DIRECT IMAGE OF THE DE RHAM SYSTEM ASSOCIATED WITH A RATIONAL DOUBLE POINT -A FIVE FINGERS EXERCISE

SHINICHI TAJIMA
Department of Information Engineering, Faculty of Engineering, Niigata University 8050 Ikarashi Niigata 950-21, Japan
E-mail: tajima@geb.ge.niigata-u.ac.jp

1. Introduction. In 1976, M. Kashiwara [6] introduced the notion of direct image of \mathcal{D}-modules in his study of b-functions. The notion of direct image enjoys nice functorial properties, and the structure of direct image of \mathcal{D}-modules arouses great interest in various problems. In this paper we study the direct image of the de Rham system associated with a resolution of a rational double point singularity. In Section 2, we briefly recall some basic notions which are used later. In Section 3, we consider the surface with a rational double point of the type A_{m}. We give some explicit integral representation formulae for the Dirac delta function.

2. The de Rham system and the direct image functor.

de Rham system. Let X be a complex manifold of dimension n, \mathcal{O}_{X} the sheaf of holomorphic functions. Let \mathcal{D}_{X} be the sheaf on X of rings of partial differential operators with holomorphic coefficients. The sheaf \mathcal{O}_{X} is naturally endowed with a structure of left \mathcal{D}_{X}-Module by differentiation. For instance, let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a system of local coordinates of X. For any germ h of holomorphic function, we have $\frac{\partial}{\partial x_{j}} h=\frac{\partial h}{\partial x_{j}}$. But if we regard h as a section of \mathcal{D}_{X}, i.e. as a linear partial differential operator of order zero, we have

$$
\frac{\partial}{\partial x_{j}} h=\frac{\partial h}{\partial x_{j}}+h \frac{\partial}{\partial x_{j}}, \quad j=1,2, \ldots, n .
$$

Hence we have

$$
\mathcal{O}_{X} \cong \mathcal{D}_{X} / \mathcal{D}_{X}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)
$$

1991 Mathematics Subject Classification: 35A27, 35N10.
The paper is in final form and no version of it will be published elsewhere.

In fact, the sheaf \mathcal{O}_{X} is generated by the constant function 1 over the sheaf of rings \mathcal{D}_{X} and the annihilating ideal of the function 1 is locally equal to the following ideal:

$$
\mathcal{D}_{X}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)
$$

The coherent left \mathcal{D}_{X}-Module \mathcal{O}_{X} is called the de Rham system.
Algebraic local cohomology. Let Y be a closed analytic subset of X, \mathcal{J}_{Y} the defining ideal of Y. For each positive integer k, we set

$$
\mathcal{H}_{[Y]}^{k}\left(\mathcal{O}_{X}\right)=\lim _{m \rightarrow \infty} \mathcal{E} x t_{\mathcal{O}_{X}}^{k}\left(\mathcal{O}_{X} / \mathcal{J}_{Y}^{m}, \mathcal{O}_{X}\right)
$$

Since the sheaf \mathcal{O}_{X} is a left \mathcal{D}_{X}-Module, the algebraic local cohomology group $\mathcal{H}_{[Y]}^{k}\left(\mathcal{O}_{X}\right)$ is endowed with the structure of left \mathcal{D}_{X}-Module. Moreover, Z. Mebkhout [8] and M. Kashiwara [6] proved the following facts:
(i) $\mathcal{H}_{[Y]}^{k}\left(\mathcal{O}_{X}\right)$ is a coherent \mathcal{D}_{X}-Module,
(ii) $\mathcal{H}_{[Y]}^{k}\left(\mathcal{O}_{X}\right)$ is a regular holonomic system.

When Y is a complex submanifold, we have the following result.
Proposition (Kashiwara [4].) If Y is defined by $x_{1}=\ldots=x_{d}=0$ for a local coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ of X, then:
(i) $\mathcal{H}_{[Y]}^{k}\left(\mathcal{O}_{X}\right)=0 \quad$ for $\quad k \neq d$,
(ii) $\mathcal{H}_{[Y]}^{d}\left(\mathcal{O}_{X}\right) \cong \mathcal{D}_{X} / \mathcal{D}_{X}\left(x_{1}, \ldots, x_{d}, \frac{\partial}{\partial x_{d+1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$.

Direct image. Let us recall briefly the notion of the direct image of \mathcal{D}-Modules.
Let X, Z be complex manifolds, $f: Z \rightarrow X$ a proper holomorphic map. We set

$$
\mathcal{D}_{X \leftarrow Z}=f^{-1}\left(\mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{\otimes-1}\right) \otimes_{f^{-1}} \mathcal{O}_{X} \Omega_{Z}
$$

where Ω_{Z} and Ω_{X} are the sheaves of the highest degree holomorphic forms on Z and X respectively. Note that $\mathcal{D}_{X \leftarrow Z}$ is a $\left(f^{-1} \mathcal{D}_{X}, \mathcal{D}_{Z}\right)$-bi-Module.

