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Abstract. Consider two foliations F1 and F2, of dimension one and codimension one re-
spectively, on a compact connected affine manifold (M,∇). Suppose that ∇TF1TF2 ⊂ TF2;
∇TF2TF1 ⊂ TF1 and TM = TF1 ⊕ TF2. In this paper we show that either F2 is given by a
fibration over S1, and then F1 has a great degree of freedom, or the trace of F1 is given by a
few number of types of curves which are completely described. Moreover we prove that F2 has
a transverse affine structure.

Introduction. We work in the C∞ category.
Consider a compact connected affine manifold (M,∇), i.e. ∇ is a connection whose

torsion and curvature vanish, of dimension n equipped with a finite family of foliations
F1, . . . ,Fk. We will say that F1, . . . ,Fk are translation foliations (T.F.) if for any 1 ≤
i < j ≤ k we have ∇TFi

TFj ⊂ TFj and ∇TFj
TFi ⊂ TFi, where TFi and TFj are the

vector subbundles of tangent vectors to the leaves of Fi and Fj respectively.
This kind of structures appears, in a natural way, when we consider a bilagrangian

fibration π : (N,ω, ω1) → M whose fibres are tori Tn. Then M is endowed with two
integer affine structure A and A1 and a (1, 1) tensor field J which transforms A on A1.
The eigenspaces of J give rise to a family of translation foliations F1, . . . ,Fk which are
transverse (often with some singularities, see [1]).

Another example is given by Veronese webs when they are affine. Veronese webs have
been introduced by Gelfand and Zakarevich for studying the bihamiltonian systems of
odd dimension (see [5]).

Translation foliations on surfaces have been studied by Darboux (see [3]).
Here we will consider the case of two translation foliations F1 and F2 which are

transverse, i.e. TM = TF1 ⊕ TF2, such that dimF1 = codimF2 = 1. For the sake of
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simplicity F1 and F2 shall be assumed orientable. This last condition is always satisfied
by taking a finite covering if necessary. Let us remark that F1 and F2 are transversely
orientable as well.

In affine coordinates the property of translation is equivalent to the following one:
consider an open set A1 of a leaf F1, an open set A2 of a leaf of F2 and a point p ∈ A1∩A2;
given q1 ∈ A1 and q2 ∈ A2 then A1+q2−p is an open set of the leaf of F1 passing through
q2, and A2 + q1−p is an open set of the leaf of F2 passing through q1 (obviously where it
has a meaning). In other words, around p foliations F1 and F2 are completely determined
by the leaves of F1 and F2 passing through this point.

In this paper we show that F2 always has a transverse affine structure. Besides one
of the three following possibilities holds:

1) Foliation F2 is given by a fibration over S1. Then F1 has a great degree of freedom.
Nevertheless F1 is spanned by an F2-foliate and F2-parallel vector field.

2) Foliation F2 has trivial holonomy and all its leaves are dense. Then there exist
real numbers a0, . . . , ak−1 and a non-singular vector field X, tangent to F1, which is both
F2-parallel and F2-foliate, such that ∇k

XX =
∑k−1

j=0 aj∇j
XX. Moreover k ≤ rank M + 1.

Therefore, in affine coordinates, F1 is described by a curve γ(t) which is a solution
of the equation γ(k+1) =

∑k
j=1 aj−1γ

(j).
3) Foliation F2 has non-trivial holonomy. Then F2 has a finite number of minimal

sets, all of them with non-trivial holonomy, and there exist natural numbers r1 = 1 <

r2 < . . . < rk such that, around each point, we may find affine coordinates on which the
polynomial curve γ(t) = (t, tr2 , . . . , trk , 0, . . . , 0) describes F1.

Moreover:
If rk > k then all the non-compact leaves of F2 have trivial holonomy; on the other

hand the compact ones are just the only minimal sets.
If the affine manifold (M,∇) is complete then rj = j, j = 1, . . . , k and all the leaves

of F2 are dense.

1. Examples.
(a) Consider two imbeddings f1 : S1 → Tn; f2 : Tn−1 → Tn, where Tk is the torus

of dimension k, and a point p ∈ Tn. Assume that:

(I) There exists α0 ∈ S1 and β0 ∈ Tn−1 such that p = f1(α0) = f2(β0)
and {f1∗π1(S1, α0), f2∗π1(Tn−1, β0)} spans π1(Tn, p).

(II) For any (α, β) ∈ S1×Tn−1 the subspaces f1∗(TαS1) and f2∗(TβTn−1), after
being carried to 0 ∈ Tn by means of the canonical connection, are transverse.

Then the map F : (α, β) ∈ S1×Tn−1 → f1(α)+ f2(β) ∈ Tn is a diffeomorphism
and the foliations F1 and F2, defined by the submersions π2 ◦ F−1 : Tn → Tn−1 and
π1 ◦ F−1 : Tn → S1, are T.F.

