A Schwarz lemma on complex ellipsoids

by HIDETAKA HAMADA (Kitakyushu)

Abstract. We give a Schwarz lemma on complex ellipsoids.

1. Introduction. Let $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disc in \mathbb{C} . The Schwarz lemma in one complex variable is as follows.

THEOREM 1. (i) Let $f : \Delta \to \Delta$ be a holomorphic map such that f(0) = 0. Then $|f(z)| \leq |z|$ for all $z \in \Delta$.

(ii) If, moreover, there exists $z_0 \in \Delta \setminus \{0\}$ such that $|f(z_0)| = |z_0|$, or if |f'(0)| = 1, then there exists a complex number λ of absolute value 1 such that $f(z) = \lambda z$ and f is an automorphism of Δ .

Let D be the unit ball in \mathbb{C}^n for some norm $\|\cdot\|$, and let $f: D \to D$ be a holomorphic map such that f(0) = 0. By the Hahn–Banach theorem, we have $\|f(z)\| \leq \|z\|$ for all $z \in D$. As a generalization of part (ii) of the above theorem, Vigué [7] proved the following.

THEOREM 2. Let D be the unit ball in \mathbb{C}^n for some norm $\|\cdot\|$, and let $f: D \to D$ be a holomorphic map such that f(0) = 0. Assume that every boundary point of D is a complex extreme point of \overline{D} . If one of the following conditions is satisfied, then f is a linear automorphism of \mathbb{C}^n .

- (H₁) There exists a nonempty open subset U of D such that ||f(x)|| = ||x|| on U.
- (H₂) There exists a nonempty open subset U of D such that $c_D(f(0), f(x)) = c_D(0, x)$ on U, where c_D denotes the Carathéodory distance on D.
- (H₃) There exists a nonempty open subset V of $T_0(D)$ such that $E_D(f(0), f'(0)v) = E_D(0, v)$ on V, where E_D denotes the infinitesimal Carathéodory metric on D.

¹⁹⁹¹ Mathematics Subject Classification: Primary 32A10.

Key words and phrases: Schwarz lemma, complex ellipsoid, extreme point, balanced domain, Minkowski function, geodesics.

^[269]

H. Hamada

Moreover, he showed that if there exists a point $a \in U \setminus \{0\}$ such that f(a) = a, or if the boundary ∂D of D is a real-analytic submanifold of \mathbb{C}^n , then f is a linear automorphism of D. As a corollary, he proved that if D is the unit ball of \mathbb{C}^n for the Euclidean norm on \mathbb{C}^n , then f is a linear automorphism of D. But, in the above results, the conditions (H₁) and (H₂) are strong, because a point in Δ is of codimension 1 and an open set in D is of codimension 0. The author [2] announced that Vigué's results hold under the hypothesis that one of the conditions (H₁), (H₂) is satisfied for some local complex submanifold of codimension 1 instead of an open subset.

The aim of the present paper is to consider an analogous result on complex ellipsoids $\mathcal{E}(p)$. However, $\mathcal{E}(p)$ is not convex in general. For a bounded balanced convex domain D, the Minkowski function h of D is a norm on \mathbb{C}^n and D is the unit ball in \mathbb{C}^n with respect to this norm. Also, $c_D = \tilde{k}_D$ and $E_D = \kappa_D$ in the convex case (Lempert [4], [5], Royden–Wong [6]), where \tilde{k}_D is the Lempert function and κ_D is the the Kobayashi–Royden pseudometric for D. So we use h, \tilde{k}_D and κ_D instead of $\|\cdot\|, c_D$ and E_D . First we give a theorem on some bounded balanced pseudoconvex domains which corresponds to Theorem 2. Then we show that if $D = \mathcal{E}(p)$, then f is a linear automorphism of $\mathcal{E}(p)$. We also give an example showing that our hypothesis cannot be weakened.

Some ideas of this paper come from Dini–Primicerio [1] and Vigué [7], [8].

2. Main results. The Lempert function \widetilde{k}_D and the Kobayashi–Royden pseudometric κ_D for a domain D in \mathbb{C}^n are defined as follows:

$$k_D(x,y) = \inf \{ \varrho(\xi,\eta) \mid \xi, \eta \in \Delta, \ \exists \varphi \in H(\Delta,D) \text{ such that} \\ \varphi(\xi) = x, \ \varphi(\eta) = y \}, \\ \kappa_D(z;X) = \inf \{ \gamma(\lambda) |\alpha| \mid \exists \varphi \in H(\Delta,D), \ \exists \lambda \in \Delta \text{ such that} \\ \varphi(\lambda) = z, \ \alpha \varphi'(\lambda) = X \},$$

where ρ is the Poincaré distance on the unit disc Δ and $\gamma(\lambda) = 1/(1-|\lambda|^2)$.

