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Abstract. In this article we will illustrate how the Berezin transform (or symbol) can be used

to study classes of operators on certain spaces of analytic functions, such as the Hardy space, the

Bergman space and the Fock space. The article is organized according to the following outline.

1. Spaces of analytic functions

2. Definition and properties Berezin transform

3. Berezin transform and non-compact operators

4. Commutativity of Toeplitz operators

5. Berezin transform and Hankel or Toeplitz operators

6. Sarason’s example

1. Spaces of analytic functions. In this section we will introduce the spaces of

analytic functions on which we will be working. We start with the following general

definition.

Definition 1.1. A reproducing functional Hilbert space on an open subset Ω of C

is a Hilbert space H of functions on Ω such that for every w ∈ Ω the linear functional

f 7→ f(w) is bounded on H.

If H is a reproducing functional Hilbert space on set Ω, then by the Riesz Rep-

resentation Theorem for every w ∈ Ω there is a unique element Kw ∈ H for which

f(w) = 〈f,Kw〉, for all f ∈ H. We call the function Kw the reproducing kernel at w.

Before we turn to a few examples we will prove some simple results about these

reproducing kernels. The following proposition gives a way to compute the reproducing

kernels.
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Proposition 1.2. If {ej : j ∈ J} is an orthonormal basis for the reproducing func-

tional Hilbert space H of functions on an open set Ω ⊂ C, then

Kw =
∑

j∈J

ej(w) ej ,

where the convergence is in H. In particular ,

Kw(z) =
∑

j∈J

ej(w) ej(z), z ∈ Ω.

P r o o f. By Parseval’s formula,

Kw =
∑

j∈J

〈Kw, ej〉 ej =
∑

j∈J

〈ej ,Kw〉 ej =
∑

j∈J

ej(w) ej ,

where the convergence is in H. Now, if z ∈ Ω, the continuity of the linear functional

f 7→ f(z) and the convergence of the above series implies that

Kw(z) =
∑

j∈J

ej(w) ej(z),

completing the proof of this proposition.

It follows from the above proposition thatKz(w) = Kw(z). WritingK(z, w) = Kw(z),

we have K(w, z) = K(z, w), for all z, w ∈ Ω. The norm of Kw is easily determined:

‖Kw‖
2 = 〈Kw,Kw〉 = Kw(w) = K(w,w).

The function

(1.3) kw =
Kw

‖Kw‖
=

Kw

K(w,w)1/2

is called the normalized reproducing kernel at w. We will only consider reproducing func-

tional Hilbert spaces of analytic functions. Note that then for each fixed w ∈ Ω the

function z 7→ K(z, w) (that is, the function Kw) is analytic on Ω, while the function

z 7→ K(w, z) (that is, the function Kw) is conjugate-analytic on Ω.

Example 1.4. Let H2 denote the space of all analytic functions f on the unit disk

D = {z ∈ C : |z| < 1} whose Taylor coefficients are square-integrable. This space is

called the Hardy space. Every function in H2 has radial (in fact, non-tangential) limits

at almost every point of T = {ζ : |ζ| = 1}, that is, for every f ∈ H2 the limit function

f∗(ζ) = limr→1− f(rζ) exists for a.e. ζ ∈ T. Furthermore, if f ∈ H2, then f∗ ∈ L2(T).

Identifying H2 with {f∗ : f ∈ H2}, we regard the space H2 as a linear subspace of L2(T)

with inner product given by

〈f, g〉 =

2π\
0

f(eiθ)g(eiθ)
dθ

2π
, f, g ∈ L2(T).

It follows from the inequality

|f(w)| ≤ ‖f‖ (1− |w|2)−1/2,

valid for f ∈ H2 and w ∈ D, that H2 is a reproducing functional Hilbert space on D.

The set {zn : n ≥ 0} is an orthonormal basis for H2, and thus

(1.5) Kw(z) =
∞∑

n=0

wn zn =
1

1− wz
, z, w ∈ D.
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Example 1.6. The Bergman space L2
a is the space of analytic functions on D which

are square-integrable with respect to Lebesgue measure on D. Writing A to denote the

Lebesgue measure on D, normalized so that D has measure 1, L2
a is a linear subspace of

L2(D) with inner product given by

〈f, g〉 =
\
D

f(z)g(z)dA(z), f, g ∈ L2(D).

If the analytic function f on D has power series expansion f(z) =
∑∞

n=0 anz
n, then

‖f‖2 =
\
D

|f(z)|2 dA(z) =

∞∑

n=0

|an|
2

n+ 1
.

For fixed w ∈ D, using Cauchy–Schwarz we have

∞∑

n=0

|an| |w|
n ≤

( ∞∑

n=0

(n+ 1)|w|2
)1/2

( ∞∑

n=0

|an|
2

n+ 1

)1/2

and thus

|f(w)| ≤ ‖f‖ (1− |w|2)−1.

It follows from the above inequality that L2
a is a closed linear subspace of L2(D), and

thus L2
a is a reproducing functional Hilbert space on D. The set {(n+ 1)1/2 zn : n ≥ 0}

is an orthonormal basis for L2
a, and thus

(1.7) Kw(z) =

∞∑

n=0

en(w)en(z) =

∞∑

n=0

(n+ 1)wnzn =

∞∑

n=0

(n+ 1)(wz)n.

Differentiating
∑∞

n=0 x
n = (1 − x)−1 we see that

∑∞
n=0(n+ 1)xn = (1 − x)−2 and thus

obtain the following formula for the Bergman reproducing kernel:

(1.8) Kw(z) =
1

(1− wz)2
, for w, z ∈ D.

Example 1.9. The Fock space (or Segal–Bargmann space) is the space of entire func-

tions that are square-integrable with respect to Gaussian measure on the complex plane,

that is, the space of all analytic functions f on C for which
T
C
|f(z)|2 dµ(z) < ∞, where

dµ(z) = e−|z|2/2 dA(z)/2. The space F is a closed linear subspace of the space L2(C, dµ)

with inner product given by

〈f, g〉 =
\
C

f(z)g(z)dµ(z), f, g ∈ L2(C, dµ),

and thus is a Hilbert space. The functions zn (n ≥ 0) are orthogonal in F and their

linear span is clearly dense in F . Using polar coordinates we see

‖zn‖2F =
\
C

|z|2n e−|z|2/2 dA(z)/2 =

∞\
0

2π\
0

r2n+1e−r2/2 dr dθ/2π

=

∞\
0

xne−x/2dx/2 = 2n
∞\
0

tne−tdt = n!2n.
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Thus {zn/(n!2n)1/2 : n ≥ 0} is an orthonormal basis in F , and hence the reproducing

kernel in F is given by

(1.10) Kw(z) =

∞∑

n=0

en(w)en(z) =

∞∑

n=0

(wz/2)n

n!
= ewz/2.