(b) On M̃ = R ×R+ we consider the equivalence relation xRy if and only if y1 =
x1 + k1 and y2 = exp(k2)x2 where k1, k2 ∈ Z, and the foliations F̃1, given by the curves
x2 exp(−x1) = constant, and F̃2, associated to vector field ∂

∂x1
. Set M = M̃/R. By

projecting F̃1 and F̃2 manifold M is endowed with two foliations F1 and F2 which are



TRANSLATION FOLIATIONS 173

T.F. with respect to the projected connection.
(c) Let {e1, e2} be a basis of the Lie algebra of T2. Now equip T2 with the affine

connection given by ∇e1e1 = e2; ∇ei
ej = 0 otherwise. Then the foliations F1, associated

to e1, and F2, associated to e2, are T.F. Moreover F1 is parabolic, i.e. around each point
there exist affine coordinates on which the leaf of F1 passing through this point can be
written (t, t2), and F2 is geodesic.

In Example (b) F2 is geodesic as well and the leaves of F1 are written (t, aet) in
suitable affine coordinates.

(d) Hopf structure. Given positive natural numbers r2, . . . , rn, set
X = ∂

∂x1
+

∑n
j=2 x

rj−1
1

∂
∂xj

and Y = x1
∂

∂x1
+

∑n
j=2 rjxj

∂
∂xj

; then [X, Y ] = X. On

M̃ = Rn − {0}, n ≥ 2, the foliations F̃1, associated to X, and F̃2, defined by dx1 = 0,
are T.F. with respect to the canonical connection of Rn. On the other hand they are
preserved by the flow φt of Y .

On M̃ we define the equivalence relation xRy if and only if φ`(x) = y for some
` ∈ Z. As the vector field Y is both affine and foliate the quotient manifold M , i.e.
S1 × Sn−1, is affine and the projected foliations F1 and F2 are T.F. Foliation F2 has
non-trivial holonomy and, in suitable affine coordinates, each leaf of F1 is given by the
curve (t, tr2 , . . . , trn).

Other foliations which are T.F. may be constructed in the same way. For example
on R3 − {0} we can set Y = 2x1

∂
∂x1

+ 4x2
∂

∂x2
+ x3

∂
∂x3

and consider the foliations F̃1,
given by ∂

∂x1
+ (x1 + x2

3)
∂

∂x2
, and F̃2 associated to ∂

∂x2
; −2x3

∂
∂x1

+ ∂
∂x3

.
(e) On T3 consider the affine connection obtained by setting ∇ ∂

∂α1

∂
∂α1

= ∂
∂α3

;

∇ ∂
∂α2

∂
∂α2

= 2 ∂
∂α3

; ∇ ∂
∂αi

∂
∂αj

= 0 otherwise, and the translation foliations F1 and F2

spanned by ∂
∂α1

+ 2−
1
2 ∂

∂α2
and ∂

∂α1
− 2−

1
2 ∂

∂α2
; ∂

∂α3
respectively. Now the affine structure

is integer, F1 is parabolic and all the leaves of F2 are dense.
(f) Consider a compact connected affine manifold (M,∇) equipped with two trans-

lation foliations F1 and F2, such that dimF1 = codimF2 = 1 and TF1⊕TF2 = TM . Let
G be the group of affine diffeomorphisms of (M,∇) which preserve F1 and F2. Consider a
second compact connected affine manifold W . Assume that W , F1 and F2 are orientable.
If W̃ is the universal covering of W then W̃ ×M can be endowed with the translation
foliations F̃1 and F̃2 given by T F̃1 = {0} × TF1 and T F̃2 = TW × TF2. Therefore, by
suspending each morphism from π1(W ) to G, we obtain a new example of translation
foliations.

If (M,F1,F2) is as in Example (d), then Y gives rise to a vector field Y ′, on M ,
whose flow φ′t is included in G. Now by taking W = S1 and φ′b, where b 6∈ Q, as image
of a generator of π1(S1), one constructs an example of translation foliations where the
codimension one foliation only has one (dim M > 2) or two (dim M = 2) compact leaves.
The other ones are locally dense (note that all the leaves of F2 were proper; obviously
the number of compact leaves of this last foliation is the same as before).

(g) Given B ∈ SL(Z, 2) let ϕB : T2 → T2 be the associated isomorphism. Consider
an element A ∈ SL(Z, 2) with two distinct positive real eigenvalues λ1, λ2. Let {d1, d2}
be a basis of the Lie algebra of T2 such that (ϕA)∗di = λidi, i = 1, 2. Now endow
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T4 = T2 × T2 with the affine structure given by ∇e1e1 = e3; ∇eiej = 0 otherwise,
where e1 = (d1, 0), e2 = (d2, 0), e3 = (0, d1), e4 = (0, d2). Let F1 and F2 the translation
foliations spanned by e1 and {e2, e3, e4} respectively.

