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On a semilinear elliptic eigenvalue problem

by Mario Michele Coclite (Bari)

Abstract. We obtain a description of the spectrum and estimates for generalized
positive solutions of −∆u = λ(f(x) + h(u)) in Ω, u|∂Ω = 0, where f(x) and h(u) satisfy
minimal regularity assumptions.

Introduction. From various points of view there is still interest in the
eigenvalue problem

(∗) −∆u = λ(f(x) + h(u)) in Ω, u|∂Ω = 0,

where Ω ⊂ R
N , 2 ≤ N , is bounded. Following the terminology of Kras-

nosel’skĭı we define the spectrum of (∗) to be the set of the values λ for
which there exist positive solutions of (∗). Various authors have obtained a
description of the spectrum of the more general problem than (∗), i.e.

−∆u = λf(x, u) in Ω, u|∂Ω = 0,

where f(x, u) satisfies some regularity hypotheses and some increasing
and/or convexity conditions with respect to u (see, for example, [7; 11; 13;
14]). When λ = 1 in (∗), the questions of multiplicity of solutions arise. As
is well known this last problem has exhaustive answers if f(x) = 0. When
f(x) 6= 0 the existence of solutions is in general an open question. Neverthe-
less if h(u) increases more slowly than up, p < 2∗ − 1 = (n + 2)/(n − 2), as
u → ∞ some multiplicity results have been obtained utilizing recent meth-
ods of the Calculus of Variations (see, for example, [1; 2; 6; 15]). Recently
G. Bonanno and S. A. Marano in [3; 4] have demonstrated, together with
an existence result for (∗), also an estimate from below of the supremum of
the spectrum of (∗).

In this paper we obtain, under minimal assumptions on f(x) and h(u),
a description of the spectrum and estimates of the generalized positive solu-
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tions of (∗) near ∂Ω. Some results of the author (see [8; 9; 10]) are applied
together with the method of sub-super solutions.

In the first section the main results are stated. Their proof and certain
auxiliary results are contained in the second section.

1. Results. Let Ω ⊂ R
N , 2 ≤ N, be a bounded domain with C2 bound-

ary. Mr,p(Ω), N < r, 2 < p, denotes the space of all γ ∈ Lr
loc

(Ω) such that

lim
x→∂Ω

|γ(x)|d(x)|ln d(x)|p < ∞, d(x) := dist(x, ∂Ω).

Mr,p(Ω) is not empty and

L∞(Ω) ⊂ Mr,p(Ω) ⊂ L1(Ω), Mr,p(Ω) 6⊂ Lq(Ω), 1 < q < ∞

(see [8, Lemma 1]).

Let | · |p be the norm of Lp(Ω), 1 ≤ p < ∞, and | · |∞ denote the norm
of L∞(Ω) and C(Ω). As usual we put N \ {0} = N

∗ and given α, β ∈ C(Ω)
with α ≤ β, [α, β] denotes the set of v ∈ C(Ω) such that α ≤ v ≤ β. Let
ϕ(x) be a positive eigenfunction of the Dirichlet problem for −∆ in Ω.

The main result of this paper is the following:

Theorem. Let f ∈ Mr,p(Ω), f ≥ 0, f 6= 0, and h ∈ C(R+), h ≥ 0.
Define Λ to be the set of λ > 0 so that the problem

(Pλ)

{

−∆u = λ(f(x) + h(u)), u > 0 in Ω; u|∂Ω = 0,
u ∈ W 2,r

loc
(Ω) ∩ C1(Ω),

has at least one solution. There exists λ∗ ∈ ]0,∞] such that

]0, λ∗[ ⊂ Λ ⊂ ]0, λ∗].

Moreover , for each solution u of (Pλ) there exists c = c(λ) > 0 such that

c−1ϕ ≤ u ≤ cϕ.

Finally ,

lim
u→∞

h(u)/u = 0 ⇒ λ∗ = ∞;

lim
u→∞

h(u)/u > 0 ⇒ λ∗ < ∞.

R e m a r k. If f ∈ Mr,p(Ω) ∩ C0,µ(Ω), h ∈ C0,µ(R∗
+) ∩ C(R+) and 0 <

µ < 1 then every solution of (Pλ) is a classical solution, i.e. it belongs to
C2(Ω) ∩ C1(Ω).

