
SYMPLECTIC SINGULARITIES AND GEOMETRY OF GAUGE FIELDS
BANACH CENTER PUBLICATIONS, VOLUME 39

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1997

THE OBSTACLE PROBLEM AND DIRECT PRODUCTS
OF UNFURLED SWALLOWTAILS

OLEG MYASNICHENKO

Faculty of Applied Mathematics, Moscow Aviaton Institute
Volokolamskoe shosse 4, 125871, Moscow, Russia

E-mail: mjasnich@k804.mainet.msk.su

1. Introduction. The obstacle problem has been studied in papers by Arnold, Given-
tal, Shcherbak and other authors. This is the problem of investigating Lagrangian varieties
naturally arising in variational problems with one-sided constraints.

Example. Let us consider a Euclidean space M and an obstacle in it bounded by a
smooth hypersurface Γ. The shortest path between two points u, v ∈ M going around
the obstacle consists of an interval of a ray (oriented straight line) l1 going through the
point u and tangent to Γ, of an interval of a geodesic l2 on Γ tangent to l1 and of an
interval of a ray l3 which is tangent to l2 and goes through the end point v. We call l1
the inbound ray (or the inbound geodesic), l3 — the outbound.

Considering the shortest paths between u and points in some neighbourhood of v we
get a family of inbound rays, a family of geodesics on Γ starting at points of tangency
between the inbound rays and Γ and a family of outbound rays.

The family of geodesics on Γ starting at the points of tangency determines a La-
grangian variety LΓ ⊂ T ∗Γ: LΓ = {(q, p) ∈ T ∗Γ | q belongs to a geodesic from the family ,
p is tangent to this geodesic, ‖p‖ = 1}.

Definition. LΓ is called the variety consisting of geodesics on Γ starting at points
of tangency.

The variety LΓ lies in the hypersurface H ′′ of all unit (co)vectors on Γ. Let lΓ denote
the image of LΓ in the symplectic space of the characteristics of the hypersurface H ′′.

Definition. lΓ is called the variety of geodesics on Γ starting at points of tangency.
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In the same way the outbound rays determine a Lagrangian variety LM ⊂ H ⊂ T ∗M ,
where H is the hypersurface of all unit (co)vectors on M .

Definition. LM is called the variety consisting of outbound geodesics tangent to the
family of geodesics on Γ given by lΓ.

Let lM denote the image of LM in the symplectic space of the characteristics of the
hypersurface H.

Definition. lM is called the variety of outbound geodesics tangent to the family of
geodesics on Γ given by lΓ.

Lagrangian varieties described above are really varieties but not manifolds. The sim-
plest singularity is the unfurled (open) swallowtail.

Definition ([3]). The unfurled swallowtail τn of dimension n is a Lagrangian subva-
riety in the symplectic space P2n of polynomials of the form

x2n+1/(2n+ 1)! +Q1x
2n−1/(2n− 1)! + . . .+Qnx

n/n!−Pnx
n−1/(n− 1)! + . . .+ (−1)nP1

(Q,P — Darboux coordinates) formed by polynomials with a root of multiplicity exceed-
ing n.

The k-dimensional suspension over τn is τn × Rk ⊂ P2n × T ∗Rk. It is denoted by
τn+k,k.

The following was proved in [3].

Theorem 1. If lΓ is smooth then generically lM is symplectomorphic to τn+k−1,n

(k+n = dimM) in some neighbourhood of an outbound geodesic tangent to Γ of order k.

It turns out that the assumption “lΓ is smooth” generically is violated. Namely ([5]):

Theorem 2. Generically lΓ is symplectomorphic to τm+k−1,m (m+k = dim Γ) in some
neighbourhood of a geodesic on Γ which starts at a point of order k tangency between Γ
and an inbound geodesic.

So, we have a very natural question: what is lM if lΓ is singular? The following gives
partial answer to this question.