Let D be a balanced pseudoconvex domain with Minkowski function h in \mathbb{C}^n . Then we have (Propositions 3.1.10 and 3.5.3 of Jarnicki and Pflug [3])

(1)
$$k_D(0,x) = \varrho(0,h(x)) \quad \text{for any } x \text{ in } D,$$

(2)
$$\kappa_D(0, X) = h(X)$$
 for any X in \mathbb{C}^n .

Let f be a holomorphic map from D to D such that f(0) = 0. By (1) and the distance decreasing property of the Lempert functions, we have

$$\varrho(0, h(z)) = k_D(0, z) \ge k_D(0, f(z)) = \varrho(0, h(f(z))).$$

Since $\rho(0, r)$ is increasing for $0 \le r < 1$, we obtain $h(f(z)) \le h(z)$. This is a generalization of part (i) of the Schwarz lemma to balanced pseudoconvex domains.

A boundary point x of D is said to be an *extreme point* of \overline{D} if there is no non-constant holomorphic mapping $g: \Delta \to \overline{D}$ with x = g(0). For example, C^2 -smooth strictly pseudoconvex boundary points are extreme points (p. 257 of Jarnicki and Pflug [3]).

A mapping $\varphi \in H(\Delta, D)$ is said to be a *complex* \widetilde{k}_D -geodesic for (x, y) if there exist points $\xi, \eta \in \Delta$ such that $\varphi(\xi) = x, \varphi(\eta) = y$, and $\widetilde{k}_D(x, y) = \varrho(\xi, \eta)$.

A mapping $\varphi \in H(\Delta, D)$ is said to be a *complex* κ_D -geodesic for (z, X) if there exist $\lambda \in \Delta$ and $\alpha \in \mathbb{C}$ such that $\varphi(\lambda) = z$, $\alpha \varphi'(\lambda) = X$, and $\kappa_D(z, X) = \gamma(\lambda)|\alpha|$.

Using (1), (2) and complex k_D -geodesics or κ_D -geodesics, we have the following proposition (cf. Vigué [7], [8], Hamada [2]).

PROPOSITION 1. Let D_j be bounded balanced pseudoconvex domains with Minkowski functions h_j in \mathbb{C}^{n_j} for j = 1, 2, and let $f : D_1 \to D_2$ be a holomorphic map such that f(0) = 0. Let $f(z) = \sum_{m=1}^{\infty} P_m(z)$ be the development of f in vector-valued homogeneous polynomials P_m in a neighborhood of 0, where deg $P_m = m$ for each m. Let $x \in D_1 \setminus \{0\}$. If one of the following conditions is satisfied, then we have $P_m(x) = 0$ for $m \ge 2$.

- (H'_1) $h_2(f(x)) = h_1(x)$ and $f(x)/h_2(f(x))$ is an extreme point of \overline{D}_2 .
- (H₂) $\tilde{k}_{D_2}(f(0), f(x)) = \tilde{k}_{D_1}(0, x)$ and $f(x)/h_2(f(x))$ is an extreme point of \overline{D}_2 .
- (H'₃) $\kappa_{D_2}(f(0), f'(0)x) = \kappa_{D_1}(0, x)$ and $f'(0)x/h_2(f'(0)x)$ is an extreme point of \overline{D}_2 .

Proof. By (1), the conditions (H'_1) and (H'_2) are equivalent. Let

$$\varphi(\zeta) = \zeta \frac{x}{h_1(x)}.$$

Then φ is a complex \tilde{k}_{D_1} -geodesic and κ_{D_1} -geodesic for (0, x). Suppose that (H'_1) or (H'_2) is satisfied. Since

$$\widetilde{k}_{D_2}(f\circ\varphi(0),f\circ\varphi(h_1(x)))=\widetilde{k}_{D_2}(0,f(x))=\widetilde{k}_{D_1}(0,x)=\varrho(0,h_1(x)),$$

 $f \circ \varphi$ is a complex \widetilde{k}_{D_2} -geodesic for (0, f(x)). By Proposition 8.3.5(a) of Jarnicki and Pflug [3],

$$f \circ \varphi(\zeta) = \zeta \frac{f(x)}{h_2(f(x))}$$

Since

$$f \circ \varphi(\zeta) = \sum P_m\left(\zeta \frac{x}{h_1(x)}\right) = \sum \left(\frac{\zeta}{h_1(x)}\right)^m P_m(x)$$

or head of 0, $P_m(x) = 0$ for $m \ge 2$

in a neighborhood of 0, $P_m(x) = 0$ for $m \ge 2$.

