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1. Introduction. In 1976, M. Kashiwara [6] introduced the notion of direct image of
D-modules in his study of b-functions. The notion of direct image enjoys nice functorial
properties, and the structure of direct image ofD-modules arouses great interest in various
problems. In this paper we study the direct image of the de Rham system associated with
a resolution of a rational double point singularity. In Section 2, we briefly recall some
basic notions which are used later. In Section 3, we consider the surface with a rational
double point of the type Am. We give some explicit integral representation formulae for
the Dirac delta function.

2. The de Rham system and the direct image functor.
de Rham system. Let X be a complex manifold of dimension n, OX the sheaf of

holomorphic functions. Let DX be the sheaf on X of rings of partial differential operators
with holomorphic coefficients. The sheaf OX is naturally endowed with a structure of
left DX -Module by differentiation. For instance, let (x1, x2, . . . , xn) be a system of local

coordinates of X. For any germ h of holomorphic function, we have
∂

∂xj
h =

∂h

∂xj
. But if

we regard h as a section of DX , i.e. as a linear partial differential operator of order zero,
we have

∂

∂xj
h =

∂h

∂xj
+ h

∂

∂xj
, j = 1, 2, . . . , n.

Hence we have

OX
∼= DX/DX

( ∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

)
.
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In fact, the sheaf OX is generated by the constant function 1 over the sheaf of rings
DX and the annihilating ideal of the function 1 is locally equal to the following ideal:

DX

( ∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

)
.

The coherent left DX -Module OX is called the de Rham system.

Algebraic local cohomology. Let Y be a closed analytic subset of X, JY the defining
ideal of Y . For each positive integer k, we set

Hk
[Y ](OX) = lim

m→∞
ExtkOX

(OX/Jm
Y ,OX).

Since the sheaf OX is a left DX -Module, the algebraic local cohomology group
Hk

[Y ](OX) is endowed with the structure of left DX -Module. Moreover, Z. Mebkhout
[8] and M. Kashiwara [6] proved the following facts:

(i) Hk
[Y ](OX) is a coherent DX -Module,

(ii) Hk
[Y ]

(
OX

)
is a regular holonomic system.

When Y is a complex submanifold, we have the following result.

Proposition (Kashiwara [4].) If Y is defined by x1 = . . . = xd = 0 for a local
coordinate system (x1, . . . , xn) of X, then:

(i) Hk
[Y ](OX) = 0 for k 6= d,

(ii) Hd
[Y ](OX) ∼= DX/DX(x1, . . . , xd,

∂

∂xd+1
, . . . ,

∂

∂xn
).

Direct image. Let us recall briefly the notion of the direct image of D-Modules.
Let X, Z be complex manifolds, f : Z → X a proper holomorphic map. We set

DX←Z = f−1(DX ⊗OX
Ω⊗−1

X )⊗f−1OX
ΩZ ,

where ΩZ and ΩX are the sheaves of the highest degree holomorphic forms on Z and X

respectively. Note that DX←Z is a (f−1DX ,DZ)-bi-Module.
For any coherent left DZ-Module M, we set∫

f

M = Rf∗(DX←Z ⊗L
DZ

M)

in the derived category Db(DX) of DX -Modules (we refer to [3], [6] and [9]).
We have the following fundamental result.

Proposition (Kashiwara, cf. [3]) Let Y be a complex d-codimensional submanifold
of X. Let i be the natural embedding map. Then we have∫

i

OY = Hd
[Y ](OX).

Example ([10], [11]). As an illustration of the direct image, let us examine the de
Rham system associated with the resolution of a plane curve singularity.

Let X = C2 with coordinates (x, y). Let Y = {(x, y) | x5 − y3 = 0}. Let T = C with
coordinate t, π : T → X with π(t) = (t3, t5). Let i : T → Z be the natural embedding
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map, where Z = X × T . We have the following commutative diagram:

T
i−−−−−−→ Zy yproj

Y −−−−−−→ X

here proj is the natural projection map proj : X × T → X.