1. Generically lM is formally (at least) diffeomorphic to τ1×lΓ in some neighbourhood
of an outbound geodesic tangent to Γ of order 2.

2. If lΓ is locally diffeomorphic to l×R, where l is some analytic variety , then generi-
cally lM is formally (at least) diffeomorphic to τ2×l in some neighbourhood of an outbound
geodesic tangent to Γ of order 3.

R e m a r k. It follows from Theorem 2 that generically the condition “lΓ is locally
diffeomorphic to l × R” is fulfilled except when dimM = 4 and lΓ is considered in
some neighbourhood of an inbound ray tangent to Γ of order 3. Indeed, lΓ is locally
symplectomorphic to τm+k−1,m and m = 0 along isolated geodesics on Γ. Along such “the
most degenerate” single geodesic the order of tangency between Γ and the outbound ray
is equal to 1, at isolated points the order of tangency is equal to 2, and nowhere except of
the tangency point between Γ and the incoming geodesic the order of tangency exceeds 2.

Combining these results with Theorem 2 we get the following:
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Generically in the obstacle problem

1. lM is formally diffeomorphic to τ1 × τn,k, n = dimM − 2, in some neighbourhood
of an outbound geodesic tangent to Γ of order 2.

2. lM is formally diffeomorphic to τ2×τn−1,k, n = dimM−2, in some neighbourhood
of an outbound geodesic tangent to Γ of order 3 provided either dimM 6= 4 or the outbound
ray does not coincide with the corresponding inbound ray.

2. The obstacle problem in terms of symplectic geometry. Let M be the
configuration manifold of a Hamiltonian system with a Hamiltonian h, Γ = {q ∈ M |
F̃ (q) = 0} be a smooth hypersurface in M restricting an obstacle, T ∗M be the total
space of the cotangent bundle over M , ω be the standard symplectic form on T ∗M ,
π : T ∗M → M be the cotangent bundle projection, F = π∗F̃ . Let us consider the
hypersurfaces H = {x ∈ T ∗M | h(x) = 0} and T ∗ΓM = {x ∈ T ∗M | F (x) = 0}. Let
ρ : T ∗ΓM → T ∗Γ be the natural projection along the characteristics of the hypersurface
T ∗ΓM , κ : H → N be the natural projection along the characteristics of the hypersurface
H (locally N is a symplectic manifold).

Lagrangian varieties formed by extremals of the action functional of a Hamiltonian
system with one-sided constraint can be described as follows ([1], [2]):

Let B ⊂M be a submanifold (initial front), LB ⊂ T ∗M be a Lagrangian submanifold
of covectors at points of B vanishing on tangent to B spaces, L be the union of the
characteristics of the hypersurface H going through the points of LB ∩ H. For B in
general position L is a Lagrangian manifold (at least locally). For B and Γ in general
position the manifold L transversally intersects T ∗ΓM , hence l = T ∗ΓM ∩ L is smooth
and not tangent to the characteristics of the hypersurface T ∗ΓM , hence ρ(l) ⊂ T ∗Γ is a
Lagrangian submanifold. Let us consider H ′ and H ′′ — the sets of critical points and
critical values of the restriction ρ|H∩T∗

ΓM . Denote the projection along the characteristics
of the hypersurface H ′′ ⊂ T ∗Γ by κ′′ : H ′′ → N ′′, the union of the characteristics of H ′′

going through the points of ρ(l) ∩ H ′′ by LΓ, its image in N ′′ by lΓ. Generically LΓ is
singular ([5]).

Denote the union of the characteristics of the hypersurface H going through the points
ofH∩ρ−1(LΓ) by LM . Finally we introduce a filtration ofH∩T ∗ΓM = H(0) by the order of
tangency between the characteristics of H and the hypersurface T ∗ΓM : H(0) ⊃ H(1) ⊃ . . .,
where H(i) = {x ∈ T ∗M | F (x) = h(x) = 〈F, h〉(x) = . . . =

〈
. . . 〈F, h〉, . . . , h

〉
(x) = 0}

(i times the Poisson bracket 〈·, ·〉). It is not difficult to see that H ′ = H(1).