Suppose that (H'_3) is satisfied. Since

 $\kappa_{D_2}(0, f'(0)x) = \kappa_{D_1}(0, x) = h_1(x)$ and $h_1(x)(f \circ \varphi)'(0) = f'(0)x$,

 $f \circ \varphi$ is a complex κ_{D_2} -geodesic for (0, f'(0)x). By Proposition 8.3.5(a) of Jarnicki and Pflug [3],

$$f \circ \varphi(\zeta) = \zeta e^{i\theta} \frac{f'(0)x}{h_2(f'(0)x)}$$

for some $\theta \in \mathbb{R}$. The rest of the argument is the same as above. This completes the proof.

The following proposition is a key for proving our theorem (Hamada [2]).

PROPOSITION 2. Let U be an open subset of \mathbb{C}^n . Let M be a complex submanifold of U of dimension n-1. Assume that there exists a point a in M such that $a + T_a(M)$ does not contain the origin. Then there exists a neighborhood U_1 of a in \mathbb{C}^n such that $U_1 \subset \mathbb{C}M = \{tx \mid t \in \mathbb{C}, x \in M\}$.

 ${\rm P\,r\,o\,o\,f.}\,$ To prove this proposition, it is enough to prove the following claim.

CLAIM. For any x in M, let g(x) be the intersection point of $a + T_a(M)$ and the complex line through x and the origin O. Then g is a biholomorphic map from a neighborhood W_M of a in M onto a neighborhood W_T of a in $a + T_a(M)$.

Assume the claim is proved. Since there exists an open neighborhood U_1 of a in \mathbb{C}^n such that $U_1 \subset \mathbb{C}W_T$, we obtain $U_1 \subset \mathbb{C}M$.

Now we will prove the claim. By an affine coordinate change, we may assume that a = 0, $M = \{z_n = \psi(z')\}$ with $\psi(0) = 0$, $d\psi(0) = 0$, where $(z', z_n) \in \mathbb{C}^n$. Then $(z', \psi(z'))$ gives a local parametrization of M at a, $a + T_a(M) = \{z_n = 0\}$ and $O = (b_1, \ldots, b_n)$ with $b_n \neq 0$. Let $g(z', \psi(z')) =$ $(g_1(z'), \ldots, g_{n-1}(z'), 0)$. Since

$$g_i(z',\psi(z')) = b_i + \frac{b_n}{b_n - \psi(z')}(z_i - b_i)$$

for sufficiently small z', we have

ລ.

$$\frac{\partial g_i}{\partial z_j}(0) = \delta_{ij} \quad (1 \le i, j \le n-1).$$

Therefore g is biholomorphic in a neighborhood W_M of a. This completes the proof.

From now on, we assume that D is a bounded balanced pseudoconvex domain in \mathbb{C}^n which satisfies the following condition:

(*) For any $1 \le j_1 < \ldots < j_k \le n \ (0 \le k \le n-1)$, let

$$D = D \cap \{z_{j_1} = \ldots = z_{j_k} = 0\}$$

be a domain in \mathbb{C}^{n-k} . Then every point of $\partial \widetilde{D} \cap (\mathbb{C}^*)^{n-k}$ is an extreme point of $\overline{\widetilde{D}}$.

By the above two propositions, we have the following theorem.

THEOREM 3. Let D be a bounded balanced pseudoconvex domain with Minkowski function h in \mathbb{C}^n which satisfies the condition (*), and let $f : D \to D$ be a holomorphic map such that f(0) = 0. Let M be a connected complex submanifold of dimension n-1 of an open subset U of D such that $a+T_a(M)$ does not contain the origin for some a in M. Let V be a connected open subset of $T_0(D)$. If one of the following conditions is satisfied, then f is a linear automorphism of \mathbb{C}^n .