2. Definition and properties of the Berezin transform. In this section we define

the Berezin transform, discuss some elementary properties of the Berezin transform, and

give some preliminaries for the spaces of analytic functions introduced in the previous

section.

Definition 2.1. Let H be a reproducing functional Hibert space on an open subset

Ω of C. If S is a bounded linear operator on H, the Berezin transform of S is defined by

S̃(w) = 〈Skw, kw〉, for w ∈ Ω.

Note that the function S̃ is bounded on Ω.

Theorem 2.2. Let H be a reproducing functional Hibert space of analytic functions

on an open subset Ω of C and let S be a bounded operator on H. Then

S = 0 ⇔ S̃(w) = 0, for all w ∈ Ω.

Before we will prove the above theorem we will need a result on the zero set of an

analytic function of more than one variable. Recall that the zeros of an analytic function

of one complex variable are isolated. This is no longer true when we consider analytic

functions of several complex variables, for example, the zeros of the function h(z1, z2) = z1
form the subset {(0, z2) : z2 ∈ C} of C2. Thus, varieties of analytic functions can be

quite large (for example uncountable). The following lemma does provide a restriction

of the zeros of an analytic function of more than one variable, and will be a useful tool

in proving Theorem 2.2. In this lemma and the proof of Theorem 2.2 we will use the

following notation: given Ω ⊂ C we write Ω∗ = {w : w ∈ Ω}. Note that Ω∗ is open if Ω

is an open subset of C.

Lemma 2.3. Let Ω be an open subset of C. If h is analytic on Ω×Ω∗ and h(z, z) = 0,

for all z ∈ Ω, then h = 0.

P r o o f. Without loss of generality we may assume that 0 ∈ Ω. Let ̺ > 0 be such

that D = {z ∈ C : |z| < ̺} ⊂ Ω. Then h =
∑∞

m=0 hm on D ×D, where each hm is a

homogeneous polynomial of degree m on C × C. For −1 < t < 1, z ∈ D and m ≥ 0 we

have hm(tz, tz) = tmhm(z, z), so that
∞∑

m=0

hm(z, z)tm =
∞∑

m=0

hm(tz, tz) = h(tz, tz) = 0.

Thus, hm(z, z) = 0 and it suffices to prove the lemma for an m-homogeneous polynomial

on C× C.

Suppose h(z, w) =
∑m

k=0 akz
kwm−k satisfies h(z, z) = 0 for all z ∈ D. Taking 0 <

r < ̺ and θ ∈ R, and letting z = reiθ, we easily obtain
∑m

k=0 ake
2ikθ = 0, for all θ ∈ R.

Since the functions e2kiθ , for k = 0, 1, . . . ,m, are linearly independent, we conclude that

a0 = a1 = . . . = am = 0. Hence h = 0.
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P r o o f o f T h e o r em 2.2. The function h : Ω × Ω∗ → C defined by h(z, w) =

〈SKw,Kz〉 for z, w ∈ Ω is analytic on Ω ×Ω∗. To show this, writing

h(z, w) =
\
Ω

(SKw)(u)Kz(u) dµ(u) =
\
Ω

(SKw)(u)Ku(z) dµ(u),

we see that h is analytic in the first variable (that is, for fixed w ∈ Ω∗ the function

z 7→ h(z, w) is analytic on Ω), and using that

h(z, w) = 〈Kw, S
∗Kz〉 = 〈S∗Kz,Kw〉,

we see that h is analytic in the second variable (using the elementary fact that for an

analytic function g on Ω the function w 7→ g(w) is analytic on Ω∗). The mapping h

satisfies h(z, z) = 0 for all z ∈ Ω. By Lemma 2.3, h = 0 on Ω × Ω∗. This means that

〈SKw,Kz〉 = 0, for z, w ∈ Ω, that is, (SKw)(z) = 0, for all z, w ∈ Ω, and hence SKw = 0

for w ∈ Ω. It follows that for arbitrary f ∈ H and w ∈ Ω we have

S∗f(w) = 〈S∗f,Kw〉 = 〈f, SKw〉 = 0.

Thus S∗ = 0, and therefore S = 0.

Proposition 2.4. Let H be a reproducing functional Hilbert space of analytic functions

on Ω, and suppose that D is a dense subset of H such that 〈f, kw〉 → 0 as w → ∂Ω for

all f ∈ D. Then kw → 0 weakly in H as w → ∂Ω.

P r o o f. We must show that 〈f, kw〉 → 0 as w → ∂Ω, for every f ∈ H. Given f ∈ H

and ε > 0 choose h ∈ D such that ‖f−h‖ < ε. Then |〈f, kw〉| ≤ |〈f − h, kw〉|+ |〈h, kw〉| ≤

‖f − h‖ + |〈h, kw〉|, so that lim supw→∂Ω |〈f, kw〉| ≤ ‖f − h‖ < ε, for all ε > 0, and thus

〈f, kw〉 → 0 as w → ∂Ω.

Corollary 2.5. In each of the spaces H2, L2
a and F we have kw → 0 weakly as

w → ∂Ω.

P r o o f. The space H∞ is dense in both H2 and L2
a, and for an h ∈ H∞ we have

〈h, kw〉 = h(w)/Kw(w) → 0 as |w| → 1−.

To prove the statement for F , note that P , the space of complex polynomials, is dense

in F , and for each fixed p ∈ P we have 〈p, kw〉 = p(w)/Kw(w) = p(w) e−|w|2/2 → 0 as

|w| → ∞.

Now, if the operator S is compact, then S̃(w) → 0 as w → ∂Ω. This leads to the

following question. If S is a bounded linear operator for which S̃(w) → 0 as w → ∂Ω, is

S necessarily compact?

As we will see in the next section, the answer to the above question is “No” in general.

The following question seems open.

Question 2.6. For which class of bounded linear operators S on H is it true that : S

is compact if and only if S̃(w) → 0 as w → ∂Ω?