Example. In the previous example concerning extremals on a Riemannian manifold
with a boundary we have: H = {(q, p) ∈ T ∗M | ‖p‖ = 1}, H(0) is the set of all unit
covectors at points of Γ, H(1) is the set of all unit covectors tangent to Γ, H(2) \ H(3)

— tangent to Γ of order 2 etc. The initial front B is the initial point u, the manifold L

is given by a system of rays (geodesics) going through u: L = {(q, p) ∈ T ∗M | q belongs
to a geodesic going through u, p is tangent to this geodesic, ‖p‖ = 1}. The varieties
LΓ, lΓ, LM , lM are exactly the same as described above.

Keeping in mind this example, for any Hamiltonian, we will call LΓ the variety con-
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sisting of geodesics on Γ starting at points of tangency; lΓ — the variety of geodesics
on Γ starting at points of tangency; LM — the variety consisting of outbound geodesics
tangent to the family of geodesics on Γ given by lΓ and lM — the variety of outbound
geodesics tangent to the family of geodesics on Γ given by lΓ.

3. Results. In what follows we assume that the Hamiltonian h is quadratic and
convex in momenta.

Theorem 3. Generically lM is formally diffeomorphic to τ1×lΓ in some neighbourhood
of a characteristic of the hypersurface H tangent to T ∗ΓM of order 2 (i.e. going through
a point of H(2) \H(3)).

R e m a r k. The genericity conditions are the following:

1. The restriction of κ (the projection along the characteristics of the hypersurface
H) to H(0) is locally equivalent to the A2-singularity.

2. lΓ is locally diffeomorphic to an analytic variety.

Theorem 4. If lΓ is locally diffeomorphic to l × R for some analytic l then generi-
cally lM is formally diffeomorphic to τ2 × l in a neighbourhood of a characteristic of the
hypersurface H tangent to T ∗ΓM of order 3 (i.e. going through a point of H(3) \H(4)).

R e m a r k s.
1. The genericity conditions are the following:
1.1. The restriction of κ to H(0) is locally equivalent to the A3-singularity.
1.2. Let x ∈ ρ−1(LΓ)∩(H(3) \H(4)) be the point under consideration (more precisely,

the characteristic considered in the theorem goes through this point). We need the fol-
lowing: at the point ρ(x) = (y1, y2) ∈ l × R2(∼= LΓ) the edge y1 × R2 is transversal to
ρ(H(3)) in H ′′.

2. It is not difficult to see that the decomposition of lΓ into l × R (or LΓ into l ×
R2) generically is possible except when dimM = 4 and the considered geodesics of the
hypersurface H belongs to L (issues from the initial front). The reasons are exactly the
same as in the case of geometrical optics (see the introduction).

4. Proofs. The main result we use in the proofs is the following theorem (proved in
[1]) which gives the symplectic classification of pairs (H,H(0)), where H is a hypersurface
in a symplectic manifold, H(0) is a hypersurface in H.

Theorem 5. In some neighbourhood of a point where the restriction to H(0) of the
natural projection along the characteristics of the hypersurface H is equivalent to the
Ak-singularity (i.e. in some coordinates may be written in the form {(x, t1, . . . , tn) |
xk+1 + xk−1t1 + . . . + tk = 0} 7→ (t1, . . . , tn)) the pair (H,H(0)) is reducible to the
form ({q0 = 0}, {q0 = F = 0}) by a formal (at least) symplectomorphism. Here q, p are
Darboux coordinates and

(a) F = p2
0 + p1 if k = 1,

(b) F = p3
0 + p1p0 + q1 if k = 2,

(c) F = p4
0 + p1p

2
0 + q2p0 + p2 if k = 3.
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R e m a r k. The case (a) was firstly proved in [4] on the C∞–level.