- $(H_1'') h(f(x)) = h(x) \text{ on } M.$
- $(H_2'') \ \widetilde{k}_D(f(0), f(x)) = \widetilde{k}_D(0, x) \ on \ M.$
- $(\mathbf{H}_{3}'') \kappa_{D}(f(0), f'(0)v) = \kappa_{D}(0, v) \text{ on } V.$

Proof. Suppose that (H''_1) or (H''_2) is satisfied. We may assume that for any $a \in M$, $a + T_a(M)$ does not contain the origin, the functions f_1, \ldots, f_k do not vanish on M and the functions f_{k+1}, \ldots, f_n are identically 0 on Mfor some $k, 1 \leq k \leq n$. Let

$$D = D \cap \{z_{k+1} = \dots = z_n = 0\}$$
 and $f = (f_1, \dots, f_k).$

Then \widetilde{D} is a bounded balanced pseudoconvex domain in \mathbb{C}^k with Minkowski function $\widetilde{h} = h | \widetilde{D}$, and \widetilde{f} is a holomorphic map from D to \widetilde{D} with $\widetilde{f}(0) = 0$. Since the functions f_1, \ldots, f_k do not vanish on M, $\widetilde{f}(x)/\widetilde{h}(\widetilde{f}(x))$ is an extreme point of $\overline{\widetilde{D}}$ for any $x \in M$. Let

$$\widetilde{f}(z) = \sum_{m=1}^{\infty} P_m(z)$$

be the development of \tilde{f} in vector-valued homogeneous polynomials P_m in a neighborhood of 0, where deg $P_m = m$ for each m. Since $\tilde{h}(\tilde{f}(x)) = h(f(x)) = h(x)$ on M, we have $P_m(x) = 0$ on a nonempty open subset U_1 of D for $m \ge 2$ by Propositions 1 and 2. By the analytic continuation theorem, P_m is identically 0 for $m \ge 2$. Therefore \tilde{f} is linear. By Proposition 2, we have $\tilde{h}(\tilde{f}(x)) = h(x)$ on U_1 . We can show that $\operatorname{Ker}(\tilde{f}) = 0$ as in Vigué [7]. Then k must be n and f is a linear automorphism of \mathbb{C}^n .

Suppose that (H''_3) is satisfied. We may assume that $\partial f_1(0), \ldots, \partial f_k(0)$ are not 0 and $\partial f_{k+1}(0), \ldots, \partial f_n(0)$ are 0 for some $k, 1 \le k \le n$. Let

$$\widetilde{D} = D \cap \{z_{k+1} = \ldots = z_n = 0\}$$
 and $\widetilde{f} = (f_1, \ldots, f_k).$

Then \widetilde{D} is a bounded balanced pseudoconvex domain in \mathbb{C}^k with Minkowski function $\widetilde{h} = h | \widetilde{D}$, and \widetilde{f} is a holomorphic map from D to \widetilde{D} with $\widetilde{f}(0) = 0$.

We may assume that $\partial f_1(0) \cdot (\sum v_j \partial / \partial z_j), \ldots, \partial f_k(0) \cdot (\sum v_j \partial / \partial z_j)$ do not vanish for any $v \in V$. Then $\tilde{f}'(0)v/\tilde{h}(\tilde{f}'(0)v)$ is an extreme point of \tilde{D} for any $v \in V$. The rest of the argument is the same as above. This completes the proof.

For
$$p = (p_1, \dots, p_n)$$
 with $p_1, \dots, p_n > 0$, let
 $\mathcal{E}(p) = \left\{ (z_1, \dots, z_n) \mid \sum_{j=1}^n |z_j|^{2p_j} < 1 \right\}.$

Then $\mathcal{E}(p)$ is a bounded balanced pseudoconvex domain which satisfies the condition (*) (cf. p. 264 of Jarnicki and Pflug [3]). Let f be a holomorphic map from $\mathcal{E}(p)$ to itself which satisfies the condition of Theorem 3. Then f is a linear automorphism of \mathbb{C}^n by Theorem 3. Moreover, we can show that f is a linear automorphism of $\mathcal{E}(p)$ using the idea of Dini and Primicerio [1].

THEOREM 4. Let f be a holomorphic map from $\mathcal{E}(p)$ to itself such that f(0) = 0. Let M be a connected complex submanifold of dimension n - 1 of an open subset U of $\mathcal{E}(p)$ such that $a + T_a(M)$ does not contain the origin for some a in M. Let V be a connected open subset of $T_0(D)$. If one of the following conditions is satisfied, then f is a linear automorphism of $\mathcal{E}(p)$.