In Sections 4, 5 and 6 we will give examples of classes of operators for which com-

pactness is characterized by the vanishing condition of the Berezin transform.

Another useful result concerning the Berezin transform is the following proposition.
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Proposition 2.7. Let H be a reproducing Hilbert space of analytic functions on Ω.

If S is a positive or trace-class operator on H, then

tr(S) =
\
Ω

S̃(z)K(z, z) dµ(z).

A proof of the above proposition can be found in [28]. For other properties of the

Berezin transform we refer the reader to [6], [14], [17] and [28].

3. Berezin transform and non-compact operators. In this section we will give

examples of non-compact operators that have vanishing Berezin transform.

The first example was discovered by Rosenthal [18] in the Hardy space setting. For

an analytic function ϕ : D → D let Cϕ denote the composition operator on H2 defined by

Cϕf = f ◦ ϕ, for f ∈ H2.

That Cϕ is bounded on H2 is well-known. Compactness of Cϕ has been characterized

by Shapiro [21], but we will not need his results here. It is easy to compute the Berezin

symbol of the operator Cϕ. Using (1.5) and the reproducing property of Kw we have

〈CϕKw,Kw〉 = (CϕKw)(w) = Kw(ϕ(w)) =
1

1− wϕ(w)
.

Since ‖Kw‖
2
2 = 〈Kw,Kw〉 = Kw(w) = 1/(1− |w|2), it follows that

C̃ϕ(w) =
1− |w|2

1− wϕ(w)
.

Now, let ψ be any conformal map of D onto the region R = {z ∈ D : Re z < 0} (such a

map ψ exists by the Riemann Mapping Theorem) and let ϕ(z) = zψ(z), for z ∈ D. With

this notation, Rosenthal [18] obtained the following result.

Theorem 3.1. The operator Cϕ is not compact on H2, while C̃ϕ(w) → 0 as |w| → 1−.

P r o o f. Clearly, |1−ψ(w)| ≥ 1 for all w ∈ D, and thus |1−wϕ(w)| = |1−|w|2ψ(w)| ≥

1− (1− |w|2) ≥ 1/2, for w ∈ D with (1 − |w|2) < 1/2. For such w’s we have

|C̃ϕ(w)| =
1− |w|2

|1− wϕ(w)|
≤ 2(1− |w|2),

and thus C̃ϕ(w) → 0 as |w| → 1−.

To show that Cϕ is not compact, noting that zn → 0 weakly in H2 it suffices to show

that ‖Cϕz
n‖2 6→ 0 as n→ ∞. Observe that Cϕz

n = ϕn. Thus

‖Cϕz
n‖22 =

2π\
0

|ϕ(eiθ)|2n dθ/2π =

2π\
0

|ψ(eiθ)|2n dθ/2π ≥ a > 0,

since |ψ(eiθ)| = 1 on a set of positive measure.

The next example is due to Axler [4]. For an analytic function f on D let f̌(n) denote

the nth Taylor coefficient of f , so that f has the representation

f(z) =
∞∑

n=0

f̌(n)zn, for z ∈ D.

In [4], Axler proved the following theorem.
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Theorem 3.2. The operator T defined on L2
a by

Tf(z) =

∞∑

n=0

f̌(2n)z(2
n)

is a bounded , positive, non-compact operator on L2
a such that

T̃ (w) → 0 as |w| → 1−.

P r o o f. The operator T is clearly bounded, positive, and non-compact. Its Berezin

transform is easy to compute: it follows from (1.7) that

TKw(z) =
∞∑

n=0

(2n + 1)w(2n)z(2
n)

Thus, using the reproducing property of Kw, we have

〈TKw,Kw〉 = TKw(w) =

∞∑

n=0

(2n + 1)(|w|2)(2
n).

Since ‖Kw‖
2 = 〈Kw,Kw〉 = 1/(1− |w|2)2, we get

T̃ (w) = (1− |w|2)2
∞∑

n=0

(2n + 1)(|w|2)(2
n).

So, to complete the proof we must show that

(1 − x)2
∞∑

n=0

(2n + 1)x(2
n) → 0 as x→ 1.

This can be done as follows: for fixed n ∈ N we have

2n−1 x(2
n) =

2n∑

k=2n−1+1

x(2
n) ≤

2n∑

k=2n−1+1

xk,

and, using the fact that 2n + 1 ≤ 3 · 2n−1 for all n ≥ 1, it follows that
∞∑

n=0

(2n + 1)x(2
n) ≤ 2x+ 3

∞∑

n=1

2n∑

k=2n−1+1

xk ≤ 3

∞∑

k=1

xk = 3x/(1− x),

and the statement follows.

With the same notation for entire functions as in the previous example we also have

the following result.

Theorem 3.3. The operator T defined on F by

Tf =

∞∑

n=0

f̌(2n)z(2
n)

is a bounded , positive, non-compact operator on F such that

T̃ (w) → 0 as |w| → ∞.

P r o o f. Again T is clearly bounded, positive, and non-compact. Its Berezin transform

is again easy to compute:

T̃ (w) = e−|w|2/2
∞∑

n=0

1

(2n)!
(|w|2/2)(2

n).
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We need to show that

(3.4) e−x
∞∑

n=0

x(2
n)

(2n)!
→ 0 as x→ ∞.

To prove this statement, we will first use induction to establish that

(3.5) lim
x→∞

e−x
∞∑

n=0

xmn

(mn)!
=

1

m
,

for m = 1, 2, 22, 23, . . . The above statement is clearly true for m = 1. To prove the

induction step we observe that
∞∑

n=0

x2mn

(2mn)!
=

1

2

∞∑

n=0

xmn

(mn)!
+

1

2

∞∑

n=0

(−1)n
xmn

(mn)!
,

and the induction step will be verified once we know that

(3.6) lim
x→∞

e−x
∞∑

n=0

(−1)n
xmn

(mn)!
= 0,

for m = 1, 2, . . . For m = 1 this is clearly true. Assuming the above statement, repeatedly

applying L’Hospital’s rule we arrive at

lim
x→∞

e−x
∞∑

n=0

(−1)n
xmn+m

(mn+m)!
= lim

x→∞
e−x

∞∑

n=0

(−1)n
xmn

(mn)!
= 0,

completing the proof of (3.6). To prove (3.4) we reason as follows. Fix N ∈ N and put

m = 2N . Then
∞∑

n=N

x(2
n)

(2n)!
=

∞∑

k=0

x(m2k)

(m2k)!
≤

∞∑

n=0

xmn

(mn)!
,

so that

lim sup
x→∞

e−x
∞∑

n=0

x(2
n)

(2n)!
= lim sup

x→∞
e−x

∞∑

n=N

x(2
n)

(2n)!
≤ lim

x→∞
e−x

∞∑

n=0

xmn

(mn)!
=

1

m
=

1

2N
.