2. Preparatory results and proof of the Theorem. Let G(x, y)
be the Green function of −∆ with the Dirichlet condition on ∂Ω. From
the properties of G(x, y) and ϕ(x) it follows that there exists a continuous
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extension of G(x, y)/ϕ(x) to Ω × Ω \ {(x, x) | x ∈ R
N} (see [8; 12]), which

we denote as N(x, y). Let G and N be the operators

G(v)(x) =
\
Ω

G(x, y)v(y) dy, N(v)(x) =
\
Ω

N(x, y)v(y) dy.

From Corollary 12 and Lemma 14 of [8] it follows that

Mr,p(Ω) ⊂ Dom G, Mr,p(Ω) ⊂ Dom N.

Theorem 1 ([8, Lemma 13; 9, Theorems 5 and 6]). (1) G(v) and N(v)
belong to C(Ω) for all v ∈ Mr,p(Ω).

(2) For every F ⊂ Mr,p(Ω) and β ∈ Mr,p(Ω), if |v| ≤ β a.e. in Ω for

all v ∈ F , then G(F) and N(F) are relatively compact in C(Ω).

(3) Let vn ∈ Mr,p(Ω), n ∈ N, and β ∈ Mr,p(Ω). If vn → v in measure

and |vn| ≤ β a.e. in Ω, then v ∈ Mr,p(Ω) and G(vn) → G(v), N(vn) →
N(v) in C(Ω).

Theorem 2 ([8, Theorem 16; 9, Theorem 8]). For all f ∈ Mr,p(Ω), the

function u = G(f) belongs to W 2,r
loc

(Ω)∩C1(Ω) and it is the unique solution

of the problem

(4) −∆u = f in Ω, u|∂Ω = 0.

Theorem 3 ([8, Theorem 9; 10, Lemma 6]). Given f ∈ Mr,p(Ω), f ≥ 0,
f 6= 0 there exist m = m(f) > 0 and M = M(f) > 0 such that the solution

u of (4) satisfies the estimates

mϕ(x) ≤ u(x) ≤ Mϕ(x), x ∈ Ω.

To prove the Theorem we need some general results on semilinear prob-
lems

(5) −∆u = k(x, u) in Ω, u|∂Ω = 0,

where k(x, u) is a positive Carathéodory function defined in Ω×R+ (k(·, u)
is measurable for every u ≥ 0, and k(x, ·) is continuous for a.e. x ∈ Ω).

Theorem 4. Let u, u ∈ C(Ω) and β ∈ Mr,p(Ω). If

v ∈ [ϕu,ϕu] ⇒ |k(·, v)| ≤ β a.e. in Ω and N(k(·, v)) ∈ [u, u],

then there exists a solution u ∈ W 2,r
loc

∩ C1(Ω) ∩ [ϕu,ϕu] of (5).

P r o o f. Since k(·, v) ∈ Mr,p(Ω) and v ∈ [ϕu,ϕu], by Theorem 2 there
exists a solution U(v) ∈ W 2,r

loc
(Ω)∩C1(Ω) of (5) and U(v) = G(k(·, v)). The

hypothesis implies that U(v) ∈ [ϕu,ϕu]. By Theorem 1 and the Schauder
Theorem, U has at least one fixed point. From Theorem 2, this fixed point
is a solution of (5).
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k(x, u) is called sublinear as u → ∞ if there exists b ∈ Mr,p(Ω) with
0 < b(x) for a.e. x ∈ Ω such that

(6) lim
u→∞

k(x, u)

b(x)u
= 0,

uniformly with respect to a.e. x ∈ Ω. The hypotheses of the preceding
theorem are satisfied if k(x, u) is sublinear as u → ∞. Therefore we obtain:

Theorem 5. If k(x, u) is sublinear as u → ∞ and sup0≤t≤s k(·, t) ∈

Mr,p(Ω) for all s ≥ 0, then there exist R > 0 and a solution u ∈ W 2,r
loc

∩
C1(Ω) ∩ [0, Rϕ] of (5).