For any coherent left \mathcal{D}_{Z}-Module \mathcal{M}, we set

$$
\int_{f} \mathcal{M}=\mathbf{R} f_{*}\left(\mathcal{D}_{X \leftarrow Z} \otimes_{\mathcal{D}_{Z}}^{\mathbf{L}} \mathcal{M}\right)
$$

in the derived category $D^{b}\left(\mathcal{D}_{X}\right)$ of \mathcal{D}_{X}-Modules (we refer to [3], [6] and [9]).
We have the following fundamental result.
Proposition (Kashiwara, cf. [3]) Let Y be a complex d-codimensional submanifold of X. Let i be the natural embedding map. Then we have

$$
\int_{i} \mathcal{O}_{Y}=\mathcal{H}_{[Y]}^{d}\left(\mathcal{O}_{X}\right)
$$

Example ([10], [11]). As an illustration of the direct image, let us examine the de Rham system associated with the resolution of a plane curve singularity.

Let $X=\mathbf{C}^{2}$ with coordinates (x, y). Let $Y=\left\{(x, y) \mid x^{5}-y^{3}=0\right\}$. Let $T=\mathbf{C}$ with coordinate $t, \pi: T \rightarrow X$ with $\pi(t)=\left(t^{3}, t^{5}\right)$. Let $i: T \rightarrow Z$ be the natural embedding
map, where $Z=X \times T$. We have the following commutative diagram:

here proj is the natural projection map proj : $X \times T \rightarrow X$.
Now we set

$$
u=\int_{\pi} 1
$$

where 1 stands for the constant function, which is a generator over \mathcal{D}_{T} of the de Rham system \mathcal{O}_{T}. We have

$$
u=\int_{\text {proj }} \int_{i} 1=\int_{\text {proj }} \delta\left(x-t^{3}\right) \delta\left(y-t^{5}\right) .
$$

Then u satisfies the following system of linear partial differential equations:

$$
P_{1} u=P_{2} u=P_{3} u=0,
$$

where

$$
\begin{aligned}
& P_{1}=x^{5}-y^{3} \\
& P_{2}=3 x \frac{\partial}{\partial x}+5 y \frac{\partial}{\partial y}+7 \\
& P_{3}=3 y^{2} \frac{\partial^{3}}{\partial x^{2} \partial y}+5 x^{4} \frac{\partial^{3}}{\partial x \partial y^{2}}+25 x^{3} \frac{\partial^{2}}{\partial y^{2}}+9 y \frac{\partial^{2}}{\partial x^{2}}
\end{aligned}
$$

Furthermore we have

$$
\mathcal{D}_{X} u=\mathcal{D}_{X} / \mathcal{D}_{X}\left(P_{1}, P_{2}, P_{3}\right)
$$

and u is equal to $x y \delta\left(x^{5}-y^{3}\right)$ up to non-zero constant.
3. Calculation and a result. In this section we take a resolution of a surface with a rational double point and consider the de Rham system on the resolution. One of our aims is to calculate the \mathcal{D}_{X}-Module structure of the direct image of the de Rham system. We present here the key point of our calculation.

Resolution. Let $X=\mathbf{C}^{3}$ with coordinates (x, y, z). Let S be the surface with a rational double point at the origin defined by

$$
S=\left\{(x, y, z) \in X \mid z^{m+1}=x y\right\}
$$

We resolve the singularity of the surface S as follows. Let $W_{0}, W_{1}, \ldots, W_{m}$ be copies of \mathbf{C}^{2} with coordinates $\left(u_{0}, v_{0}\right),\left(u_{1}, v_{1}\right), \ldots,\left(u_{m}, v_{m}\right)$ respectively. Following a standard argument, we patch them up and construct a non-singular surface M by using the following transition functions:

$$
u_{k+1}=1 / v_{k}, \quad v_{k+1}=u_{k} v_{k}^{2}, \quad \text { for } \quad k=0,1,2, \ldots, m-1 .
$$

We introduce a holomorphic map $\pi: M \rightarrow X$ by

$$
\left\{\begin{array}{l}
x=u_{k}^{k+1} v_{k}^{k} \\
y=u_{k}^{m-k} v_{k}^{m-k+1} \\
z=u_{k} v_{k}
\end{array} \quad \text { on } W_{k}, k=0, \ldots, m\right.
$$

It is easy to see that $\pi: M \rightarrow X$ is well defined and π is a resolution of the singularity of the surface S. The exceptional set of the resolution consists of curves C_{1}, \ldots, C_{m}, where $C_{k}=\left\{u_{k-1}=0\right\} \cup\left\{v_{k}=0\right\}$.

