Pnµ : n ∈ N) converges to some µ⋆ ∈ M1. Obviously Pµ⋆ = µ⋆.

Finally, let µ1, µ2 ∈ M1. Fix ε > 0. As in Step II we can write

µi =

(

1 −
ε

4

)

µA
i +

ε

4
γi,

where µA
i ∈ MA

1 for some bounded Borel set A and γi ∈ M1, i = 1, 2. We
have

‖Pnµ1 − Pnµ2‖ ≤

(

1 −
ε

4

)

‖PnµA
1 − PnµA

2 ‖ +
ε

4
‖γ1 − γ2‖

≤

(

1 −
ε

4

)

‖PnµA
1 − PnµA

2 ‖ +
ε

2
.

Thus by Step III and nonexpansiveness of P we have for some N ∈ N,

‖Pnµ1 − Pnµ2‖ ≤ ε for n ≥ N.

4. Iterated function systems. In this section we consider some special
Markov operators describing the evolution of measures due to the action
of a randomly chosen transformation. Assume we are given a sequence of
transformations

Sk : X → X, k = 1, . . . , N,

and a probability vector

(p1(x), . . . , pN (x)), pi(x) ≥ 0,
N

∑

i=1

pi(x) = 1,

which depends on the position x.
We are going to study the Feller operator [5], [6]

(4.1) Pµ(A) =
N

∑

k=1

\
S

−1

k
(A)

pk(x) µ(dx).
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Its adjoint operator U : C(X) → C(X) is

Uf(x) =
N

∑

k=1

pk(x)f(Sk(x)).

To simplify the language we will say that the Iterated Function System

(S, p)N = (S1, . . . , SN : p1, . . . , pN )

is nonexpansive or asymptotically stable if the Markov operator (4.1) has
the corresponding property. We are going to change the metric ̺ in the Pol-
ish space (X, ̺) in such a way that the new space remains a Polish space
and the Feller operator P is nonexpansive.

We introduce the class Φ of functions ϕ : R
+ → R

+ satisfying the fol-
lowing conditions:

(i) ϕ is continuous and ϕ(0) = 0;

(ii) ϕ is nondecreasing and concave, i.e. 1
2ϕ(t1) + 1

2ϕ(t2) ≤ ϕ
(

t1+t2
2

)

for
t1, t2 ∈ R

+;

(iii) ϕ(x) > 0 for x > 0 and limx→∞ ϕ(x) = ∞.

We denote by Φ0 the family of functions satisfying (i)–(ii). It is easy to
see that for every ϕ ∈ Φ the function

̺ϕ(x, y) = ϕ(̺(x, y)) for x, y ∈ X

is again a metric on X and (X, ̺ϕ) is a Polish space.

In our considerations an important role is played by the inequality

(4.2) ω(t) + ϕ(r(t)) ≤ ϕ(t) for t ≥ 0.

Lasota and Yorke [6] discussed three special cases for which inequality (4.2)
has solutions belonging to Φ.

Case I: Dini condition. Assume that ω ∈ Φ0 satisfies the Dini condi-
tion, i.e.

ε\
0

ω(t)

t
dt < ∞ for some ε > 0

and r(t) = ct, 0 ≤ c < 1.

Case II: Hölder condition. Assume that ω ∈ Φ0,

ω(t) ≤ atβ ,

where a > 0 and β > 0 are constants, r ∈ Φ0, r(t) < t and

0 ≤ r(t) ≤ t − tα+1b for 0 ≤ t ≤ ε,

where α > 0, b > 0 and ε > 0 are constants.
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Case III: Lipschitz condition. Assume that ω ∈ Φ0,

ω(t) ≤ at,

where a > 0 is a constant, and r ∈ Φ0 satisfies the conditions

0 ≤ r(t) < t for t > 0,
ε\
0

t dt

t − r(t)
< ∞ for some ε > 0.

In Cases I–III the iterates rn of the function r converge to 0 and the func-
tion

ϕ(t) = t +

∞
∑

n=0

ω(rn(t))

is a solution of the inequality (4.2) from Φ.

Now assume that
N

∑

k=1

|pk(x) − pk(y)| ≤ ω(̺(x, y)),(4.3)

N
∑

k=1

pk(x)̺(Sk(x), Sk(y)) ≤ r(̺(x, y)).(4.4)

We have

‖Pµ1 − Pµ2‖ϕ := sup
Fϕ

|〈f, Pµ1 − Pµ2〉| = sup
Fϕ

|〈Uf, µ1 − µ2〉|,

where Fϕ is the set of all functions on X such that |f | ≤ 1 and

|f(x) − f(y)| ≤ ̺ϕ(x, y).

The operator P is nonexpansive with respect to ̺ϕ if Uf ∈ Fϕ for f ∈ Fϕ.
Of course |Uf | ≤ 1, so we have to prove that

(4.5) |Uf(x) − Uf(y)| ≤ ̺ϕ(x, y).

We have

|Uf(x) − Uf(y)| =
∣

∣

∣

N
∑

k=1

pk(x)f(Sk(x)) −
N

∑

k=1

pk(y)f(Sk(y))
∣

∣

∣

≤
N

∑

k=1

|pk(x) − pk(y)| +
N

∑

k=1

pk(y)|f(Sk(x)) − f(Sk(y))|

≤ ω(̺(x, y)) +

N
∑

k=1

pk(y)ϕ(̺(Sk(x), Sk(y))
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≤ ω(̺(x, y)) + ϕ
(

N
∑

k=1

pk(y)̺(Sk(x), Sk(y))
)

= ω(̺(x, y)) + ϕ(r(̺(x, y))).