4.1. Proof of Theorem 3. For a quadratic and convex in momenta Hamiltonian h we
have ρ−1(H ′′) ⊂ H ′(= H(1)) and the restriction of ρ to H ∩ T ∗ΓM is equivalent to the
A1-singularity. Hence the restriction of ρ to H ′ is a diffeomorphism and the hypersurface
H ′′ ⊂ T ∗Γ is smooth. Denote by lH the preimage of LΓ in H: lH = ρ−1(LΓ) ∩ H.
The variety lH is isotropic (because ρ−1(LΓ) is Lagrangian); LΓ ⊂ H ′′, hence lH =
(ρ|H(1))−1(LΓ), hence lH is diffeomorphic to LΓ.

Let x ∈ lH ∩ (H(2) \ H(3)), from part (b) of Theorem 5 it follows that the pair
(H,H(0)) = ({h = 0}, {h = 0} ∩ T ∗ΓM) can be reduced to the form ({q0 = 0}, {q0 =
p3
0 + p1p0 + q1 = 0}) by a formal symplectomorphism. Hence in some neighbourhood of
x we have:

H (= {q0 = 0}) ⊃ H(0) (= {q0 = p3
0 + p1p0 + q1 = 0})

⊃ H(1) (= {q0 = 0, p1 = −3p2
0, q1 = 2p3

0}) ⊃ H(2) (= {q0 = q1 = p0 = p1 = 0}),

the functions (p0, q2, . . . , qn, p2, . . . , pn) = (p0, q
′, p′) are coordinate functions on H(1),

ω|H(1) = dp2 ∧ dq2 + . . .+ dpn ∧ dqn.
Now we are going to prove that lH ∈ H(1) can be given by a system of equations not

dependent on p0. The main ingredient of the proof is the fact that lH is isotropic.

Proposition 1. At points y ∈ lH where lH is smooth ∂/∂p0 ∈ TylH .

P r o o f. Let us consider an auxiliary fibration of coordinate spaces: α : R2n−1 →
R2n−2, α : (p0, q

′, p′) 7→ (q′, p′), and the symplectic structure ω′ = dp′ ∧ dq′ on R2n−2.
Our lH ⊂ R2n−1 and (α∗ω′)|lH = (ω|H(1))|lH = ω|lH = 0 because lH is isotropic. Assume
that ∂/∂p0 6∈ TylH and lH is smooth at y. Projecting TylH : α∗,y : TylH → Tα(y)R2n−2

we get an isotropic subspace of dimension n in the symplectic space Tα(y)R2n−2. This
contradiction proves the proposition.

It follows from Proposition 1 that for any smooth function g on H(1), vanishing on
lH , ∂g/∂p0 = 0 at points where lH is smooth. But the singular locus is a proper and
closed subset of lH and ∂g/∂p0 is continuous hence ∂g/∂p0|lH = 0. Let us denote by
C∞(H(1)) the ring of germs at x of infinitely smooth functions on H(1), by J(lH) the
ideal of germs of vanishing on lH functions. Let f = (f1, . . . , fr)T , where fi are some
smooth representatives of the ideal J(lH) generators. We get:

∂f/∂p0(p0, q
′, p′) = ξ(p0, q

′, p′)f(p0, q
′, p′)

where ξ = ‖ξi,j‖ is an r × r-matrix, ξi,j are some smooth functions. Let Ψ(p0, q
′, p′) be

a principal matrix solution of the system of ordinary differential equations dependent on
the parameters q′, p′

dy/dp0 = ξ(p0, q
′, p′)y.