By suspending the diffeomorphism φ = (ϕA, ϕA2) as in Example (f) (W = S1)
one constructs two translation foliations F ′1 and F ′2, on a compact affine 5-manifold M ′,
the first one parabolic and the second one with non-trivial holonomy and dense leaves.
Note that the affine manifold M ′ is complete (see Corollary 5.1).

2. The polynomial points of F1. If each leaf of F2 is compact and its holonomy
is trivial, i.e. if F2 is given by a fibration over S1, the leaves of F1 have a great degree
of freedom as Example (a) shows. Nevertheless they are the orbits of a non-singular
vector field X which is both F2-foliate and F2-parallel. Indeed, as F1 and F2 are T.F.
all F2-foliate vector field is parallel. Conversely if a non-singular F2-foliate vector field
X, tangent to F1, is F2-parallel then F1 and F2 are T.F. (even if the leaves of F2 are
dense). Obviously F2 has transverse affine structures.

From now on we will suppose, if necessary , that F2 is not given by a fibration over S1.
We will say that a non-singular curve γ : I → M describes F1 at p if p ∈ γ(I) and γ

lies on the leaf of F1 passing through p. A point p ∈ M will be called polynomial (for F1)
if there exists a curve γ, describing F1 at p, which is polynomial in affine coordinates.
The set P of all polynomial points is open and saturated for F2.

Theorem 1. Let H be a leaf of F2 with non-trivial holonomy. Then the holonomy of
H is linear and H ⊂ P .

Corollary 1.1. Assume that F2 has non-trivial holonomy. Then:
(I) F2 has a finite number of minimal sets, all of them with non-trivial holonomy.

(II) P = M .

First we deduce Corollary 1.1 from Theorem 1. The number of exceptional minimal
sets of F2 is finite and the union of all its compact leaves is a closed set (for codimF2 = 1).
By Theorem 1 the holonomy of each leaf is linear so there are a finite number of compact
leaves, all of them with non-trivial holonomy. By Sacksteder’s theorem each exceptional
minimal set contains a leaf with non-trivial holonomy (see [8]). This proves (I).

On the other hand by Theorem 1 again, P contains every leaf with non-trivial holon-
omy, so it contains all the minimal sets. Therefore P = M ; otherwise we could find a
minimal set on ∂P . This proves (II).

Now for proving Theorem 1 we will study the holonomy of F2 referred to F1.
Consider a point p ∈ M . Let Hi, i = 1, 2, be the leaf of Fi passing through p and let

τ be a loop at p on H2. In affine coordinates, around p, the holonomy map ϕτ associated
to τ , referred to the transversal H1, is given by the restriction of an affine transformation
A of Rn respecting the orientation and locally sending H1 on H1; moreover A(p) = p.

Indeed, first consider the case of an arc τ ′ on H2 contained in a convex affine coordinate
domain. As F1 and F2 are T.F., its holonomy map ϕτ ′ , referred to the leaves of F1 passing
through the ends of τ ′, is the restriction of a translation of Rn. Now divide τ into small
pieces contained each of them in a convex affine coordinate domain.
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Consider an affine coordinate system with p as origin, i.e. p ≡ 0. In this case A is
a linear transformation of Rn. On the other hand, if γ describes F1 at p and γ(0) = p

then there exist two open intervals I ′ and I ′′, containing zero, and a diffeomorphism
ϕ : I ′ → I ′′ such that ϕ(0) = 0 and A ◦ γ = γ ◦ ϕ on I ′.

Deriving with respect to t yields A(γ′(0)) = ϕ′(0) · γ′(0), i.e. γ′(0) is an eigenvector
of A with eigenvalue ϕ′(0) > 0 since F2 is transversely orientable.

Proposition 1. If ϕτ 6= Id then there exist an eigenspace W of Rn, a basis
{e1, . . . , ek} of it , natural numbers 1 = r1 < r2 < . . . < rk and a positive real λ 6= 1
such that :

(I) Aej = λrj ej , j = 1, . . . k.
(II) The curve γ(t) =

∑k
j=1 trj ej describes F1 at p and p = γ(0).

Moreover ϕτ (γ(t)) = γ(λt), i.e. the map ϕτ is linear.

R e m a r k. The isomorphism A regarded as a linear transformation of TpM belongs
to the holonomy group, at p, of the affine connection.

On the other hand, if τ̃ is another loop at p on H2 then ϕ
τ̃
(γ(t)) = γ(λ̃t) because

ϕ
τ̃
(γ(t)) = Ã(γ(t)) for some Ã ∈ GL(Rn). Therefore the holonomy of each leaf of F2 is

linear.