Since the above inequality holds for all N ∈ N, (3.4) must hold.

4. Commutativity of Toeplitz operators. Let H be a reproducing functional

Hilbert space of analytic functions on Ω. Then H is a closed linear subspace of L2(Ω,µ)

so that there exists an orthogonal projection P of L2(Ω,µ) onto H. This projection is

easily expressed in terms of the reproducing kernel K:

Pf(w) = 〈Pf,Kw〉 = 〈f,Kw〉 =
\
Ω

f(z)Kw(z)dµ(z) =
\
Ω

f(z)K(w, z) dµ(z).

If a bounded f is in L2(Ω,µ), we define the Toeplitz operator Tf : H → H by Tf (g) =

P (fg), for g ∈ H.

Toeplitz operators on the Hardy space H2 are easily recognized by their matrix

with respect to the standard orthonormal basis: for f ∈ L∞(T) we have 〈Tfz
n, zm〉 =

〈fzn, zm〉 =
T2π
0
f(eiθ) ei(n−m) dθ/2π, for n,m ≥ 0, so the matrix of Tf with respect to

the standard basis is a Toeplitz matrix.
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Example 4.1. It follows from (1.5) and (1.3) that in H2 the normalized reproducing

kernel kw is given by kw(z) = Kw(z)/‖Kw‖ = (1−|w|2)1/2/(1−wz). Thus, for f ∈ L∞(T)

we have

T̃f (w) = 〈fkw, kw〉 = lim
r→1−

2π\
0

f(reiθ)
1− |w|2

|1− re−iθw|2
dθ

2π

=

2π\
0

f(eiθ)
1− |w|2

|eiθ − w|2
dθ

2π
= f̂(w),

the Poisson extension of f at w.

The following result is classical. We will give a very short proof using Theorem 2.2.

Theorem 4.2. Let f ∈ L∞(T). Then: the Toeplitz operator Tf is compact on H2 ⇔

f = 0 a.e. on T.

P r o o f. If Tf is compact, then f̃(w) = T̃f(w) → 0 as |w| → 1−. But f̃ = f̂ , the

Poisson extension of f over D, so that f̃(rζ) → f(ζ) as r → 1−, for a.e. ζ ∈ T, and we

conclude that f(ζ) = 0 for a.e. ζ ∈ T.

As another example of Theorem 2.2 we will prove the following result of Brown and

Halmos [11], whose original proof was based on matrices. We first derive a preliminary

result. If H is a reproducing functional Hilbert space of functions on the set Ω, and h is

a function on Ω such that hKz ∈ H for all z ∈ Ω, then P (hKw) is easily determined as

follows:
P (hKw)(z) = 〈P (hKw),Kz〉 = 〈hKw,Kz〉 = 〈Kw, hKz〉

= 〈hKz,Kw〉 = h(w)Kz(w) = h(w)Kw(z),

so that

P (hkw) = h(w) kw.

Note that if H is H2 or L2
a the reproducing kernels are in fact bounded, so that the above

formula holds for any function h ∈ H and w ∈ D.

The following theorem is due to Brown and Halmos [11]:

Theorem 4.3. If f and g in L∞(T) are such that Tf and Tg commute on H2, then:

(i) both f and g are analytic, or

(ii) both f and g are co-analytic, or

(iii) a non-trivial linear combination of f and g is constant.

P r o o f. Compute the Berezin transform of the commutator [Tf , Tg]:

˜[Tf , Tg](w) = 〈TfTgkw, kw〉 − 〈TgTfkw, kw〉 = 〈Tgkw, fkw〉 − 〈Tfkw, gkw〉.

Write f = f1 + f2 and g = g1 + g2, where f1, f2, g1 and g2 are analytic on D. Then we

have Tgkw = P (gkw) = g1kw +P (g2kw) = g1kw + g2(w)kw. Thus, using the reproducing

property of kw,

〈Tgkw, fkw〉 = 〈g1kw + g2(w) kw, f1kw + f2kw〉

= f1(w)g1(w) + f1(w)g2(w) + 〈f2g1kw, kw〉+ f2(w)g2(w),
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and, by interchanging the roles of f and g, we also have

〈Tfkw, gkw〉 = f1(w)g1(w) + g1(w)f2(w) + 〈f1g2kw, kw〉+ f2(w)g2(w).

Hence
˜[Tf , Tg] = ũ− u,

where u = f2g1 − f1g2. Thus, Tf and Tg commute if and only if ˜[Tf , Tg] ≡ 0, if and only

if ũ = u, that is, if and only if u = f2g1 − f1g2 is harmonic on D. This is equivalent to

4(f ′
2g

′
1 − f ′

1g
′
2) = ∆u ≡ 0, which is easily seen to be equivalent to one of conditions (i),

(ii) or (iii).

Combining (1.8) and (1.3) we see that in L2
a the normalized reproducing kernel kw

is given by kw(z) = Kw(z)/‖Kw‖ = (1− |w|2)/(1− wz)2. Thus, in the Bergman setting

we have the following formula for the Berezin symbol of a function: for f ∈ L∞(D) and

w ∈ D we have

f̃(w) = T̃f (w) =
\
D

f(z)
(1− |w|2)2

|1− wz|4
dA(z).

The above argument would also work on the Bergman space, provided the equation ũ = u

implies that u must be harmonic on D. Although this has recently been shown by Ahern,

Florin and Rudin [1], we will follow the approach of Axler and Čučković [5] who obtained

the analogue of Theorem 4.3 in the Bergman setting. Their main tool is an invariant mean

value characterization for harmonic functions. We will need to introduce more notation

before we can state their result.

We will first discuss the Möbius-invariance of the Berezin transform. For w ∈ D define

the fractional transformation ϕw : D → D by

ϕw(z) =
w − z

1− wz
, z ∈ D.

