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José M. Montero 3006, ap. 503, Montevideo, Uruguay

E-mail: rarocena@cmat.edu.uy

Abstract. The aim of this paper is to give a very brief account of some applications of the
method of unitary extensions of isometries to interpolation and extension problems.

I. Unitary extensions of isometries. A general method for solving several moment

and interpolation problems can be summarized as follows: the data of the problem define

an isometry, with range and domain in the same Hilbert space, in such a way that each

unitary extension of that isometry gives a solution of the problem.

In this review paper, the method and some of its applications are briefly described.

We now fix the notation and then specify the content of the following sections.

Unless otherwise specified, all spaces are assumed to be separable complex Hilbert

spaces and all subspaces are closed; L(X,Y ) denotes the set of all bounded linear op-

erators from a space X to a space Y ; L(X) is the same as L(X,X), and “
∨

” means

“closed linear span”; PXE ≡ PE denotes the orthogonal projection onto the subspace E

of X and iXE ≡ iE is the inclusion of E in X. Lp(X) denotes the space of X-valued

measurable functions on the unit disk T with finite p-norm. Lp(X,Y ) denotes the space

of L(X,Y )-valued measurable functions on T with finite p-norm.

The isometry V acts in the Hilbert space H if its domain D and range R are (closed)

subspaces of H. We say that (U,F ) belongs to U , the set of equivalence classes of minimal

unitary extensions of V , if U ∈ L(F ) is a unitary extension of V to a space F that

contains H, such that F =
∨
{UnH : n ∈ Z}; we consider two minimal unitary extensions

to be equivalent, and write (U,F ) ≈ (U ′, F ′) in U , if there exists a unitary operator

X ∈ L(F, F ′) such that XU = U ′X and that its restriction to H equals the identity IH
in H. An element (U,F ) of U with special properties is given by the minimal unitary

dilation U ∈ L(F ) of the contraction V PD ∈ L(H).

In Section II an isometry V is associated with a generalized interpolation problem

in such a way that there is a bijection between U and the set of all the solutions of
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the problem. A parametrization of that set by means of contractive analytic functions is

described in Section III.

A general method for solving interpolation problems is given by the Nagy–Foiaş com-

mutant lifting theorem ([Sz.-NF], [FF]). Parrott ([P]) has shown that a special lifting

yields interpolation results for analytic functions with values in a von Neumann algebra.

In Section IV each commutant is associated with an isometry V in such a way that there

exists a bijection between the set of all the Nagy–Foiaş liftings and U , and that a Parrott

type lifting is given by (U,F ).

The band method is a general scheme for dealing with many extension problems. It

has been developed in a series of papers including [DG.1], [DG.2], [GKW.1], [GKW.2]

and [GKW.3]. In Section V the method of unitary extensions of isometries is applied to

deal with one of the problems that in [GKW.1] is solved by the band method.

In Section VI, Schur analysis of the set of unitary extensions of an isometry is related

with previously considered subjects.

A basic example of how the method can be applied is given by the problem of extending

functions of positive type. Its bidimensional case is related to the problem of finding two

commutative unitary extensions of two given isometries ([AF]).

The author wants to thank the referee for his comments on a first version of this

paper. An expanded version of it, as an introductory and essentially self-contained series

of articles, is being published in “Publicaciones Matemáticas del Uruguay” ([A.5]).

II. Generalized interpolation. The method of unitary extensions of isometries

gives a proof of the following

Theorem (1). For j = 1, 2 let Ej be a Hilbert space, Sj the shift in L2(Ej) and Bj
a closed subspace of L2(Ej) such that

E1 ⊂ B1 ⊂ S−11 B1 and S−12 E2 ⊂ B2 ⊂ S2B2.

Let A ∈ L(B1, B2) be such that AS1|B1
= PB2S2A. Set

FA = {w ∈ L∞(E1, E2) : PB2
Mw|B1

= A, ‖w‖∞ = ‖A‖},
with Mw the multiplication by w. Then FA is nonempty.

When B1 = H2(E1) and B2 = H2
−(E2) := L2(E2) 	 H2(E2), the above is Page’s

extension of Nehari’s theorem (see [N]). When E1 = E2 = E, B1 = H2(E) and B2 =

H2
−(E)⊕K, with K a closed subspace of H2(E) such that S[H2(E)	K] ⊂ H2(E)	K, we

have Sarason’s general interpolation theorem [S]. For convenient choices of the data, FA is

the set of all the solutions of the Nevanlinna–Pick problem or of the Carathéodory–Fejér

problem.