It is clear that Theorem 1 follows from Proposition 1. For proving this last result we
shall examine all the possible cases.

First case: The real Jordan canonical form of A only has one block. Then there exists
a basis {e1, . . . , en} of Rn such that Aej = λej + ej−1, j = 2, . . . n, and Ae1 = λe1.
Naturally λ = ϕ′(0). It will be shown that near the origin γ lies on the line R{e1}. We
will do it for t ≥ 0; the other side is analogous.

A point t0 ∈ I ′ is called stationary if ϕ(t0) = t0. When λ 6= 1 the only stationary
point close to 0 ∈ I ′ is the zero itself (mean value theorem).

Lemma 1. If t0 > 0 is stationary then γ([0, t0]) ⊂ R{e1}.

P r o o f. The map ϕ : [0, t0] → [0, t0] is a diffeomorphism and Ak ◦ γ = γ ◦ ϕk where
ϕk = ϕ◦ . . .◦ϕ . Set γ(t) =

∑n
j=1 γj(t)ej . If γn(t) 6= 0 for some t ∈ [0, t0] then λ = 1 since

otherwise Ak(γ(t)) =
∑n−1

j=1 fjk(t)ej + λkγn(t)en tends to infinity (if λ < 1 take negative
k) and the set γn([0, t0]) is not compact.

But if λ = 1 the (n−1)-th coordinate of Ak(γ(t)) equals γn−1(t)+kγn(t) which again
tends to infinity unless γn(t) = 0. In other words γn = 0. Now the same reasoning shows
that γn−1 = . . . = γ2 = 0.

By replacing A and ϕ with A−1 and ϕ−1 respectively if necessary, Lemma 1 allows
us to suppose ϕ(t) < t for any t > 0. Therefore 0 < λ ≤ 1 and limk→∞{ϕk(t)} = 0.

1.a) First assume λ = 1. The (n−1)-th coordinate of Ak(γ(t)) equals γn−1(t)+kγn(t)
which tends to infinity etc. . . In short γ2 = . . . = γn = 0.

1.b) Now assume 0 < λ < 1.

Lemma 2. Let g be a function defined around zero such that g(ϕ(t)) = λg(t). If
g(0) = g′(0) = 0 then g(t) = 0 for any t > 0 close to zero.
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P r o o f. There exist t0 > 0, a constant B > 0 and a positive integer number k such
that |λ−k(ϕk)′(t)| ≤ B for all t ∈ [0, t0]. Indeed, as ϕ′(0) = λ < 1 we can find 0 < λ′ < 1
and t0 > 0 such that ϕ(t) ≤ λ′t on [0, t0]. Therefore ϕk(t) ≤ (λ′)kt.

Set µ = |max{ϕ′′(t) | t ∈ [0, t0]}|. Then

|ϕ′(ϕk−1(t))| ≤ |ϕ′(0)|+ µϕk−1(t) ≤ λ + µ · (λ′)k−1t

Hence
|λ−k(ϕk)′(t)| = |λ−1ϕ′(ϕk−1(t))| · |λ1−k(ϕk−1)′(t)|

≤ |1 + µλ−1(λ′)k−1t| · |λ1−k(ϕk−1)′(t)| ≤ . . .

≤
k−1∏
j=1

(1 + µλ−1(λ′)jt)|λ−1ϕ′(t)| ≤ exp(µλ−1λ′(1− λ′)−1t)|λ−1ϕ′(t)| ≤ B.

On the other hand g(t) = λ−kg(ϕk(t)) when t ∈ [0, t0]; so

|g′(t)| ≤ |λ−k(ϕk)′(t)| · |g′(ϕk(t))| ≤ B|g′(ϕk(t))| → 0,

because {ϕk(t)} → 0 and g′(0) = 0. Therefore g = 0 on [0, t0], since g(0) = 0.

Consider the curve γ again. If n ≥ 2 then γ′2(0) = . . . = γ′n(0) = 0 as γ′(0) is an
eigenvector. Moreover γn(ϕ(t)) = λγn(t) for A(γ(t)) = γ(ϕ(t)), whence γn = 0. But then
γn−1(ϕ(t)) = λγn−1(t) etc. . . To sum up γ2 = . . . = γn = 0.

Finally by changing the parametrization of the curve if necessary, we may suppose
γ(t) = te1.