Then f(p0, q
′, p′) = Ψ(p0, q

′, p′)ψ(q′, p′), where ψ = (ψ1, . . . , ψr)T , ψi(q′, p′) are some
smooth functions. Hence lH = {(p0, q

′, p′) | ψ1(q′, p′) = . . . = ψr(q′, p′) = 0}. From
this and the fact that lH (∼= LΓ) is locally diffeomorphic to lΓ × R it follows that the
variety {(q′, p′) | ψ(q′, p′) = 0} is locally diffeomorphic to lΓ. Projecting lH along the
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characteristics of the hypersurface H we get:

lM = {(q1, q′, p1, p
′) | 4p3

1 + 27q21 = 0, ψ(q′, p′) = 0}.

Hence lM is locally diffeomorphic to τ1 × lΓ.

4.2. Proof of Theorem 4. Let x ∈ lH ∩ (H(3) \H(4)), from part (c) of Theorem 5 it
follows that the pair (H,H(0)) = ({h = 0}, {h = 0} ∩ T ∗ΓM) can be reduced to the form
({q0 = 0}, {q0 = p4

0 + p1p
2
0 + q2p0 + p2 = 0}) by a formal symplectomorphism. Hence in

some neighbourhood of x we have

H (= {q0 = 0}) ⊃ H(0) (= {q0 = p4
0 + p1p

2
0 + q2p0 + p2 = 0})

⊃ H(1) (= {q0 = 0, q2 = −4p3
0 − 2p1p0, p2 = 3p4

0 + p1p
2
0})

⊃ H(2) (= {q0 = 0, p1 = −6p2
0, q2 = 8p3

0, p2 = −3p4
0}),

the functions (p0, q1, p1, q3, . . . , qn, p3, . . . , pn) = (p0, q1, p1, q
′′, p′′) are coordinate func-

tions on H(1), the restriction of the symplectic structure to H(1):

ω′ = ω|H(1) = dp1 ∧ d(q1 + 12p5
0/5 + 2p1p

3
0/3) + dp′′ ∧ dq′′

or, after the change Q1 = q1 + 12p5
0/5 + 2p1p

3
0/3, ω′ = dp1 ∧ dQ1 + dp′′ ∧ dq′′. As in the

proof of Theorem 3 one proves that lH may be given by a system of equations independent
of p0:

lH = {(p0, Q1, p1, q
′′, p′′) ∈ H(1) | ψ1(Q1, p1, q

′′, p′′) = . . . = ψr(Q1, p1, q
′′, p′′) = 0}.

From the condition of the theorem
(
LΓ

∼= l × R2, the edge y1 × R2 is transversal to
ρ(H(3)) at the point ρ(x) = (y1, y2) ∈ l × R2

)
it follows that the variety lH is locally

diffeomorphic to l × R2, the edge x1 × R2 is transversal to the submanifold H(3) ⊂
H(1), H(3) = {p0 = p1 = 0} at the point x = (x1, x2) ∈ l ×R2.

Proposition 2.

Tx(x1 ×R2) ⊂ span {∂/∂p0, (∂ψi/∂p1)(x)∂/∂Q1 + (∂ψi/∂p
′′)(x)∂/∂q′′

− (∂ψi/∂Q1)(x)∂/∂p1 − (∂ψi/∂q
′′)(x)∂/∂p′′, i = 1, . . . , r}

P r o o f. We can locally decompose lH into l̃ ×Rm, where m is maximal. Obviously
Tx(x1 ×R2) ⊂ Tx(x̃1 ×Rm), where x = (x̃1, x̃2) ∈ l̃ ×Rm. We claim that

Tx(x̃1 ×Rm) = span {∂/∂p0, (∂ψi/∂p1)(x)∂/∂Q1 + (∂ψi/∂p
′′)(x)∂/∂q′′

− (∂ψi/∂Q1)(x)∂/∂p1 − (∂ψi/∂q
′′)(x)∂/∂p′′, i = 1, . . . , r}.