Lemma (2). Let A ∈ L(B1, B2) be a contraction between Hilbert spaces. There exist

a Hilbert space F and isometries rj ∈ L(Bj , F ), j = 1, 2, which are essentially unique,

such that F = (r1B1) ∨ (r2B2) and A = r∗2r1. Moreover , if Uj ∈ L(Bj) is a unitary

operator , j = 1, 2, and U2A = AU1, there exists a unique unitary operator W ∈ L(F )

such that

Wrj = rjUj , j = 1, 2.
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S k e t c h o f p r o o f o f (2). Let F be the Hilbert space generated by the linear space

B1 ×B2 and the sesquilinear positive semidefinite form

〈(b1, b2), (b′1, b
′
2)〉 ≡ 〈b1, b′1〉B1

+ 〈Ab1, b′2〉B2
+ 〈b2, Ab′1〉B2

+ 〈b2, b′2〉B2
;

define r1, r2 by b1 → (b1, 0) and b2 → (0, b2), respectively; set Wrjbj ≡ rjUjbj , etc.

S k e t c h o f p r o o f o f T h e o r e m (1). We may assume that ‖A‖ = 1. There

exist H and two isometries uj ∈ L(Bj , H), j = 1, 2, such that A = u∗2u1 and H =

(u1B1) ∨ (u2B2); an isometry V acting in H with domain D = (u1S1B1) ∨ (u2B2) is

defined, with obvious notation, by V (u1S1b1 + u2b2) ≡ u1b1 + u2S
−1
2 b2.

If (U,F ) ∈ U , an isometric extension rj ∈ L[L2(Ej), F ] of uj such that rjSj = U∗rj
is well defined; the following equalities hold: r1S

−n
1 b1 = Unu1b1, n ≥ 0, b1 ∈ B1, and

r2S
k
2 b2 = U∗ku2b2, k ≥ 0, b2 ∈ B2. Since S2r

∗
2r1 = r∗2r1S1, there exists w ∈ L∞(E1, E2)

such that Mw = r∗2r1; then w ∈ FA. Moreover:

Theorem (3). In the same hypothesis of Theorem (1) assume ‖A‖ = 1. Set w−(z) =

zPE2S2A(I − zS1)−1iE1 . There exist an isometry V acting in a Hilbert space H and

two isometries πj ∈ L(Ej , H), j = 1, 2, such that a bijection from U onto FA is defined

by associating with each (U,F ) ∈ U the function w ∈ FA given by w(z) = w−(z) +

π∗2PHU(I − zU)−1iHπ1.

Concerning this section, details can be seen in [A.2].

III. Parametrization formulas. A set δ = {E1, E2, X;A}, where E1, E2, X are

Hilbert spaces and A = [Ajk]j,k=1,2 is a bounded operator from the space X ⊕E1 to the

space E2 ⊕X, is called an operator colligation; it is unitary if A is a unitary operator;

a unitary colligation δ is called simple if the contraction A21 = PXA|X is completely

nonunitary (c.n.u.), i.e., no nontrivial restriction of A21 to an invariant subspace is uni-

tary. The colligation δ′ = {E1, E2, X
′;A′} is equivalent to δ iff there exists a unitary

operator λ ∈ L(X,X ′) such that A′(λ⊕ IE1
) = (IE2

⊕ λ)A.

A colligation can be seen as a discrete linear system with response function Ψ ≡ Ψδ
given by Ψ(z) = A12 + zA11(I − zA21)−1A22, which is also called the characteristic

function of the colligation. Two simple unitary colligations are equivalent iff they have

the same characteristic function.

The space H∞(E1, E2) is the set of analytic functions Ψ : D→ L(E1, E2) on the unit

disk such that ‖Ψ‖∞ := sup{‖Ψ(z)‖ : z ∈ D} < ∞. The characteristic function of a

unitary colligation belongs to the set B(E1, E2) := {Ψ ∈ H∞(E1, E2) : ‖Ψ‖∞ ≤ 1} of

contractive analytic functions. The converse holds: if Ψ ∈ B(E1, E2), by applying Lemma

(2) to the contraction MΨ , it can be proved that it is the characteristic function of a

simple unitary colligation.

Let V be any isometry with domain D, range R, and defect subspaces N and M ;

that is, N and M are the orthogonal complements in H of D and R, respectively. To

describe the set U of equivalence classes of minimal unitary extensions of V is equivalent

to describing the set of all (nonequivalent) simple unitary colligations {N,M,X;A} with

given N and M . Thus, there exists a bijection between U and the set B(N,M) of

contractive analytic functions:
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Theorem (4). Let V be an isometry acting in a Hilbert space H with defect sub-

spaces N and M . A bijection between the set U of equivalence classes of minimal unitary

extensions of V and the set B(N,M) of contractive analytic functions is obtained by asso-

ciating with each (U,F ) ∈ U the characteristic function of the simple unitary colligation

{N,M,X;U|X⊕N}, with X = F 	H:

Ψ(z) = PMU|N + zPMU|X(I − zPXU|X)−1PXU|N .