Second case: The real Jordan canonical form of A has two or more blocks. Consider
a decomposition V =

⊕m
`=1 V ` where each V ` is an eigenspace and each linear map A|V `

has one block only.
Set γ = (γ1, . . . , γm). Then every component (γ`)′(0) is an eigenvector of A|V ` and

at least one of them does not vanish, for example (γ1)′(0). The first case applied to γ1

and A|V 1 , allows us to find a basis {e1
1, . . . , e

1
n1
} of V 1 and a parametrization of γ such

that Ae1
j = λ1e

1
j + e1

j−1, j = 2, . . . , n1, Ae1
1 = λ1e

1
1, γ1(t) = te1

1 and ϕ(t) = λ1t.
If λ1 = 1 then ϕτ = Id. Therefore assume 0 < λ1 < 1 (if λ1 > 1 take A−1 and ϕ−1

instead of A and ϕ).
First consider the subspaces V j such that A|V j has a real eigenvalue. For the sake

of simplicity suppose that it is the case of V 2. Choose a basis {e2
1, . . . , e

2
n2
} such that

Ae2
j = λ2e

2
j +e2

j−1, j = 2, . . . n2, and Ae2
1 = λ2e

2
1. Set γ2 =

∑n2
j=1 hn2−je

2
j . Then λ2h0(t) =

h0(λ1t) as A ◦ γ = γ ◦ ϕ. So h0(t) = λ−r
2 h0(λr

1t) and h
(k)
0 (t) = λkr

1 λ−r
2 h

(k)
0 (λr

1t).
From some positive integer number on |λk

1λ−1
2 | < 1, and h

(k)
0 (t) = 0 because {λr

1t} →
0. In other words, h0 is a polynomial.

On the other hand h
(s)
0 (0) = λs

1λ
−1
2 h

(s)
0 (0). If λ2 is not a positive power of λ1 then

h0 = 0. Doing the same with h1, then with h2 and so on, yields h0 = h1 = . . . = hn2−1 =
0; i.e. γ2 = 0.

If λ2 = λk
1 , where k ∈ N − {0}, then h0(t) = atk. Moreover h1(λ1t) = λ2h1(t) +

h0(t) since A ◦ γ = γ ◦ ϕ. Hence h
(k+1)
1 (t) = λk+1

1 λ−1
2 h

(k+1)
1 (λ1t) = λ1h

(k+1)
1 (λ1t) and

h
(k+1)
1 (t) = λr

1h
(k+1)
1 (λr

1t). Therefore h
(k+1)
1 = 0 because {λr

1} → 0.
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In a word h1(t) =
∑k

j=0 bjt
j . Now the relation h1(λ1t) = λ2h1(t) + h0(t) implies that

h0 = 0 and h1(t) = bktk.
By a similar argument h1 = . . . = hn2−2 = 0 and γ2(t) = ctke2

1.
For the other blocks with real eigenvalues we do the same. If A|V ` has no real eigen-

value by complexifying it we obtain two blocks with non-real eigenvalues λ′ and λ̄′ re-
spectively. Obviously λ′ and λ̄′ are not powers of λ1 therefore γ` = 0.

By rearranging according to powers of t we obtain a family {e1, . . . , ek} of eigenvectors,
with eigenvalues λrj , j = 1, . . . k, where λ = λ1 and 1 = r1 < r2 < . . . < rk, such that
γ(t) =

∑k
j=1 trj ej . That completes the proof of Proposition 1.

3. The degree of flatness of F1. Given a curve γ on M , by definition γ(1) is its
velocity, γ(2) its acceleration, i.e. the covariant derivative of γ(1) along γ, γ(3) the covariant
derivative of γ(2) along γ etc. . . In affine coordinates γ(k) is just the k-th derivative of γ

with respect to the parameter. The maximum number of linearly independent successive
derivatives γ(1)(t0), γ(2)(t0), . . . , γ(k)(t0) at a point p = γ(t0) does not depend on the
parametrization. When γ describes F1 at p we denote this number by s(p). That defines
a locally increasing function s : M → N which is constant along the leaves of F2 since
F1 and F2 are T.F.

Lemma 3. Suppose that s : M → N is constant and set k = s(M). Then a curve γ

describing F1, at a point , locally lies on a well defined affine k-plane; i.e. if we identify to
each other an open set of M and one of Rn by means of an affine system of coordinates,
then γ is locally contained just in an affine k-plane of Rn.

Continue to suppose k = s(M). Let G be the vector subbundle of TM whose fibre
at p is the subspace spanned by γ(1)(t0), γ(2)(t0), . . ., γ(k)(t0) when γ describes F1 at
p = γ(t0). By Lemma 3, as F1 and F2 are T.F., around each point there exist affine
coordinates (x1, . . . , xn) on which G is defined by dxk+1 = . . . = dxn = 0. Therefore G
is parallel and the foliation associated to it contains F1. Besides dx1 ∧ . . . ∧ dxk locally
defines a volume form ω, on G, parallel as well. This form ω does not depend on the
choice of the affine coordinate system up to a constant factor.