It is easily seen that ϕw is its own inverse: ϕw(ϕw(z)) = z for all z ∈ D. The function ϕw

has derivative given by ϕ′
w(z) = (|w|2−1)/(1−wz)2, so the change-of-variable u = ϕw(z)

has real Jacobian equal to ϕ′
w(z)ϕ

′
w(z) = |ϕ′

w(z)|
2 = (1 − |w|2)2/|1− wz|4. It follows that

f̃(w) is also given by the following formula:

(4.4) f̃(w) =
\
D

(f ◦ ϕw)(z) dA(z).

It is this last formula that shows the following invariance of the Berezin symbol:

f̃(ϕ(w)) = (f ◦ ϕ)∼(w),

for all ϕ ∈ Aut(D). Our approach will exploit the Möbius-invariance of the Berezin

transform.

Before we can state Axler and Čučković’s invariant mean value characterization for

harmonic functions, we need another definition. For a function v on D define its radial-

ization R(v) by

R(v)(z) =

2π\
0

v(eiθz)
dθ

2π
, z ∈ D.

Note that R(v) is a radial function on D: R(v)(z) only depends on |z|.
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The following lemma is due to Axler and Čučković [5].

Lemma 4.5. If u ∈ L1(D, dA) is such that ũ = u and for each w ∈ D the function

R(u ◦ ϕw) extends to a continuous function on D, then u is harmonic on D.

The following result is needed in the proving the above lemma (see [2] or [19]). For

completeness we include a proof.

Proposition 4.6. If v is continuous on D, and ṽ = v, then v is harmonic on D.

P r o o f. We can without loss of generality assume that v is real-valued. Writing v̂ for

the Poisson integral of the restriction of v to T, the function h := v − v̂ satisfies h̃ = h

and h ≡ 0 on T. If h takes on its maximum value at the point w ∈ D, then

h(w) = h̃(w) =
\
D

h(ϕw(z)) dA(z) ≤ h(w),

implies that h(ϕw(z)) = h(w) for all z ∈ D, and consequently, h must be constant. We

conclude that h takes on its maximum value at a point of T. Because h ≡ 0 on T we have

h ≤ 0. But also −h ≤ 0, and thus h ≡ 0. Hence v = v̂ is harmonic on D.

The following proposition shows that the Berezin transform and radialization com-

mute.

Proposition 4.7. If u ∈ L1(D, dA), then

R̃(u) = R(ũ).

P r o o f. Using equation (4.4), the definition of the radialization and Fubini’s theorem,

we have

R̃(u)(w) =
\
D

R(u)(ϕw(z)) dA(z) =
\
D

2π\
0

u(eiθϕw(z))
dθ

2π
dA(z)

=

2π\
0

\
D

u(ϕeiθw(e
iθz)) dA(z)

dθ

2π
=

2π\
0

\
D

u(ϕeiθw(z)) dA(z)
dθ

2π

=

2π\
0

ũ(eiθw)
dθ

2π
= R(ũ)(w),

where the use of Fubini’s theorem is justified by replacing each occurrence of u by |u|.

One more preliminary result remains. The following is implicit in Axler and Čuč-

ković [5].

Lemma 4.8. If f, g ∈ H2, then R(fg) extends continuously to D.

P r o o f. Writing f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n, it is easily seen that

R(fg)(z) =

∞∑

n=0

anbn|z|
2n,

and since
∞∑

n=0

|anbn| ≤
( ∞∑

n=0

|an|
2
)1/2( ∞∑

n=0

|bn|
2
)1/2

<∞,

the stated result follows.
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P r o o f o f L emma 4.5. If ũ = u, then R̃(u) = R(u). Since v = R(u) extends to a

continuous function on D, the function v must be harmonic, and thus constant (since it

is radial). Using Taylor’s theorem it is easy to verify that

∆u(0) = lim
r→0+

4

r2

2π\
0

(
u(reiθ)− u(0)

) dθ

2π
= lim

r→0+

4

r2
(R(u)(r) −R(u)(0)) = 0.

Now, for w ∈ D we also have (u ◦ ϕw)
∼ = u ◦ ϕw, and applying the above argument

to u ◦ ϕw we obtain ∆(u ◦ ϕw)(0) = 0. It is easy to verify that ∆(u ◦ ϕw)(0) = (1 −

|w|2)2∆u(w), thus ∆u(w) = 0.

We are now ready to prove the following result of Axler and Čučković [5]:

Theorem 4.9. Let f and g be bounded harmonic functions on D. Then: Tf and Tg
commute on L2

a if and only if :

(i) both f and g are analytic, or

(ii) both f and g are co-analytic, or

(iii) a non-trivial linear combination of f and g is constant.

P r o o f. Write f = f1 + f2 and g = g1 + g2, where f1, f2, g1 and g2 are analytic

functions on D and assume that Tf and Tg commute. As in the proof of Theorem 4.3 we

have ũ = u, where u = f2g1− f1g2. The functions f1, f2, g1 and g2 need not be bounded,

however, the boundedness of f and g implies that f1, f2, g1 and g2 must belong to H2.

To see this, use the fact that

2π\
0

|f1(re
iθ)− f1(0)|

2 dθ

2π
+

2π\
0

|f2(re
iθ)− f2(0)|

2 dθ

2π
=

2π\
0

|f(reiθ)− f(0)|2
dθ

2π
,

for all 0 < r < 1. It follows that R(u) extends continuously to D. Replacing u by u ◦ ϕw

we see that the conditions of Lemma 4.5 are satisfied, and hence u is harmonic on D. This

easily implies that one of conditions (i), (ii) and (iii) must hold, and proves the necessity

of (i), (ii) or (iii). The sufficiency is easily established.

In [25] the author has shown that essential commutativity of Toeplitz operators with

harmonic symbols on L2
a is characterized by local versions of statements (i), (ii) or (iii).

More precisely, we have the following result, where we refer the reader to [25] for some

of the missing terminology.

Theorem 4.10. Let f and g be bounded harmonic functions on D. Then the following

statements are equivalent :

(a) Tf and Tg are essentially commuting on L2
a (i.e., the commutator [Tf , Tg] is

compact on L2
a);

(b) on each Gleason part G of the maximal ideal space of H∞, except possibly D:

(i) both f and g are analytic on G, or

(ii) both f and g are co-analytic on G, or

(iii) a non-trivial linear combination of f and g is constant on G;

(c) lim|z|→1−(1− |z|2)2
{
∂f
∂z

∂g
∂z − ∂f

∂z
∂g
∂z

}
= 0.
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Using the same notation as in the proof of Theorem 4.9, we note that condition (c) of

Theorem 4.10 says that ũ(z)− u(z) → 0 as |z| → 1−, so that the compactness of [Tf , Tg]

is equivalent with the condition [Tf , Tg]
∼(z) → 0 as |z| → 1−.