If V is as in (4) and D is its domain, a unitary extension B ∈ U(H ⊕M,N ⊕H) of V

is given by B(h,m) = (PNh,m+V PDh), ∀h ∈ H, m ∈M . If L is a closed subspace of H

and L⊥ = H	L, set δ(V,L) = {L⊕M,N⊕L,L⊥;B} and let S(V,L) = [Sjk]j,k=1,2 ∈ B(L⊕
M,N ⊕ L) be the characteristic function of the unitary colligation δ(V,L). If U ∈ L(F )

is a unitary operator, then δ(U,L) = {L,L, F 	 L;U} and its characteristic function is

S(U,L)(z) = PLU(I − zPF	LU)−1|L . Then:

Theorem (5). If (U,F ) ∈ U corresponds to Ψ ∈ B(N,M) in the bijection given by

Theorem (4), then, for every z ∈ D,

S(U,L)(z) = S21(z) + S22(z)Ψ(z)[I − S12(z)Ψ(z)]−1S11(z).

This formula was stated by Arov and Grossman ([AG]). As a consequence we obtain

a parametrization of all solutions of the interpolation problems that can be solved by

means of Theorem (1).

Theorem (6). In the same hypothesis and with the notation of Theorem (3), set

L = (π1E1) ∨ (π2E2) and [Sjk]j,k=1,2 = S(V,L). A bijection from B(N,M) onto FA is

given by associating with each Ψ ∈ B(N,M) the function w ∈ FA defined by

w(z) = w−(z) + π∗2S(z)[IL − zS(z)]−1π1,

S(z) = S21(z) + S22(z)Ψ(z)[I − S12(z)Ψ(z)]−1S11(z).

Proofs of the Arov–Grossman formula and of the other statements in this section are

given in [A.3].

IV. A lifting theorem. Parrott’s extension of the Nagy–Foiaş theorem follows from:

Theorem (7). Let Tj ∈ L(Ej) be a contraction with minimal unitary dilation Uj ∈
L(Fj), j = 1, 2, and X ∈ L(E1, E2) such that XT1 = T2X. Set (A1, A2) ∈ A if Aj ∈
L(Ej) bicommutes with Tj , j = 1, 2, and XA1 = A2X, XA∗1 = A∗2X; let Âj ∈ L(Fj) be

the extension of Aj that commutes with Uj and is such that ‖Âj‖ = ‖Aj‖, j = 1, 2. There

exists τ ∈ L(F1, F2) such that τU1 = U2τ , PE2
τ|E1

= X, ‖τ‖ = ‖X‖ and τÂ1 = Â2τ ,

∀(A1, A2) ∈ A.

Assume ‖X‖ = 1. Set M1 =
∨
{Un1 E1 : n ≥ 0} and M ′2 =

∨
{Un2 E2 : n ≤ 0}. Let

H be a Hilbert space such that H = M1 ∨M ′2 and PHM ′
2|M1

= X ′ := XPM1E1. Every

(A1, A2) ∈ A defines an operator A ∈ L(H) by A(g′2 + g1) = Â2g
′
2 + Â1g1, ∀g′2 ∈ M ′2

and g1 ∈M1. Set D = U∗2M
′
2 ∨M1; define the isometry V by V (U∗2 g

′
2 + g1) = g′2 +U1g1.

Let U ∈ L(F ) be the minimal unitary dilation of the contraction V PD ∈ L(H). We

may assume that F = F1 ∨ F2 and that U |Fj
= Uj . Then A extends to Â ∈ L(F )



UNITARY EXTENSIONS OF ISOMETRIES 21

such that ÂU = UÂ, so Â|Fj
= Âj . Setting τ = PFF2|F1

the result follows. Proofs and

two-dimensional generalizations can be seen in [A.4].

V. A band extension problem. We are given the integers N and p such that

0 ≤ p < N−1, the Hilbert spaces Gj , 1 ≤ j ≤ N , and the operators Aij ∈ L(Gj , Gi), 1 ≤
i, j ≤ N, |i − j| ≤ p. The band A(p) := {Aij : |i − j| ≤ p} is positive if the operators

[Akj ]i≤k,j≤i+p ∈ L[
⊕

(Gj : i ≤ j ≤ i+ p)] are positive for 1 ≤ i ≤ N − p; A(p) is positive

definite (p.d.) if [Akj ]i≤k,j≤i+p is positive definite for 1 ≤ i ≤ N − p. Recall that an

operator in a Hilbert space is positive definite if it is positive and boundedly invertible.