Set f(t) = ω(γ(1)(t), . . . , γ(k)(t)) and τ(u) = γ(λ(u)). Then ω(τ (1)(u), . . . , τ (k)(u)) =
(λ′(u))`f(λ(u)) where ` = k(k + 1)/2. Therefore for each p ∈ M there exists a curve
that we call γ again, describing F1 at this point, such that ω(γ(1)(t), . . . , γ(k)(t)) is
constant. Obviously this property does not depend on the choice of ω. Moreover if
ω(τ (1)(u), . . . , τ (k)(u)) is constant as well, where τ(u) = γ(λ(u)), then (λ′(u))` is con-
stant and λ has to be an affine function of u. In other words the relation between two of
these parametrizations is given by an affine transformation of R. Therefore F1 is equipped
with an affine structure.

By construction this affine structure is preserved by translation along the leaves of
F2 because ω is parallel. Consequently, as F1 and F2 are T.F., we have:

Theorem 2. If s : M → N is constant then F2 has a transverse affine structure.

Now suppose that each leaf of F2 is dense and has trivial holonomy. Then s(M) = k

for some k ∈ N − {0} and F2 has a transverse affine structure. By Seke’s result (see
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Theorem 8 of [9]), F2 is defined by a non-singular closed form α. Let X be the vector
field tangent to F1 such that α(X) = 1. Obviously X is F2-foliate.

Lemma 4. Let X be an F2-foliate vector field tangent to F1; then X is parallel along
F2. Moreover , if Y is parallel along F2 so is ∇XY .

By Lemma 4 each vector field Xj = ∇j
XX is F2-parallel; so ∇k

XX =
∑k−1

j=0 ajXj ,
where aj ∈ R, j = 0, . . . , k − 1, since s(M) = k.

Set TM = TF1 ⊕ TF2 and let ϕ be the projection onto TF2. Given vector fields Z1

and Z2 tangent to F2 set, by definition, ∇′
Z1

Z2 = ϕ(∇Z1Z2). As F1 and F2 are T.F. it
is easily seen that ∇′ is a connection on the leaves of F2 whose torsion and curvature
vanish.

On the other hand, as each Xj is F2-parallel and F1 and F2 are T.F., it yields
∇′ϕ(Xj) = 0; so [ϕ(Xj), ϕ(X`)] = 0. But ϕ(X1), . . . , ϕ(Xk−1) are linearly independent
because s(M) = k. Therefore k ≤ rank M +1 (we recall that the rank of a compact mani-
fold is the maximum number of commuting vector fields linearly independent everywhere).
For example if F1 is as much twisted as possible, i.e. s(M) = n, then rankM ≥ n − 1
and M is a bundle over S1 with fibre Tn−1 (see [2]).

In short:

Theorem 3. If every leaf of F2 is dense and has trivial holonomy then there exist
k ∈ N− {0}, a0, . . . , ak−1 ∈ R and a non-singular vector field X such that :

(a) s(M) = k ≤ rank M + 1.
(b) X is tangent to F1, F2-parallel and F2-foliate; therefore F2 is given by a non-

singular closed 1-form.
(c) ∇k

XX =
∑k−1

j=0 aj∇j
XX.

Moreover X is unique up to a constant factor.

Let us remark that in affine coordinates F1 is described by a solution of the equation

γ(k+1) =
k∑

j=1

aj−1γ
(j),

therefore its shape is completely known.

Example. Consider the torus Tn equipped with the canonical affine structure. Then
F2 has trivial holonomy (see the remark following Proposition 1).

As the slope of F1 along each leaf of F2 is constant, if all the leaves of this last foliation
are dense then the vector field given by Theorem 3 is geodesic, i.e. X =

∑n
j=1 bj

∂
∂θj

where
b1, . . . , bn ∈ R. On the other hand F2 is defined by a closed 1-form α =

∑n
j=1 b′jdθj + α′,

where b′1, . . . , b
′
n ∈ R with

∑n
j=1 bjb

′
j = 1 and α′ is the pull-back of a closed 1-form

defined on the quotient of Tn by the closures of the orbits of X.
If all the leaves of F2 are compact, consider an embedded curve τ : S1 → M transverse

to F2 and cutting each of its leaves once. Then F1 is describes by its value on τ . Indeed
given a vector field X ′ along τ , transverse to F2, the parallel translation along the leaves
of this foliation gives rise to a vector field X on Tn, which defines a foliation F1. Suppose
that X is never tangent to F2; then F1 and F2 are T.F. if and only if X is F2-foliate.
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4. The non-trivial holonomy case. In this section we assume that F2 has at least
a leaf with non-trivial holonomy. Given natural numbers j1 = 1 < j2 < . . . < j` let
M1j2...j`

be the set of all the points p ∈ M for which the following property holds: there
exist t0 ∈ R and an affine coordinate system, defined around p, such that the curve
γ(t) = (t, tj2 , . . . , tj` , 0, . . . , 0) describes F1 at γ(t0) = p. By construction M1j2...j`

is an
F2-saturated open set. Besides ∂M1j2...j`

= ∅, i.e. either M1j2...j`
= ∅ or M1j2...j`

= M .
Indeed, if ∂M1j2...j`

6= ∅ it contains a minimal set. Therefore, by reasoning as before,
the boundary of M1j2...j`

contains a leaf H of F2 with non-trivial holonomy. By Propo-
sition 1 there exist natural numbers r1 = 1 < r2 < . . . < rk such that H ⊂ M1r2...rk

.