- $\begin{array}{l} (\mathrm{H}_{1}'') \ h(f(x)) = h(x) \ on \ M, \ where \ h \ is \ the \ Minkowski \ function \ of \ \mathcal{E}(p). \\ (\mathrm{H}_{2}'') \ \widetilde{k}_{\mathcal{E}(p)}(f(0), f(x)) = \widetilde{k}_{\mathcal{E}(p)}(0, x) \ on \ M. \end{array}$
- $(\mathbf{H}''_3) \kappa_{\mathcal{E}(p)}(f(0), f'(0)v) = \kappa_{\mathcal{E}(p)}(0, v) \text{ on } V.$

Proof. By Theorem 3 and its proof, we may assume that f is a linear automorphism of \mathbb{C}^n and there exists an open set U_1 in $\mathcal{E}(p)$ such that on U_1 , the functions $z_1, \ldots, z_n, f_1, \ldots, f_n$ do not vanish and h(f(x)) = h(x). Then there exists an open connected set U_2 in \mathbb{C}^n such that:

- 1) $U_2 \cap \partial \mathcal{E}(p) \neq \emptyset$,
- 2) the mapping $g = (z_1^{p_1}, \ldots, z_n^{p_n})$ is well-defined and 1-1 on U_2 and $f(U_2)$,
- 3) $f(U_2 \cap \partial \mathcal{E}(p)) \subset \partial \mathcal{E}(p).$

Then the map $F = g \circ f \circ g^{-1}$ is holomorphic and 1-1 on $g(U_2)$ and $F(g(U_2) \cap \partial \mathbb{B}^n) \subset \partial \mathbb{B}^n$. By the proof of Theorem 1.1 and Corollary 1.2 of Dini and Primicerio [1], f is a linear automorphism of $\mathcal{E}(p)$.

COROLLARY 1. Let f be a holomorphic map from $D = \{(z_1, \ldots, z_n) \mid \|z\|_q^q = \sum_{j=1}^n |z_j|^q < 1\}$ $(q \ge 1)$ to itself such that f(0) = 0. Let M be a connected complex submanifold of dimension n - 1 of an open subset U of D such that $a + T_a(M)$ does not contain the origin for some a in M. Let V be a connected open subset of $T_0(D)$. If one of the following conditions is satisfied, then f is a linear automorphism of D.

 $(\mathbf{H}_1'') \|f(x)\|_q = \|x\|_q \text{ on } M.$

$$(H_2'') k_D(f(0), f(x)) = k_D(0, x) \text{ on } M.$$

 $(\mathbf{H}_{3}^{\prime\prime}) \kappa_{D}(f(0), f'(0)v) = \kappa_{D}(0, v) \text{ on } V.$

EXAMPLE 1. Let $f(z) = (z_1, \ldots, z_{n-1}, z_n^2)$. Then f maps $\mathcal{E}(p)$ into itself and f(0) = 0.

(i) Let $M = \{z_n = 0\}$. We have h(f(z)) = h(z) on M. Since f is not linear, the condition that $a + T_a(M)$ does not contain the origin cannot be omitted.

(ii) For $k \ge 2$, let $M_{n-k} = \{z_{n-k+1} = b, z_{n-k+2} = \ldots = z_n = 0\}$, where $b \ne 0$. The complex dimension of M_{n-k} is n-k, and for any $a \in M_{n-k}$, $a+T_a(M)$ does not contain the origin. Since h(f(z)) = h(z) on M_{n-k} and f is not linear, the condition that the complex dimension of M is n-1 cannot be omitted.

References

- G. Dini and A. S. Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. (4) 158 (1991), 219–229.
- [2] H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third International Colloquium on Finite or Infinite Dimensional Complex Analysis (Seoul, 1995), Kyushu Univ. Co-op., Fukuoka, Japan, 1995, 105–110.
- M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993.
- [4] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261.
- [5] —, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications '81, Bulgar. Acad. Sci., Sophia, 1984, 341–364.
- [6] H. L. Royden and P. M. Wong, *Carathéodory and Kobayashi metrics on convex domains*, preprint.
- J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 293-304.
- [8] —, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241–249.

Faculty of Engineering Kyushu Kyoritsu University Jiyugaoka, Yahatanishi-ku Kitakyushu 807, Japan E-mail: hamada@kyukyo-u.ac.jp

> Reçu par la Rédaction le 29.4.1996 Révisé le 20.11.1996