P r o o f. Since for all v ∈ C(Ω) with 0 ≤ v we have

k(x, v(x)) ≤ max
0≤u≤|v|∞

k(x, u),

it follows that k(·, v) ∈ Mr,p(Ω). Let U(v) = G(k(·, v)), a positive solution
of (5).

Now we observe that

(7) lim
R→0

1

R
N(k(·, v)) = 0,

uniformly with respect to v in [0, Rϕ] and x ∈ Ω. For ε > 0, there exists
s0 > 0 such that

s0 ≤ u ⇒ k(x, u) ≤ εb(x)u for a.e. x ∈ Ω.

Then it follows that

N(k(·, v))(x)|0≤v≤Rϕ =
( \

v≤s0

+
\

s0≤v

)

N(x, y)k(y, v(y)) dy

≤ |N( sup
0≤v≤s0

k(·, v))|∞ + εN(bv)(x)|0≤v≤Rϕ

≤ |N( sup
0≤v≤s0

k(·, v))|∞ + εR|N(bϕ)|∞.

From this (7) follows.
Let R > 0 (independent of x) be such that

0 ≤ v ≤ Rϕ ⇒ 0 ≤ N(k(·, v)) ≤ R ⇔ 0 ≤ G(k(·, v)) ≤ Rϕ.

By virtue of the previous theorem the assertion follows.

P r o o f o f T h e o r em. Firstly we observe that for all v ∈ C(Ω) and
λ > 0,

λ(f + h(v)) ∈ Mr,p(Ω), λ(f + sup
0≤u≤|v|∞

h(u)) ∈ Mr,p(Ω).

Therefore, putting h0 := sup{h(s) | 0 ≤ s ≤ |ϕ|∞}, from Corollary 12 of [8]
we have |N(f + h0)|∞ < ∞.
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Now the proof is divided into five steps.

Step 1. Since for every v ∈ [0, ϕ] we have

0 ≤ N [λ(f + h(v))](x) ≤ λ|N(f + h0)|∞ ≤ 1,

from Theorem 4 we conclude that (Pλ) has at least one solution. Then

]0, 1/|N(f + h0)|∞] ⊂ Λ.

Step 2. To prove that Λ is an interval we show that

λ ∈ Λ, 0 < µ < λ ⇒ µ ∈ Λ.

Let uλ be a solution of (Pλ), and consider the function

k(x, u) = µ(f(x) + h(min{u, uλ(x)})).

The following properties are valid:

0 ≤ k(x, u), k(x, u) 6= 0;

0 ≤ k(·, u) ∈ Mr,p(Ω);

0 ≤ k(x, u) sublinear as u → ∞.

From Theorem 5 we know that there exists uµ ∈ W 2,r
loc

(Ω)∩C1(Ω) such that

−∆uµ = k(x, uµ), 0 < uµ in Ω, uµ|∂Ω = 0.

Now we prove that uµ ≤ uλ. Otherwise A = {x ∈ Ω | uµ(x) > uλ(x)} 6= ∅.
Since

x ∈ A ⇒ −∆uµ = µ(f(x) + h(min{uµ(x), uλ(x)}))

≤ λ(f(x) + h(uλ(x))) = −∆uλ,

we obtain

−∆(uµ − uλ) ≤ 0 in A and (uµ − uλ)|∂A = 0.

By the Maximum Principle (see [5]), uµ ≤ uλ in A. But this is not true since
A 6= ∅. Therefore uµ ≤ uλ.

We conclude that uµ is a solution of (Pλ), and so µ ∈ Λ.

Step 3. The estimate for positive solutions of (Pλ) follows by Theorem 3.