Now we set

u =
∫

π

1

where 1 stands for the constant function, which is a generator over DT of the de Rham
system OT . We have

u =
∫

proj

∫
i

1 =
∫

proj

δ(x− t3)δ(y − t5).

Then u satisfies the following system of linear partial differential equations:

P1u = P2u = P3u = 0,

where

P1 = x5 − y3,

P2 = 3x
∂

∂x
+ 5y

∂

∂y
+ 7,

P3 = 3y2 ∂3

∂x2∂y
+ 5x4 ∂3

∂x∂y2
+ 25x3 ∂2

∂y2
+ 9y

∂2

∂x2
.

Furthermore we have

DXu = DX/DX(P1, P2, P3)

and u is equal to xyδ(x5 − y3) up to non-zero constant.

3. Calculation and a result. In this section we take a resolution of a surface with
a rational double point and consider the de Rham system on the resolution. One of our
aims is to calculate the DX -Module structure of the direct image of the de Rham system.
We present here the key point of our calculation.

Resolution. Let X = C3 with coordinates (x, y, z). Let S be the surface with a rational
double point at the origin defined by

S = {(x, y, z) ∈ X | zm+1 = xy}.

We resolve the singularity of the surface S as follows. Let W0,W1, . . . ,Wm be copies of
C2 with coordinates (u0, v0), (u1, v1), . . . , (um, vm) respectively. Following a standard ar-
gument, we patch them up and construct a non-singular surface M by using the following
transition functions:

uk+1 = 1/vk, vk+1 = ukv2
k, for k = 0, 1, 2, . . . ,m− 1.
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We introduce a holomorphic map π : M → X by
x = uk+1

k vk
k

y = um−k
k vm−k+1

k

z = ukvk on Wk, k = 0, . . . ,m.

It is easy to see that π : M → X is well defined and π is a resolution of the singularity
of the surface S. The exceptional set of the resolution consists of curves C1, . . . , Cm,
where Ck = {uk−1 = 0} ∪ {vk = 0}.

Set Z = X × P 1 × P 1 × . . . × P 1. Let ([ξ1, η1], [ξ2, η2], . . . , [ξm, ηm]) be the standard
homogeneous coordinates in the product P 1 × P 1 × . . .× P 1. Set

pk = ξk/ηk, qk = ηk/ξk, k = 1, 2, . . . ,m

and

p1 = um−k−1
k vm−k

k , p2 = um−k−2
k vm−k−1

k , . . . , pm−k = vk,

qm−k+1 = uk, qm−k+2 = u2
kvk, . . . , qm = uk

kvm−k−1
k for k = 0, . . . ,m− 1.

This defines a holomorphic embedding map i : M → Z. Note that we have i(Ck) =
[0, 1]× . . .× [0, 1]× P 1 × [1, 0]× . . .× [1, 0]. We have the following diagram:

M
i−−−−−−→ Zy yproj

S −−−−−−→ X

here proj is the natural projection map proj : X × P 1 × P 1 × . . .× P 1 → X.

Calculation. Let us examine the integrals along π of the de Rham system OM .

We use the following fact:∫
π

OM =
∫

proj

∫
i

OM =
∫

proj

N .

where N = Hm+1
[i(M)](OZ).

We set, for instance on η1 6= 0, η2 6= 0, . . ., ηm 6= 0

gm = −pmδ(y − xmpm+1
m )δ(z − xpm)δ(p1 − xm−1pm

m) ·
δ(p2 − xm−2pm−1

m ) · · · δ(pm−2 − x2p3
m)δ′(pm−1 − xp2

m)dp1 ∧ dp2 ∧ · · · ∧ dpm.

