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A set on which the local  Lojasiewicz exponent is attained

by Jacek Cha̧dzyński and Tadeusz Krasiński ( Lódź)

Abstract. Let U be a neighbourhood of 0 ∈ Cn. We show that for a holomorphic
mapping F = (f1, . . . , fm) : U → Cm, F (0) = 0, the  Lojasiewicz exponent L0(F ) is
attained on the set {z ∈ U : f1(z) · . . . · fm(z) = 0}.

1. Introduction. In [CK2] the authors showed that for a polynomial
mapping F = (f1, . . . , fm) : Cn → Cm, n ≥ 2, the  Lojasiewicz exponent
L∞(F ) of F at infinity is attained on the set {z ∈ Cn : f1(z)·. . .·fm(z) = 0}.
The purpose of this paper is to prove an analogous result for the  Lojasiewicz
exponent L0(F ), where F : U → Cm is a holomorphic mapping, F (0) = 0
and U is a neighbourhood of 0 ∈ Cn (Thm. 1). From this result we easily
obtain a strict formula for L0(F ) in the case n = 2 and m ≥ 2 in terms of
multiplicities of some mappings from U into C2 defined by components of F
(Thm. 2). It is a generalization of Main Theorem from [CK1]. The proof of
this theorem has been simplified by A. P loski in [P]. His proof has been an
inspiration to write this paper.

Theorem 1 is an important tool for investigation of the  Lojasiewicz ex-
ponent for analytic curves having an isolated intersection point at 0 ∈ Cm.
Using it, we shall give, in the next paper [CK3], an effective formula for the
 Lojasiewicz exponent for such curves in terms of their parametrizations.

2. The  Lojasiewicz exponent. Let U ⊂ Cn, n ≥ 2, be a neighbour-
hood of the origin, F : U → Cm a holomorphic mapping, and S ⊂ U an
analytic set in U . Assume that 0 ∈ Cn is an accumulation point of S. Put

N(F |S) := {ν ∈ R+ : ∃A > 0, ∃B > 0, ∀z ∈ S, |z| < B ⇒ A|z|ν ≤ |F (z)|}.
Here | · | means the polycylindric norm. If S = U we write N(F ) instead of
N(F |U).

1991 Mathematics Subject Classification: Primary 32S05.
Key words and phrases: holomorphic mapping,  Lojasiewicz exponent.
This research was partially supported by KBN Grant No. 2 P03A 050 10.

[297]
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By the  Lojasiewicz exponent of the mapping F |S at 0 we mean

L0(F |S) := inf N(F |S).

Analogously L0(F ) := inf N(F ).
The following can be shown (cf. [LT], §§5, 6):

Proposition 1. If F |S has an isolated zero at 0 ∈ Cn, then L0(F |S) ∈
N(F |S) ∩Q. Moreover , there exists an analytic complex curve ϕ : {t ∈ C :
|t| < r} → S such that ϕ(0) = 0 and

(1) |F ◦ ϕ(t)| ∼ |ϕ(t)|L0(F |S) as t→ 0.

From the above proposition we easily get

Corollary 1. L0(F |S) <∞ if and only if F |S has an isolated zero at
0 ∈ Cn.

3. The main result. Now, we shall give the main result of this paper.

Theorem 1. Let U ⊂ Cn, n ≥ 2, be a neighbourhood of the origin, and
F = (f1, . . . , fm) : U → Cm a holomorphic mapping with F (0) = 0. Define
S := {z ∈ U : f1(z) · . . . · fm(z) = 0}. Then

(2) L0(F ) = L0(F |S).

The proof will be given in Section 4.
Immediately from Theorem 1 we obtain an effective formula for the  Lo-

jasiewicz exponent in the case n = 2, m ≥ 2, generalizing an earlier result
of the authors ([CK1], Main Theorem).

Let us begin with some notations. Let U be a neighbourhood of 0 ∈ C2.
Then: µ(f, g) is the intersection multiplicity of a holomorphic mapping
(f, g) : U → C2; ĥ is the germ of a holomorphic function h : U → C in
the ring O2 of germs of holomorphic functions at 0 ∈ C2; ordh stands for
the order of h at 0 ∈ C2.

Theorem 2. Let U ⊂ C2 be a neighbourhood of the origin, and F =
(f1, . . . , fm) : U → Cm a holomorphic mapping with F (0) = 0. Put f :=
f1 ·. . .·fm. If f̂ 6= 0 and f̂ = ĥ1 ·. . .·ĥr is a factorization of f̂ into irreducible
germs in O2, then

(3) L0(F ) =
r

max
i=1

1
ordhi

m
min
j=1

µ(hi, fj).

P r o o f. Since our considerations are local, we may assume that hi are
holomorphic in U and f = h1 · . . . · hr in U . Let S := {z ∈ U : f(z) = 0}
and Γi := {z ∈ U : hi(z) = 0}. Hence

(4) S = Γ1 ∪ . . . ∪ Γr.
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Define λi := (1/ordhi) minmj=1 µ(hi, fj). If λi = ∞ for some i, then (3)
holds. So, assume that λi 6=∞, i = 1, . . . , r. Then for every i we have

|F (z)| ∼ |z|λi as |z| → 0, z ∈ Γi.

Hence and from (4), L0(F |S) = maxri=1 λi. This and Theorem 1 give (3),
which ends the proof.