Step 4. Let limu→∞ h(u)/u = 0; the Carathéodory function

k(x, u) := λ(f(x) + h(u))

is positive and sublinear. In fact, the function b(x) := 1 + f(x) belongs to
Mr,p(Ω) and (6) is satisfied. From the previous theorem, (Pλ) has at least
one solution u. Moreover, if u ∈ W 2,r

loc
(Ω) ∩ C1(Ω) is a solution of

−∆u = f(x), u > 0 in Ω, u|∂Ω = 0,

(see Theorem 2), from the Maximum Principle we deduce λu ≤ u. Since by
virtue of Theorem 3, u > 0, we conclude that u > 0.
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Step 5. Let limu→∞ h(u)/u > 0. There exist s0 ≥ 0 and m > 0 such
that h(u) ≥ mu for u ≥ s0. Arguing by contradiction, suppose that λ∗ = ∞.
From the Maximum Principle (see [5]) it follows that λu ≤ uλ. Let λ0 > 0
be such that the open set T = {x ∈ Ω | s0 < λ0u(x)} is not empty. Hence,
putting Ωλ = {x ∈ Ω | s0 < uλ(x)}, we obtain

λ0 ≤ λ ⇒ T ⊂ Ωλ ⇒ 0 < |T | ≤ |Ωλ|.

Then \
Ωλ

uλϕdx ≥ λ
\
T

uϕdx ≥ λ
s0

λ0

\
T

ϕdx

and
T
T

ϕdx > 0 (see [8, Theorem 9]) imply

(8) lim
λ→∞

\
Ωλ

uλϕdx = ∞.

Therefore since uλ is a solution of (Pλ) it follows that

λ1

\
Ω

uλϕdx = λ
\
Ω

fϕdx + λ
\
Ω

h(uλ)ϕdx ≥ λ
\
Ω

fϕdx + λm
\

Ωλ

uλϕdx.

Then

λ1

\
Ωλ

uλϕdx + λ1

\
Ω\Ωλ

uλϕdx ≥ λ
\
Ω

fϕdx + λm
\

Ωλ

uλϕdx

⇒ (λ1 − λm)
\

Ωλ

uλϕdx + λ1s0

\
Ω\Ωλ

ϕdx ≥ λ
\
Ω

fϕdx.

This inequality is impossible, because, from (8), the first term goes to −∞
as λ → ∞. Therefore the original assumption is false. Thus λ∗ < ∞.

References

[1] A. Ambrosett i, A perturbation theorem for superlinear boundary value problems,
Math. Res. Center, Univ. of Wisconsin-Madison, Tech. Sum. Report ♯ 1446 (1974).

[2] A. Bahr i and H. Berestyck i, A perturbation method in critical point theory and
applications, Trans. Amer. Math. Soc. 267 (1981), 1–32.

[3] G. Bonanno, Semilinear elliptic eigenvalue problems, preprint, 1995.
[4] G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with dis-

continuous nonlinearities, Topol. Methods Nonlinear Anal. 8 (1996), 263–273.
[5] J. M. Bony, Principe du maximum dans les espaces de Sobolev , C. R. Acad. Sci.

Paris Sér. A 265 (1967), 333–336.
[6] H. Brez is and L. Nirenberg, Positive solutions of nonlinear elliptic equations

involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.
[7] K. J. Brown and H. Budin, Multiple positive solutions for a class of nonlinear

boundary value problems, J. Math. Anal. Appl. 60 (1977), 329–338.
[8] M. M. Cocl i te, On a singular nonlinear Dirichlet problem. II , Boll. Un. Mat. Ital.

B (7) 5 (1991), 955–975.



Semilinear elliptic eigenvalue problem 295

[9] M. M. Cocl i te, On a singular nonlinear Dirichlet problem. III , Nonlinear Anal.
21 (1993), 547–564.

[10] —, On a singular nonlinear Dirichlet problem. IV , ibid. 23 (1994), 925–936.
[11] M. G. Crandal l and P. H. Rabinowitz, Some continuation and variational meth-

ods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational
Mech. Anal. 58 (1975), 207–218.

[12] S. Gomes, On a singular nonlinear elliptic problem, SIAM J. Math. Anal. 17 (1986),
1359–1369.

[13] J. P. Keener and H. B. Kel ler, Positive solutions of convex nonlinear eigenvalue
problems, J. Differential Equations 16 (1974), 103–125.

[14] H. B. Kel ler and D. S. Cohen, Some positone problems suggested by nonlinear
heat generation, J. Math. Mech. 16 (1967), 1361–1376.

[15] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,
Trans. Amer. Math.Soc. 272 (1982), 753–769.

Dipartimento di Matematica
Università di Bari
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