Set G =
⊕

(Gj : i ≤ j ≤ N). A positive operator B = [Bkj ]1≤k,j≤N ∈ L(G) such that

Bij = Aij whenever |i − j| ≤ p is called a positive extension of the given band. The

following statement is related to one of the problems that are solved in [GKW1].

Theorem (8). Every positive band A(p) has positive extensions. If A(p) is positive

definite, it has positive definite extensions and there exists one of them, A, such that

[A−1]rs = 0 if |s− r| > p.

Assume p ≥ 1. If r ∧ s denotes the minimum of r and s, set C = {(i, j) ∈ Z2 : 1 ≤ i ≤
N, i ≤ j ≤ (i+ p)∧N}, Gij = Gj for every (i, j) ∈ C and G̃ =

⊕
{Gij : (i, j) ∈ C}; thus,

every f ∈ G̃ is given by [fij ](i,j)∈C , fij ∈ Gj ; its support is the set supp f := {(i, j) ∈ C :

fij 6= 0}.
Let H be the Hilbert space generated by the vector space G̃ and the sesquilinear

hermitian positive semidefinite form in G̃ given by

[f, f ′] ≡
∑
{〈Ajkfik, f ′ij〉Gj

: (i, j), (i, k) ∈ C}.

For any f ∈ G̃ such that fii = 0, 1 ≤ i ≤ N , let g = τf ∈ G̃ be given by gij = fi−1,j
if (i, j), (i−1, j) ∈ C and gij = 0 if (i, j) ∈ C but (i−1, j) 6∈ C. In a natural way, τ defines

an isometry V acting in H.

For any v ∈ Gt, 1 ≤ t ≤ N , let λtv ∈ H be given by v′ ∈ G̃ such that supp v′ = {(t, t)}
and v′tt = v. Then λ∗i V

i−jλj = Aij , ∀(i, j) ∈ C.
For any (U,F ) ∈ U , a positive extension A = A(U,F ) of the band A(p) is given by

Aij = (iFHλj)
∗U i−j(iFHλi), 1 ≤ i, j ≤ N , and every positive extension of the band A(p) is

obtained in this way.

Assume that A(p) is p.d.; then A := A(U,F ) is a positive extension of A(p) and

[A−1]rs = 0 if |s− r| > p.

Proofs of the above assertions can be seen in [A.5].

VI. Schur analysis. Let V be any isometry acting in H, with domain D and defect

subspaces N and M . If (U,F ) ∈ U set H1 = H ∨ UH and V1 = U|H1
, let N1 and M1

be the defect subspaces of the isometry V1 that acts in H1, and set ν1 = PM1
U|N1. By

iteration a sequence of contractions {νk : k > 0} is associated with each (U,F ) ∈ U , and a

Schur type analysis of the unitary extensions of an isometry is established ([A.1]). In fact,

when the method of unitary extensions of isometries is applied to the Carathéodory–Fejér

problem, those {νk : k > 0} are the classical sequences of Schur parameters.
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In general, a bijection between U and the set of (N,M)-choice sequences (see [FF])

is established. If (U,F ) ∈ U is given by the minimal unitary dilation of the contraction

V PD ∈ L(H), then the corresponding sequence of “Schur parameters” is such that νk = 0

for every k > 0, and the corresponding solution of a generalized interpolation problem

can be considered as the maximum entropy solution.

There exists a bijection between the set of all the Nagy–Foiaş intertwining liftings of

a commutant and a set of choice sequences (see [FF] and references therein); that result

can be proved by means of the above sketched Schur analysis of the unitary extensions of

an isometry. In [FFG], a “central intertwining lifting” is studied; it may be conjectured

that it corresponds to the Parrott type lifting we considered in Section IV.

Concerning the band extension problem considered in Section V, this kind of

Schur analysis of unitary extensions of isometries gives another proof of the follow-

ing facts ([GKW1]): each positive extension A of A(p) is bijectively associated with an

(N − p)-tuple of contractions {T (k) : p ≤ k ≤ N − 1}; when A(p) is p.d., A is p.d. iff

‖T (k)‖ < 1, p ≤ k ≤ N − 1, and A corresponds to T (k) = 0, p ≤ k ≤ N − 1.
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[Sz.-NF] B. Sz. -Nagy and C. Foia ş, Harmonic Analysis of Operators on Hilbert Space,

North-Holland, Amsterdam, 1970.