Lemma 5. Consider , on Rn, the curves γ(t) = (t, tj2 , . . . , tj` , 0, . . . , 0) and
λ(t) = (t, tr2 , . . . , trk , 0, . . . , 0) where 1 < j2 < . . . < j` and 1 < r2 < . . . < rk. Suppose
that there exists an affine transformation A : Rn → Rn and a non-empty open interval
I such that A(γ(I)) ⊂ λ(R). Then ` = k and ji = ki, i = 2, . . . , `.

Now Lemma 5 says us that H ⊂ M1j2...j`
so H ∩ ∂M1j2...j`

= ∅, contradiction.

We have assumed that F2 has non-trivial holonomy; therefore by Proposition 1 there
exist natural numbers r1 = 1 < r2 < . . . < rk, a point p0 ∈ M1r2...rk

and an affine coordi-
nate system, defined around this one, such that the curve γ(t) = (t, tr2 , . . . , trk , 0, . . . , 0)
describes F1 at p0 = γ(0). Moreover M = M1r2...rk

.

First case: Function s : M → N is constant. Then s(M) = k and ri = i, i = 2, . . . , k

since p0 = γ(0) for some p0. It is easily seen that given a ∈ R+ and b ∈ R there
exists an affine transformation A of Rn, preserving the orientation such that A(γ(t)) =
γ(at + b), i.e. all the points of γ are affinely equivalent on Rn. Therefore for each p ∈ M

we can find affine coordinates, defined around this point, on which the curve γ(t) =
(t, t2, . . . , tk, 0, . . . , 0) describes F1 at γ(0) = p.

In Example (d) and the second part of Example (f) (set rj = j), F2 has one minimal
set if n ≥ 3 and two minimal sets if n = 2; they are compact leaves. In Example (g) the
only minimal set of F2 is M itself.

On the other hand, as F2 has a transverse affine structure (Theorem 2), if the funda-
mental group of M is Abelian then the minimal sets of F2 are just the compact leaves
(see [4] and [9]).

Second case: Function s : M → N is not constant. Consider the curve
γ(t) = (t, tr2 , . . . , trk , 0, . . . , 0) and for each a ∈ R− {0} the affine transformation of Rn:
Aa(x) = (ax1, a

r2x2, . . . , a
rkxk, xk+1, . . . , xn). Then Aa(γ(t)) = γ(at); so all the points

of γ, unless the origin, are affinely equivalent and they have the same number of linearly
independent successive derivatives, which equals k. Set M ′ = s−1(k). Then:

1) k < rk, and s(p) < k if p = γ(0). Moreover s(M −M ′) is the first natural number
i such that i + 1 < ri+1.

2) M−M ′ is transversely finite; therefore it is the union of a finite number of compact
leaves of F2, each of them with non-trivial holonomy (Corollary 1.1).

3) The leaves of F2 contained in M ′ have trivial holonomy (because s(p) < k if
p = γ(0)) and M ′ does not contain any minimal set.
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Besides around every point p ∈ M we can find affine coordinates on which the curve
γ(t) = (t, tr2 , . . . , trk , 0, . . . , 0) describes F1 at p, where p = γ(1) if p ∈ M ′ and p = γ(0)
if p 6∈ M ′.

Finally remark that the affine transformations of Rn sending a non-empty open inter-
val of the curve γ(t) = (t, tr2 , . . . , trk , 0, . . . , 0) on a subset of γ(R) are the transformations
Aa defined before. As Aa(γ(t)) = γ(at) the parameter t gives rise to an affine structure
on each leaf of F1, and a transverse affine structure of F2 because F1 and F2 are T.F.
Moreover the holonomy of this affine transverse structure is a group of homotheties with
the same center. This implies that on each connected component of M ′ either all the
leaves of F2 are locally dense or all of them are proper. Even more this proves, in an-
other way, that F2 has almost no holonomy, i.e. only the compact leaves have non-trivial
holonomy (Theorem 7 of [9], see [4] as well).

In short:

Theorem 4. If F2 has non-trivial holonomy and function s : M → N is not constant
then:

(I) s(M) = {`1, `2} where `1 < `2.
(II) F2 has a transverse affine structure whose holonomy is group of homotheties of

R with a common center.
(III) F2 has almost no holonomy ; moreover s−1(`1) is the union of all compact leaves

of this foliation (a finite number).