Condition (b) of Theorem 4.10 gives various possibilities for the behavior on each of

the Gleason parts other than D. It is an open question whether for non-constant bounded

harmonic functions on D satisfying condition (b) the behavior can be different on distinct

Gleason parts other than D.

5. Berezin transform and Hankel and Toeplitz operators. In this section we

will discuss several positive results relating certain properties of classes of operators to the

boundary behavior of the Berezin transform. We start in the setting of the Fock space.

By (1.10) and (1.3) we have: kw(z) = Kw(z)/‖Kw‖ = ewz/2/e|w|2/4 = ewz/2−|w|2/4. Thus

the Berezin transform of a Toeplitz operator Tf on F is given by

f̃(w) = T̃f (w) =
\
C

f(z)|ewz/2−|w|2/4|2 dµ(z) =
\
C

f(z)e−|z−w|2/2 dA(z)/2.

The map f 7→ f̃ is a smoothing operator which is related to the heat equation on C = R2.

In fact,

f̃(t, w) =
1

4t

\
C

f(z) e−|z−w|2/(4t) dA(z)

is the unique solution to the heat equation with initial value f (at t = 0). Thus f̃(w) =

f̃(1/2, w) is the solution of the initial value problem for f at t = 1/2. Berger and Coburn

([8], [9]) used this fact in their analysis of Toeplitz operators on F . Using a different

method we obtained the following result for Toeplitz operators, and Hankel operators

Hf : F → L2(C, dµ) defined by Hfg = (I − P )(fg), for g ∈ F :

Theorem 5.1. For f ∈ L∞(C):

(a) Tf is compact on F ⇔ ‖P (f ◦ τw)‖2 → 0 as |w| → ∞;

(b) Hf is compact on F ⇔ ‖f ◦ τw − P (f ◦ τw)‖2 → 0 as |w| → ∞,

where τw : C → C is the translation τw(z) = z + w.

Rema r k. Noting that ‖f◦τw−P (f◦τw)‖
2
2 = H̃∗

fHf (w), part (b) of the above theorem

says that the compactness of Hf , and thus of H∗
fHf , is equivalent to H̃∗

fHf (w) → 0 as

|w| → ∞.

WritingMf for the multiplication operatorMf : F → L2(C, dµ) defined byMfg = fg,

for g ∈ F , the above theorem easily implies the following result of Berger and Coburn [9]:

Theorem 5.2. For f ∈ L∞(C):

Mf is compact on F ⇔ |̃f |2(w) → 0 as |w| → ∞.

P r o o f. For w ∈ C we have

|̃f |2(w) = ‖f ◦ τw‖
2
2 = ‖P (f ◦ τw)‖

2
2 + ‖f ◦ τw − P (f ◦ τw)‖

2
2,

so if |̃f |2(w) → 0 as |w| → ∞, then both ‖P (f ◦ τw)‖2 → 0 as |w| → ∞ and ‖f ◦ τw −

P (f ◦ τw)‖2 → 0 as |w| → ∞, and by Theorem 5.1 both Tf and Hf are compact. Thus

Mf is compact.
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Note that the above theorem can be used to answer our question about compactness

for Toeplitz operators with positive symbols:

Proposition 5.3. If f is a non-negative bounded measurable function on C, then: Tf
is compact on F ⇔ f̃(w) → 0 as |w| → ∞.

P r o o f. The implication “⇐”: Let g be a non-negative measurable function on C such

that f = g2. Then |̃g|2(w) = f̃(w) → 0 as |w| → ∞, and by Theorem 5.2,Mg is compact.

Then also Mf =M2
g is compact, and hence Tf is compact.

Theorem 5.1 also gives some insight in the following result of Berger and Coburn [9],

which they proved by an averaging operation over a representation of the Heisenberg

group related to the operation of taking the Berezin transform.

Theorem 5.4. For f ∈ L∞(C) the following statements are equivalent :

(i) Hf is compact on F ;

(ii) H
f
is compact on F ;

(iii) ‖f ◦ τw − f̃(w)‖2 → 0 as |w| → ∞;

(iv) |̃f |2(w)− |f̃(w)|2 → 0 as |w| → ∞.

I n f o rma l p r o o f. If (wn)n is a sequence in C such that |wn| → ∞ as n→ ∞, then

by going to a subsequence we may assume that P (f ◦ τwn
) → h in F as n → ∞ (by

compactness of the operator P restricted to L∞(C), a result that can be proved similarly

to Theorem 20 in [9]). If Hf is compact, then ‖f ◦ τwn
− P (f ◦ τwn

)‖2 → 0 as n → ∞,

and thus ‖f ◦ τwn
− h‖2 → 0 as n → ∞. But, since the f ◦ τwn

are uniformly bounded,

this implies that the entire function h must be bounded! Thus h is constant, and it is

easily shown that also ‖f ◦ τwn
− P (f ◦ τwn

)‖2 → 0 as n → ∞, so that by Theorem 5.1

the operator Hf̄ is compact.

On the Bergman space the author and D. Zheng [26] obtained the following result,

completely analogous to Theorem 5.1:

Theorem 5.5. For f ∈ L∞(D):

(a) Tf is compact on L2
a ⇔ ‖P (f ◦ ϕw)‖2 → 0 as |w| → 1−;

(b) Hf is compact on L2
a ⇔ ‖f ◦ ϕw − P (f ◦ ϕw)‖2 → 0 as |w| → 1−.

Results analogous to Theorem 5.2 and Proposition 5.3 hold for the Bergman space.

For points z, w ∈ D the pseudo-hyperbolic distance between z and w is defined by

d(z, w) = |ϕw(z)|. That d is indeed a metric on D is non-trivial. Note that d is invariant

under the automorphism group of D: d(z, w) = d(ϕ(z), ϕ(w)), for all ϕ ∈ Aut(D). The

Bergman metric is given by the formula ̺(z, w) = 1
2 log

1+d(z,w)
1−d(z,w) , for z, w ∈ D. It is

clear that also ̺ is invariant under Aut(D). Békollé, Berger, Coburn and Zhu [7] have

shown that the Berezin symbol of a class of measurable functions including the bounded

measurable functions satisfies a growth condition that implies that it is Lipschitz with

respect to the Bergman metric (see Section 7.1 of [28] for a proof in the setting of the

unit disk). In particular, if g ∈ L∞(D), then the function g̃ is Lipschitz with respect to ̺.