If the pair (ω, r) satisfies the conditions formulated in one of Cases I–III and
ϕ is a solution of the inequality (4.2), then (4.5) is satisfied.

Now we prove the following lemma.

Lemma 4.1. Let P be a Feller operator and U its dual. Assume that there

is a Lyapunov function V such that V is bounded on bounded sets and

(4.6) UV (x) ≤ aV (x) + b for x ∈ X

where a,b are nonnegative constants and a < 1. Then P is globally concen-

trating.

P r o o f. From (4.6) it follows that

UnV (x) ≤ anV (x) +
b

1 − a
.

Fix ε > 0. Let A be a bounded Borel set and µ ∈ M1. Let

B = {x : V (x) ≤ q},

where q > 2b/((1 − a)ε). From the Chebyshev inequality we obtain

Pnµ(B) ≥ 1 −
1

q

\
X

V (x) Pnµ(dx) = 1 −
1

q

\
X

UnV (x) dµ

≥ 1 −
1

q

(

an
\
X

V (x) dµ +
b

1 − a

)

≥ 1 −
ε

2
−

an

q

\
X

V (x) dµ

≥ 1 −
ε

2
−

an

q
sup
x∈A

V (x).

Consequently, there exists an integer n0 such that

Pnµ(B) ≥ 1 − ε for n ≥ n0, µ ∈ MA
1 .

Now we prove the main theorem of this paper.

Theorem 4.2. Assume that the pair (ω, r) defined by (4.3), (4.4) satisfies

the conditions of one of Cases I–III. Moreover , assume that

(4.7) inf
x∈X

pk(x) > 0 for k = 1, . . . , N.

Finally , suppose that for every bounded Borel set B ⊂ X and every ε > 0
there exists an integer n0 and a sequence (i1, . . . , in0

), i1, . . . , in0
∈ {1, . . .

. . . , N}, such that

(4.8) diam(Sin0
◦ . . . ◦ Si1(B)) < ε.

Then the system (S, p)N is asymptotically stable.
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P r o o f. We show that the Markov operator corresponding to (S, p)N

satisfies the assumptions of Lemma 4.1.

It is easy to check that

N
∑

k=1

pk(x)̺(Sk(x), x0) ≤ r(1)̺(x, x0) + r(1) + max
1≤k≤N

̺(Sk(x0), x0).

Thus the assumptions of Lemma 4.1 are satisfied with V (x) = ̺(x, x0), a =
r(1) < 1 and b = r(1)+max1≤k≤N ̺(Sk(x0), x0). From Lemma 4.1, it follows
that P is globally concentrating. Since the conditions required in one of
Cases I–III are satisfied, there is a solution ϕ ∈ Φ of (4.2) and the system
(S, p)N is nonexpansive with respect to the metric ̺ϕ = ϕ ◦ ̺.

By an induction argument it is easy to verify that

(4.9) Pnµ(A) = 〈1A, Pnµ〉 = 〈Un1A, µ〉

=
∑

k1,...,kn

\
X

pk1
(x) . . . pkn

(Skn−1,...,k1
(x))1A(Skn,...,k1

(x)) dµ(x),

where Skn,...,k1
= Skn

◦ . . . ◦ Sk1
.

We end the proof when we show that the operator P is locally concen-
trating. Following the proof of Lemma 4.1 it is easy to show that for the set

B = {x : V (x) ≤ 2b/(1 − a)},

for every bounded Borel set A there exists an integer n0 such that

Pnµ(B) ≥ 1/4 for n ≥ n0, µ ∈ MA
1 .

Fix ε > 0. Using (4.8) we can take n1 ∈ N and a sequence (i1, . . . , in1
),

i1, . . . , in1
∈ {1, . . . , N}, such that

ϕ(diam(Si1 ◦ . . . ◦ Sin1
(B))) ≤ ε.

Let C = Si1 ◦ . . . ◦ Sin1
(B). We have

diam̺ϕ
(C) = ϕ(diam C) ≤ ε.

Fix a bounded Borel set A ⊂ X. There exists an integer n0 such that

Pnµ(B) ≥ 1/4 for n ≥ n0, µ ∈ MA
1 .

Thus for n ≥ n1 + n0 using (4.9) we have

Pnµ(C) = Pn1(Pn−n1µ)(C)

=
∑

k1,...,kn1

\
X

pk1
(x) . . . pkn1

(Skn1−1,...,k1
(x))1

C
(Skn1

,...,k1
(x)) dPn−n1µ(x)
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≥
\
X

pi1(x) . . . pin1
(Sin1−1,...,i1(x))1

C
(Sin1

,...,i1(x)) dPn−n1µ(x)

≥ inf
x∈X

pi1(x) . . . inf
x∈X

pin1
(x)Pn−n1µ(B)

≥ inf
x∈X

pi1(x) . . . inf
x∈X

pin1
(x) ·

1

4
.

Thus P is locally concentrating. According to Theorem 3.1 the proof is
complete.

Example. It is interesting to compare our results with a theorem of
K.  Loskot and R. Rudnicki. Their result assures the asymptotic stability of
(S, p)N under the following conditions:

(i) (X, ̺) is a Polish space,
(ii) pk : X → R, k = 1, . . . , N, are constant,

(iii) Sk : X → X, k = 1, . . . , N, are Lipschitzian,

(iv)
∑N

k=1 pkLk < 1, where Lk is the Lipschitz constant of Sk.

It is easy to check that the assumptions formulated in Theorem 4.2 are
satisfied. The asymptotic stability of this system follows from our Theorem.
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