4. Proof of the main theorem. The proof is given in two steps. In
the first one we give the proof under some additional assumptions, whereas
in the second step we show that these assumptions do not restrict our con-
siderations.

First we fix some notations. For z = (z1, . . . , zn) ∈ Cn, n ≥ 2, and for
every i ∈ {1, . . . , n} we put z′i := (z1, . . . , zi−1, zi+1, . . . , zn). Additionally,
we define f := f1 · . . . · fm.

Step 1. We assume that

(i) (F |S)−1(0) = {0},
(ii) ord f <∞,
(iii) for every i ∈ {1, . . . , n}, f is (ord f)-regular with respect to zi.

Obviously N(F ) ⊂ N(F |S). To show (2) it suffices to prove

(5) N(F |S) ⊂ N(F ).

It follows from (i) and Corollary 1 that N(F |S) is not empty. Take an
arbitrary ν ∈ N(F |S). Then there exist A,B > 0 such that

(6) |F (ζ)| ≥ A|ζ|ν for ζ ∈ S, |ζ| < B.

From the assumptions of the theorem we have ord f > 0 and ord fj > 0,
j = 1, . . . ,m. Then from (ii), (iii) we easily get 0 < ord fj <∞ and

(7) for every i, j, fj is (ord fj)-regular with respect to zi.

The Weierstrass Preparation Theorem and (iii) imply that for every i ∈
{1, . . . , n} there exists a Weierstrass polynomial with respect to zi of degree
ord f , associated with f . Denote it by p(i). Analogously from (7) for every
i, j there exists a Weierstrass polynomial with respect to zi of degree ord fj ,
associated with fj . Denote it by p

(i)
j . Then there exist C,D > 0 and a

polycylinder {z ∈ Cn : |z| < r} ⊂ U such that

(8) C|p(i)(z)| ≤ |f(z)| ≤ D|p(i)(z)| for |z| < r, i = 1, . . . , n,

and

(9) C|p(i)
j (z)| ≤ |fj(z)| ≤ D|p(i)

j (z)|
for |z| < r, i = 1, . . . , n, j = 1, . . . ,m.
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Put P (i) := (p(i)
1 , . . . , p

(i)
m ). Then from (9) we get

(10) C|P (i)(z)| ≤ |F (z)| ≤ D|P (i)(z)| for |z| < r, i = 1, . . . , n.

Clearly, for every i ∈ {1, . . . , n},

(11) p(i) = p
(i)
1 · . . . · p(i)

m .

Put B1 := min(B, r). Then from (8) we have for every i ∈ {1, . . . , n},
S ∩ {z ∈ Cn : |z| < B1} = {z ∈ Cn : |z| < B1, p

(i)(z) = 0}.
Hence and from the Theorem on Continuity of Roots, applied to p(i), we
find that there exists %, 0 < % ≤ B1, such that for every i ∈ {1, . . . , n} we
have

(12) {z ∈ S : |z′i| < %, |z| < B1} = {z ∈ Cn : |z′i| < %, p(i)(z) = 0}.
Put d := maxmj=1 ord fj , A2 := 2−dA(C/D), B2 := min(%,B1). Take an

arbitrary z̊ ∈ Cn, |̊z| < B2. There exists i ∈ {1, . . . , n} such that |̊z| = |̊z′i|.
Define ϕj(t) := p

(i)
j (̊z1, . . . , z̊i−1, t, z̊i+1, . . . , z̊n), Φ := (ϕ1, . . . , ϕm). Clearly,

Φ : C → Cm is a polynomial mapping, degΦ := maxmj=1 degϕj = d and
Φ(t) = P (i)(̊z1, . . . , z̊i−1, t, z̊i+1, . . . , z̊n). Then by Lemma 2 of [CK2] and
(11) we have

|Φ(̊zi)| ≥ 2−d min
τ∈T
|Φ(τ)|,

where T := {t ∈ C : p(i)(̊z1, . . . , z̊i−1, t, z̊i+1, . . . , z̊n) = 0}. Hence and
by (10) we get

|F (̊z)| ≥ C|P (i)(̊z)| = C|Φ(̊zi)| ≥ C2−d|Φ(τ0)|(13)

= C2−d|P (i)(ζ̊)| ≥ (C/D)2−d|F (ζ̊)|

for some ζ̊=(̊z1, . . . , z̊i−1, τ0, z̊i+1, . . . , z̊n) such that p(i)(ζ̊)=0. Since |ζ̊ ′i| =
|̊z′i| = |̊z| < B2 ≤ %, from (12) we have ζ̊ ∈ S and |ζ̊| < B1. In consequence,
from (6) and (13) we get

|F (̊z)| ≥ (C/D)2−dA|ζ̊|ν ≥ A2|ζ̊ ′i|ν = A2 |̊z|ν .
Since z̊ is arbitrary we obtain ν ∈ N(F ). This ends the proof of the theorem
under assumptions (i)–(iii).

Step 2. Now, we shall prove the theorem in the remaining cases. If (i)
does not hold, then by Corollary 1 we have L0(F |S) = L0(F ) =∞, that is,
(2) is satisfied. If (ii) does not hold, then S = U and (2) is obvious. So, it
suffices to consider the case when (i), (ii) hold but (iii) does not. Since N(F )
and N(F |S) are invariant with respect to linear automorphisms of Cn, so
are L0(F ) and L0(F |S). Since the case considered can be reduced to Step 1
by a linear automorphism of Cn, (2) also holds in this case.

This ends the proof of the theorem.
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