The next result partially answers the question in Section 2. In the next section we

will give examples for which the Lipschitz condition is not needed.
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Theorem 5.6. If f is Lipschitz with respect to the Bergman metric on D, then

Tf is compact on L2
a ⇔ f̃(w) → 0 as |w| → 1−.

P r o o f. The implication “⇒” is always true, since f̃(z) = 〈Tfkz , kz〉, and kz → 0

weakly in L2
a as |z| → 1− (by Proposition 2.4).

The implication “⇐”: By Theorem 5.5 it suffices to prove that ‖P (f ◦ ϕz)‖2 → 0 as

|z| → 1−. We adopt the same notation as in [26]: we write Φ for the set of all possible

limits in the product space (βD)D of nets (ϕzα) for which |zα| → 1−. (Here βD denotes

the Čech–Stone compactification of D.) Since f is a bounded continuous function on D, it

has a unique continuous extension to βD, which we will denote by fβ. If ϕ ∈ Φ is the limit

in (βD)D of a net (ϕzα) for which |zα| → 1−, then it is easily seen that f ◦ ϕzα → fβ ◦ ϕ

pointwise on D. We claim that the convergence is uniform on compact subsets of D. To

prove this we need only show that the family {f ◦ϕz : z ∈ D} is equicontinuous. But this

easily follows from the the Möbius-invariance of the Bergman metric ̺ and the fact that

f is uniformly continuous with respect to ̺.

It follows from our claim that f ◦ ϕzα → fβ ◦ ϕ in L2(D), and thus

P (f ◦ ϕzα) → P (fβ ◦ ϕ)

in L2
a. Since evaluation at 0 is continuous, we conclude that

f̃(zα) = P (f ◦ ϕzα)(0) → P (fβ ◦ ϕ)(0) = (fβ ◦ ϕ)∼(0).

Now, by assumption, f̃(zα) → 0, thus (fβ ◦ ϕ)∼(0) = 0.

Now, let z ∈ D be fixed. It is a consequence of Schwarz’ Lemma that

(ϕzα ◦ ϕz)(w) = ϕϕzα(z)(cαw),

for all w ∈ D, where |cα| = 1 for each α. By going to a subnet, which we will not relabel,

we may assume that cα → c and ϕϕzα (z) → ψ in Φ. Then we have

(ϕ ◦ ϕz)(w) = ψ(cw),

for all w ∈ D. By the previous paragraph, (fβ ◦ ψ)∼(0) = 0. But,

(fβ ◦ ψ)∼(0) = (fβ ◦ ϕ ◦ ϕz)
∼(0) = (fβ ◦ ϕ)∼(ϕz(0)) = (fβ ◦ ϕ)∼(z),

and thus (fβ ◦ ϕ)∼(z) = 0 for all z ∈ D. This implies that Tfβ◦ϕ = 0 (by Theorem 2.2),

so that P (fβ ◦ ϕ) ≡ 0. Hence P (f ◦ ϕzα) → 0 in L2
a, and we conclude that indeed

‖P (f ◦ϕz)‖2 → 0 as |z| → 1−, proving that Tf is compact (by part (a) of Theorem 5.5).

We note that the above theorem also holds in the setting of the Fock space:

Theorem 5.7. If f is a bounded Lipschitz function on C, then

Tf is compact on F ⇔ f̃(w) → 0 as |w| → ∞.

6. Sarason’s example. In his survey article [3] Axler mentioned that Sarason had

constructed a bounded measurable function f for which f2 is identically 1 on D and Tf
is compact on L2

a. Axler gave no specific details in his article; I received the following

construction and its proof through correspondence with Sarason [20].
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Sarason’s construction. Let (rk) and (sk) be sequences of positive numbers converging

to 1 with 0 = r1 < s1 < r2 < s2 < . . ., and define f on D by

(6.1) f(x) =

{
−1 if rk ≤ |z| < sk,
1 if sk ≤ |z| < rk+1.

Then the eigenvalues of Tf are given by

(6.2) λn = (n+ 1)
\
D

f(z)|z|2n dA(z) =

∞∑

k=1

(r2n+2
k+1 − 2s2n+2

k + r2n+2
k ).

The problem is to choose the rk and sk so that λn → 0 as n→ ∞. By carefully estimating

the eigenvalues, Sarason [20] showed that for rk = 1− 1/k2/3 and sk = (rk + rk+1)/2 the

operator Tf is compact on L2
a. Since we are able to prove slightly more we omit Sarason’s

proof. In fact, we have the following more general result:

Theorem 6.3. Let f be the function given by (6.1) with rk = 1− 1/kα, where α > 0,

and sk = (rk + rk+1)/2. Then

Tf is trace-class on L2
a ⇔ α < 1.

P r o o f. By convexity of the function y = x2n+2, the kth summand in the sum of λn
is non-negative, and thus we can interchange the order of summation and have

∞∑

n=0

λn =

∞∑

k=1

∞∑

n=0

[r2n+2
k+1 − 2s2n+2

k + r2n+2
k ]

=

∞∑

k=1

[
r2k+1

1− r2k+1

−
2s2k

1− s2k
+

r2k
1− r2k

]
=

∞∑

k=1

(2s2k + rk+1rk + 1)(rk+1 − rk)
2

2(1− r2k+1)(1− r2k)(1− s2k)
.

Writing δn = sk − rk = rk+1 − sk, it follows that
∞∑

n=0

λn ≈

∞∑

k=1

δ2k
(1− rk)3

=

∞∑

k=1

(1/kα+1)2

(1/kα)3
=

∞∑

k=1

1

k2−α
,

since 2δk = rk+1 − rk = 1/kα − 1/(k + 1)α ≈ 1/kα+1, and the result follows.

Do these operators provide an example of a non-compact Toeplitz operator whose

Berezin transform vanishes as we approach the boundary of the unit disk? The following

recent result of Korenblum and Zhu [16] says that the answer is no.

Theorem 6.4. Let f be a bounded radial function on D. Then

Tf is compact on L2
a ⇔ f̃(w) → 0 as |w| → 1−.