This follows from the facts:

1. The image of lH under the projection α : R2n−1 → R2n−2, α : (p0, Q1, p1, q
′′, p′′)

7→ (Q1, p1, q
′′, p′′), is Lagrangian (the symplectic structure is dp1 ∧ dQ1 + dp′′ ∧ dq′′).

2. Tx(x̃1 ×Rm) ∼= R∂/∂p0 ⊕ Tα(x)α(x̃1 ×Rm).
3. The tangent space to α(x̃1 × Rm) is spanned by the Hamiltonian vector fields

with Hamiltonians ψi (functions ψi are representatives of J(lH) and, simultaneously,
representatives of J(α(lH))).

It follows from Proposition 2 that there exists ψi (say ψ1) such that the vector

(∂ψ1/∂p1)(x)∂/∂Q1 + (∂ψ1/∂p
′′)(x)∂/∂q′′ − (∂ψ1/∂Q1)(x)∂/∂p1 − (∂ψ1/∂q

′′)(x)∂/∂p′′
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is transversal to the hypersurface {p1 = 0}, that is, ∂ψ1/∂Q1(x) 6= 0. Using the implicit
function theorem we get:

lH = {(p0, Q1, p1, q
′′, p′′) ∈ H(1) | Q1 = g1(p1, q

′′, p′′),

gi(p1, q
′′, p′′) = ψi(g1(p1, q

′′, p′′), p1, q
′′, p′′) = 0, i = 2, . . . , r}.

In the coordinate (p1, q
′′, p′′)-space R2n−3 we consider the variety l′ = {(p1, q

′′, p′′) |
g2(p1, q

′′, p′′) = . . . = gr(p1, q
′′, p′′) = 0}. The variety lH can be constructed from l′ by

the embedding into the hypersurface {Q1 = g1(p1, q
′′, p′′)} and the multiplication by p0-

axis. Hence l′ is diffeomorphic to l ×R in some neighbourhood of the considered point
x′ = (x1, x

′
2) ∈ l × R (= l × R2 ∩ {p0 = 0}). From the conditions of the theorem it

follows that the edge x1 × R is transversal to the hypersurface {p1 = 0}, hence it is
transversal to {p1 = ε} for any sufficiently small ε. Thus the intersections l′ ∩ {p1 =
0} (∼= l) and l′ ∩ {p1 = ε} (∼= l) are locally diffeomorphic: there exists a diffeomorphism
Gε : {p1 = 0} → {p1 = ε} sending {(q′′, p′′) | gi(0, q′′, p′′) = 0, i = 2, . . . , r} onto
{(q′′, p′′) | gi(ε, q′′, p′′) = 0, i = 2, . . . , r}. The diffeomorphism

G : H(1) → H(1), G : (p0, Q1, p1, q
′′, p′′) 7→ (p0, Q1, p1, G

−1
p1

(q′′, p′′))

brings the variety lH to the form

lH = {(p0, Q1, p1, q
′′, p′′) ∈ H(1) | Q1 = g1(p1, Gp1(q

′′, p′′)) = φ(p1, q
′′, p′′),

gi(0, q′′, p′′) = 0, i = 2, . . . , r}.
Hence lH = {(q, p) ∈ T ∗M | q0 = 0, q2 = −4p3

0 − 2p1p0, p2 = 3p4
0 + p1p

2
0, q1 =

−12p5
0/5 − 2p1p

3
0/3 + φ(p1, q

′′, p′′), gi(0, q′′, p′′) = 0, i = 2, . . . , r}. Changing Q = q1 −
φ(p1, q

′′, p′′) and projecting lH along the characteristics of the hypersurface H (forgetting
p0) we finally get:

lM = {(Q, q′′, p1, p
′′) | g2(0, q′′, p′′) = . . . = gr(0, q′′, p′′) = 0, the polynomial in p0 :

p5
0/5 + p1p

3
0/3 + q2p

2
0/2 + p2p0 +Q/2 has a root of multiplicity ≥ 3}.

This proves the theorem.
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