It is easy to verify that the differential form gm is globally well-defined on Z as a
relative differential form supported on i(M):

gm ∈ Γ(Z,N ⊗ ΩP 1×...×P 1),

and that gm is not exact, but the differential forms xgm, ygm and zgm are relatively
exact. In fact, if we set

f = δ(y − xmpm+1
m )δ(z − xpm)δ(p1 − xm−1pm

m)δ(p2 − xm−2pm−1
m ) ·

· · · δ(pm−2 − x2p3
m)δ(pm−1 − xp2

m)dp1 ∧ dp2 ∧ · · · ∧ dpm−2 ∧ dpm,

then the differential forms f , pm−1f and p2
m−1f are globally well-defined. Furthermore

we have

d(zf) = xgm, d(p2
m−1z

m−2f) = ygm and d(pm−1f) = zgm,
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where d is the relative exterior differentiation. These equalities hold globally. This implies
that

∫
proj

gm is equal to a constant multiple of the delta-function on X supported at the
origin (0, 0, 0). In particular, we have∫

proj

gm ∈ H3
[0,0,0](OX).

Similarly, on η1 6= 0, η2 6= 0, . . ., ηm 6= 0, we set

gk = −pkδ(y − xmpm+1
m )δ(z − xpm)δ(p1 − xm−1pm

m)δ(p2 − xm−2pm−1
m ) ·

· · · δ′(pk−1 − xm−k+1pm−k+2
m ) · · · δ(pm−1 − xp2

m)dp1 ∧ dp2 ∧ · · · ∧ dpm.

for k = 2, . . . ,m and

g1 = [(m + 1)p1δ
′(y − xmpm+1

m )δ(z − xpm)δ(p1 − xm−1pm
m) · · · δ(pm−1 − xp2

m)

+δ(y − xmpm+1
m )δ′(z − xpm)δ(p1 − xm−1pm

m) · · · δ(pm−1 − xp2
m)

+mp2δ(y − xmpm+1
m )δ(z − xpm)δ′(p1 − xm−1pm

m) · · · δ(pm−1 − xp2
m)

+(m− 1)p3δ(y − xmpm+1
m )δ(z − xpm)δ(p1 − xm−1pm

m) ·
δ′(p2 − xm−2pm−1

m ) · · · δ(pm−1 − xp2
m)

+ . . . . . .

+2pmδ(y − xmpm+1
m )δ(z − xpm)δ(p1 − xm−1pm

m) · · · δ′(pm−1 − xp2
m)] ·

dp1 ∧ dp2 ∧ · · · ∧ dpm.

The differential forms g1, . . . , gm are globally well-defined on Z as relative differential
form supported on i(M) and the integrals along the fibers of these differential forms are
equal to the Dirac delta function up to non-zero constant factors. We can summarize the
results of our calculation in the following form:

Theorem. The integrals along the fibers of the map proj : X × P 1 × . . . × P 1 → X

of the relative differential forms g1, g2, . . . , gm are equal to the delta-function supported
at the origin (0, 0, 0) up to non-zero constant:∫

proj

gk = const · δ(x)δ(y)δ(z) k = 1, . . . ,m.
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Math. Ann. 166 (1966), 76–102.

[2] M. G. M. van Doorn and A. R. P. van den Essen, Dn-Modules with support on a curve,

Publ. Res. Inst. Math. Sci. 23 (1987), 937–953.

[3] R. Hotta, Introduction to D-Modules, Institute of Math. Sciences, Madras, India, 1987.

[4] M. Kashiwara, On the maximally overdetermined system of linear differential equations I ,

Publ. Res. Inst. Math. Sci. 19 (1975), 563–579.

[5] M. Kashiwara, B-functions and holonomic systems, Invent. Math. 38 (1976), 33–53.

[6] M. Kashiwara, On the holonomic systems of linear differential equations II , Invent. Math.

49 (1978), 121–136.



160 S. TAJIMA

[7] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst.

Math. Sci. 17 (1984), 319–365.

[8] Z. Mebkhout, Local cohomology of analytic spaces, Publ. Res. Inst. Math. Sci. 12 Suppl.

(1977), 247–256.
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