Set $Z=X \times P^{1} \times P^{1} \times \ldots \times P^{1}$. Let $\left(\left[\xi_{1}, \eta_{1}\right],\left[\xi_{2}, \eta_{2}\right], \ldots,\left[\xi_{m}, \eta_{m}\right]\right)$ be the standard homogeneous coordinates in the product $P^{1} \times P^{1} \times \ldots \times P^{1}$. Set

$$
p_{k}=\xi_{k} / \eta_{k}, \quad q_{k}=\eta_{k} / \xi_{k}, \quad k=1,2, \ldots, m
$$

and

$$
\begin{gathered}
p_{1}=u_{k}^{m-k-1} v_{k}^{m-k}, p_{2}=u_{k}^{m-k-2} v_{k}^{m-k-1}, \ldots, p_{m-k}=v_{k} \\
q_{m-k+1}=u_{k}, q_{m-k+2}=u_{k}^{2} v_{k}, \ldots, q_{m}=u_{k}^{k} v_{k}^{m-k-1} \quad \text { for } \quad k=0, \ldots, m-1 .
\end{gathered}
$$

This defines a holomorphic embedding map $i: M \rightarrow Z$. Note that we have $i\left(C_{k}\right)=$ $[0,1] \times \ldots \times[0,1] \times P^{1} \times[1,0] \times \ldots \times[1,0]$. We have the following diagram:

here proj is the natural projection map proj: $X \times P^{1} \times P^{1} \times \ldots \times P^{1} \rightarrow X$.
Calculation. Let us examine the integrals along π of the de Rham system \mathcal{O}_{M}.
We use the following fact:

$$
\int_{\pi} \mathcal{O}_{M}=\int_{\text {proj }} \int_{i} \mathcal{O}_{M}=\int_{\text {proj }} \mathcal{N}
$$

where $N=\mathcal{H}_{[i(M)]}^{m+1}\left(\mathcal{O}_{Z}\right)$.
We set, for instance on $\eta_{1} \neq 0, \eta_{2} \neq 0, \ldots, \eta_{m} \neq 0$

$$
\begin{aligned}
g_{m}= & -p_{m} \delta\left(y-x^{m} p_{m}^{m+1}\right) \delta\left(z-x p_{m}\right) \delta\left(p_{1}-x^{m-1} p_{m}^{m}\right) \\
& \delta\left(p_{2}-x^{m-2} p_{m}^{m-1}\right) \cdots \delta\left(p_{m-2}-x^{2} p_{m}^{3}\right) \delta^{\prime}\left(p_{m-1}-x p_{m}^{2}\right) d p_{1} \wedge d p_{2} \wedge \cdots \wedge d p_{m}
\end{aligned}
$$

It is easy to verify that the differential form g_{m} is globally well-defined on Z as a relative differential form supported on $i(M)$:

$$
g_{m} \in \Gamma\left(Z, \mathcal{N} \otimes \Omega_{P^{1} \times \ldots \times P^{1}}\right)
$$

and that g_{m} is not exact, but the differential forms $x g_{m}, y g_{m}$ and $z g_{m}$ are relatively exact. In fact, if we set

$$
\begin{aligned}
f= & \delta\left(y-x^{m} p_{m}^{m+1}\right) \delta\left(z-x p_{m}\right) \delta\left(p_{1}-x^{m-1} p_{m}^{m}\right) \delta\left(p_{2}-x^{m-2} p_{m}^{m-1}\right) \\
& \cdots \delta\left(p_{m-2}-x^{2} p_{m}^{3}\right) \delta\left(p_{m-1}-x p_{m}^{2}\right) d p_{1} \wedge d p_{2} \wedge \cdots \wedge d p_{m-2} \wedge d p_{m}
\end{aligned}
$$

then the differential forms $f, p_{m-1} f$ and $p_{m-1}^{2} f$ are globally well-defined. Furthermore we have

$$
d(z f)=x g_{m}, \quad d\left(p_{m-1}^{2} z^{m-2} f\right)=y g_{m} \quad \text { and } \quad d\left(p_{m-1} f\right)=z g_{m}
$$

where d is the relative exterior differentiation. These equalities hold globally. This implies that $\int_{\text {proj }} g_{m}$ is equal to a constant multiple of the delta-function on X supported at the origin ($0,0,0$). In particular, we have

$$
\int_{\mathrm{proj}} g_{m} \in \mathcal{H}_{[0,0,0]}^{3}\left(\mathcal{O}_{X}\right)
$$