To prove the above theorem, let f be a radial function on D. Recall that the functions

en(z) = (n+ 1)1/2zn, n = 0, 1, . . . , form an orthonormal basis for L2
a. It is easy to prove

that Tfen = λnen, where

(6.5) λn = (n+ 1)
\
D

f(z) |z|2n dA(z).

Thus the operator Tf is compact on L2
a if and only if λn → 0 as n → ∞. Note that

equation (6.2) is a special case of (6.5). Using Proposition 1.2, the reproducing property

of Kw, and (6.5) we obtain
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〈TfKw,Kw〉 = TfKw(w) =

∞∑

n=0

en(w) Tfen(w) =

∞∑

n=0

λn|en(w)|
2,

and thus we have the following formula for the Berezin transform:

(6.6) f̃(w) = T̃f (w) = (1− |w|2)2
∞∑

n=0

(n+ 1)λn|w|
2n, w ∈ D.

To prove Theorem 6.4 we need the following Tauberian theorem due to Hardy and Lit-

tlewood (Theorem 95 in [15]):

Theorem 6.7. If (bn) is a bounded sequence of complex numbers such that

(1− t)
∞∑

n=0

bnt
n → 0 as t→ 1−,

then

1

n+ 1

n∑

k=0

bk → 0 as n→ ∞.

P r o o f o f T h e o r em 6.4. Suppose that f is a radial function on D such that

f̃(w) → 0 as |w| → 1−. Then it follows from (6.6) that

(1− t)2
∞∑

n=0

(n+ 1)λnt
n → 0 as t→ 1−.

Noting that

(1− t)2
∞∑

n=0

(n+ 1)λnt
n = (1 − t)

∞∑

n=0

(n+ 1)λn(t
n − tn+1) = (1− t)

∞∑

n=0

bnt
n,

where bn = (n+ 1)λn − nλn−1 for n ≥ 1, and b0 = λ0, we have

(1 − t)

∞∑

n=0

bnt
n → 0 as t→ 1−,

hence

1

n+ 1

n∑

k=0

bk → 0 as n→ ∞.

Using the fact that we have a telescoping sum we see that

1

n+ 1

n∑

k=0

bk = λn −
λ0
n+ 1

.

Therefore λn → 0 as n→ ∞, and it follows that Tf is compact.

We can find another expression for the Berezin transform of f by using (4.4) and the
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formula |D(w, r)| = r2(1 − |w|2)2/(1− r2|w|2)2 (see, for example, Section 1.1 in [13]):

f̃(w) =

∞∑

k=1

( \
sk<|z|<rk+1

f(ϕw(z)) dA(z) +
\

rk<|z|<sk

f(ϕw(z)) dA(z)
)

=
∞∑

k=1

( \
D(w,rk+1)\D(w,sk)

1 dA(z) +
\

D(w,sk)\D(w,rk)

(−1) dA(z)
)

=

∞∑

k=1

[|D(w, rk+1)\D(w, sk)| − |D(w, sk)\D(w, rk)|],

thus

(6.8) f̃(w) = (1− |w|2)2
∞∑

k=1

[
r2k+1

(1− r2k+1|w|
2)2

−
2s2k

(1 − s2k|w|
2)2

+
r2k

(1 − r2k|w|
2)2

]
.

The above expression for the Berezin transform can be used to generalize Sarason’s

example. Recall that 2δk = rk+1 − rk.

Theorem 6.9. Let f be the function given by (6.1) with sk = (rk + rk+1)/2. If

∞∑

k=1

δ2k
(1 − rk)2

<∞,

then Tf is compact on L2
a.

It follows from the above theorem that for every α > 0 the Toeplitz operator associated

with f is compact:

Corollary 6.10. Let f be the function given by (6.1) with rk = 1 − 1/kα, where

α > 0 and sk = (rk + rk+1)/2. Then Tf is compact on L2
a.

P r o o f. Since δk ≈ 1/kα+1, we have

δ2k
(1− rk)2

≈
1/k2α+2

1/k2α
=

1

k2
.

P r o o f o f T h e o r em 6.9. For fixed w ∈ D consider the function

ψ(x) = x2/(1− x2|w|2)2.

Then

ψ′(x) = 2x(1 + x2|w|2)/(1− x2|w|2)3

and

ψ′′(x) = (2 + 16|w|2x2 + 6|w|4x4)/(1− x2|w|2)4.

Since ψ′′(x) ≥ 0, the graph of ψ is convex, and thus ψ(sk) ≤ (ψ(rk) + ψ(rk+1))/2, hence

ψ(rk+1) − 2ψ(sk) + ψ(rk) ≥ 0, proving that each of the terms in in the sum on the

right-hand side of equation (6.8) is positive. Repeatedly using the mean value theorem

we have

ψ(rk+1) + ψ(rk)− 2ψ(sk) ≤ δk2δkψ
′′(rk+1) ≤

48δ2k
(1− r2k+1|w|

2)4

≤
48δ2k

(1− |w|2)2(1− rk+1)2
.
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For fixed n ∈ N it follows from (6.8) that

f̃(w) ≤ (1− |w|2)2
n∑

k=1

[
r2k+1

(1− r2k+1|w|
2)2

−
2s2k

(1− s2k|w|
2)2

+
r2k

(1− r2k|w|
2)2

]

+ 48

∞∑

k=n+1

δ2k
(1− rk+1)2

.

We conclude that

lim sup
|w|→1−

f̃(w) ≤ 48

∞∑

k=n+1

δ2k
(1− rk+1)2

.

Taking the limit as n→ ∞ shows that f̃(w) → 0 as |w| → 1− (recall that here f̃(w) ≥ 0

for all w ∈ D), and by Theorem 6.4 operator Tf is compact on L2
a.

In the above argument it is essential that sk is average of rk and rk+1. If this is

not the case, then the statement in the above theorem is false, as can be seen from the

following example.

Example 6.11. If rk = 1 − 1/k and sk = 1 − 1/(k + 2−k) = 1 − 2k/(1 + k2k), then

in [12] it is shown that the Hankel operator Hf = H1+f is compact on L2
a (actually

Hilbert–Schmidt), and thus the operator Tf cannot be compact on L2
a (for otherwise the

multiplication operator Mf would be compact, which would imply that |̃f |2(w) → 0 as

|w| → 1−, contradicting the fact that |f |2 = 1 on D).
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