Although there exist codimension one foliations with a transverse affine structure and
exceptional minimal sets (see [6]), I do not know any example of translation foliations
where F2 has an exceptional minimal set. Obviously in such a case s : M → N has to be
constant.

Example. Suppose that M = S1 × Sm, m ≥ 2. Then F2 has non-trivial holonomy
and its minimal sets are compact leaves.

Indeed, by Theorem 3 if F2 has trivial holonomy, as H1(S1 × Sm,R) = R, then F2

is defined by a fibration π : S1×Sm → S1. Therefore each leaf of F2 is simply connected
because the homotopy sequence. On the other hand (see Section 3) every leaf has an affine
structure and, by parallel displacement, we may construct a parallel non-singular 1-form
α on it. Obviously dα = 0. So [α] 6= 0 and the leaf is not simply connected, contradiction.

A transverse affine structure S of F2 gives rise, through the local F2-foliate vector
fields which are tangent to F1, to an affine structure on each leaf of F1. When all these
structures are complete we will say that S is complete (with respect to F1).

Let us call ∇(S) the connection on F1 associated to S.
For example in the case of Theorem 3 the transverse affine structure S1 associated to

X is complete because ∇(S1)XX = 0. On the other hand the transverse affine structure
S2 built up from the property that s(M) = k is complete iff ak−1 = 0, i.e. if and only if
S1 = S2.
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Theorem 5. Assume that F2 has a complete transverse affine structure S. If the
holonomy of F2 is not trivial then all its leaves are dense (therefore the function s : M →
N is constant).

P r o o f. Let M̃ be the universal covering of M . Then the structure (M,F1,F2) can
be seen as the quotient of a structure (M̃, F̃1, F̃2) of the same kind (i.e. M̃ is an affine
manifold and F̃1 and F̃2 are T.F.) by the action of a group G, isomorphic to the funda-
mental group of M , which operates properly discontinuously. Denote by π : M̃ → M the
canonical projection. Since F2 is transversely orientable and has a transverse affine struc-
ture, there exist an F̃2-basic submersion ϕ : M̃ → R and a morphism ρ : G → Aff+(R)
such that ϕ(g · p) = ρ(g) · ϕ(p) for any g ∈ G and p ∈ M̃ (see [4]).

Let X be the vector field on M̃ , tangent to F1, such that ϕ∗(X) = ∂/∂t. If γ(t)
is an integral curve of X then π(γ(t)) is a geodesic of ∇(S). Therefore X is complete;
consequently the fibration ϕ : M̃ → R is a product and each ϕ−1(t) is a leaf of F̃2.

We can suppose, without loss of generality, that the leaf π(ϕ−1(0)) has non-trivial
holonomy: so there exists 0 < a < 1 such that the map t → at belongs to ρ(G).

First assume that ρ(G) contains some translation. Then for each t0 ∈ R the set
ρ(G)(t0) is dense. As ϕ : M̃ → R is a product, π(ϕ−1(ρ(G)(t0))) is a dense leaf of F2.
But all the leaves of this foliation can be written in this way, so they are dense.

If ρ(G) does not contain any translation then it is a group of homotheties with center
0 ∈ R. Moreover F2 has only a minimal set: the compact leaf π(ϕ−1(0)), and every leaf of
F1 intersects π(ϕ−1(0)) just once. Let us choose the orientation of F1 whose pull-back by π

equals that given by X on F̃1. If L is a leaf of F1 then its α-limit is contained in the closed
set π(ϕ−1([0,+∞))). Therefore no leaf of this α-limit cuts π(ϕ−1(0)), contradiction.

R e m a r k. We recall that if the holonomy of F2 is not trivial then this foliation at
most has one transverse affine structure (see [4] and [9]).

Corollary 5.1. Suppose that the affine manifold (M,∇) is complete. If F2 has non-
trivial holonomy then each of its leaves is dense (therefore s : M → N is constant).

P r o o f. Now the affine manifold M̃ can be regarded as Rn endowed with the canonical
affine structure. Then every leaf L̃ of F̃1 may be written, in suitable affine coordinates,
in the form {(t, tr2 , . . . , trk , 0, . . . , 0) | t ∈ R}. Indeed, L̃ locally is a pseudo-parabola and
it has no ends on this curve because is a leaf.

Let S be the transverse affine structure of F2 constructed before (see Theorems 2
and 4). Set γ(t) = (t, tr2 , . . . , trk , 0, . . . , 0), t ∈ R. If {(t, tr2 , . . . , trk , 0, . . . , 0) | t ∈ R}
is a leaf of F̃1 then it is easily seen that π(γ(t)) is a geodesic of ∇(S). Therefore S is
complete.
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