Similarly, on $\eta_{1} \neq 0, \eta_{2} \neq 0, \ldots, \eta_{m} \neq 0$, we set

$$
\begin{aligned}
g_{k}= & -p_{k} \delta\left(y-x^{m} p_{m}^{m+1}\right) \delta\left(z-x p_{m}\right) \delta\left(p_{1}-x^{m-1} p_{m}^{m}\right) \delta\left(p_{2}-x^{m-2} p_{m}^{m-1}\right) \\
& \cdots \delta^{\prime}\left(p_{k-1}-x^{m-k+1} p_{m}^{m-k+2}\right) \cdots \delta\left(p_{m-1}-x p_{m}^{2}\right) d p_{1} \wedge d p_{2} \wedge \cdots \wedge d p_{m}
\end{aligned}
$$

for $k=2, \ldots, m$ and

$$
\begin{aligned}
g_{1}= & {\left[(m+1) p_{1} \delta^{\prime}\left(y-x^{m} p_{m}^{m+1}\right) \delta\left(z-x p_{m}\right) \delta\left(p_{1}-x^{m-1} p_{m}^{m}\right) \cdots \delta\left(p_{m-1}-x p_{m}^{2}\right)\right.} \\
& +\delta\left(y-x^{m} p_{m}^{m+1}\right) \delta^{\prime}\left(z-x p_{m}\right) \delta\left(p_{1}-x^{m-1} p_{m}^{m}\right) \cdots \delta\left(p_{m-1}-x p_{m}^{2}\right) \\
& +m p_{2} \delta\left(y-x^{m} p_{m}^{m+1}\right) \delta\left(z-x p_{m}\right) \delta^{\prime}\left(p_{1}-x^{m-1} p_{m}^{m}\right) \cdots \delta\left(p_{m-1}-x p_{m}^{2}\right) \\
& +(m-1) p_{3} \delta\left(y-x^{m} p_{m}^{m+1}\right) \delta\left(z-x p_{m}\right) \delta\left(p_{1}-x^{m-1} p_{m}^{m}\right) . \\
& \quad \delta^{\prime}\left(p_{2}-x^{m-2} p_{m}^{m-1}\right) \cdots \delta\left(p_{m-1}-x p_{m}^{2}\right) \\
& +\ldots \ldots \\
& \left.+2 p_{m} \delta\left(y-x^{m} p_{m}^{m+1}\right) \delta\left(z-x p_{m}\right) \delta\left(p_{1}-x^{m-1} p_{m}^{m}\right) \cdots \delta^{\prime}\left(p_{m-1}-x p_{m}^{2}\right)\right] . \\
& d p_{1} \wedge d p_{2} \wedge \cdots \wedge d p_{m} .
\end{aligned}
$$

The differential forms g_{1}, \ldots, g_{m} are globally well-defined on Z as relative differential form supported on $i(M)$ and the integrals along the fibers of these differential forms are equal to the Dirac delta function up to non-zero constant factors. We can summarize the results of our calculation in the following form:

Theorem. The integrals along the fibers of the map proj: $X \times P^{1} \times \ldots \times P^{1} \rightarrow X$ of the relative differential forms $g_{1}, g_{2}, \ldots, g_{m}$ are equal to the delta-function supported at the origin $(0,0,0)$ up to non-zero constant:

$$
\int_{\text {proj }} g_{k}=\text { const } \cdot \delta(x) \delta(y) \delta(z) \quad k=1, \ldots, m
$$

References

[1] E. Brieskorn, Über die Aufösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76-102.
[2] M. G. M. van Doorn and A. R. P. van den Essen, \mathcal{D}_{n}-Modules with support on a curve, Publ. Res. Inst. Math. Sci. 23 (1987), 937-953.
[3] R. Hotta, Introduction to D-Modules, Institute of Math. Sciences, Madras, India, 1987.
[4] M. Kashiwara, On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 19 (1975), 563-579.
[5] M. Kashiwara, B-functions and holonomic systems, Invent. Math. 38 (1976), 33-53.
[6] M. Kashiwara, On the holonomic systems of linear differential equations II, Invent. Math. 49 (1978), 121-136.
[7] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 17 (1984), 319-365.
[8] Z. Mebkhout, Local cohomology of analytic spaces, Publ. Res. Inst. Math. Sci. 12 Suppl. (1977), 247-256.
[9] F. Pham, Singularités des Systèmes Différentiels de Gauss-Manin, Progr. Math. 2 (1979).
[10] S. Tajima and M. Uchida, Integration of the de Rham system associated with the resolution of a singularity (in Japanese), Sûrikaisekikenkyûsho Kôkyûroku 693 (1989), 41-68.
[11] S. Tajima and M. Uchida, Integral formula for the resolution of a plane curve singularity, Funkcial. Ekvac. 37 (1994), 229-239.
[12] N. Takayama, An algorithm of constructing the integral of a module - an infinite dimensional analog of Grobner basis, in: Procedings of International Symposium on Symbolic and Algebraic Computation (eds. S. Watanabe and M. Nagata), ACM Press, New York, 1990, 206-211.

