TRANSLATION FOLIATIONS OF CODIMENSION ONE ON COMPACT AFFINE MANIFOLDS

FRANCISCO JAVIER TURIEL

Geometría y Topología, Facultad de Ciencias Ap. 59, Universidad de Málaga 29080 Málaga, Spain E-mail: turiel@ccuma.sci.uma.es

Abstract. Consider two foliations \mathcal{F}_1 and \mathcal{F}_2 , of dimension one and codimension one respectively, on a compact connected affine manifold (M, ∇) . Suppose that $\nabla_{T\mathcal{F}_1}T\mathcal{F}_2 \subset T\mathcal{F}_2$; $\nabla_{T\mathcal{F}_2}T\mathcal{F}_1 \subset T\mathcal{F}_1$ and $TM = T\mathcal{F}_1 \oplus T\mathcal{F}_2$. In this paper we show that either \mathcal{F}_2 is given by a fibration over S^1 , and then \mathcal{F}_1 has a great degree of freedom, or the trace of \mathcal{F}_1 is given by a few number of types of curves which are completely described. Moreover we prove that \mathcal{F}_2 has a transverse affine structure.

Introduction. We work in the C^{∞} category.

Consider a compact connected affine manifold (M, ∇) , i.e. ∇ is a connection whose torsion and curvature vanish, of dimension n equipped with a finite family of foliations $\mathcal{F}_1, \ldots, \mathcal{F}_k$. We will say that $\mathcal{F}_1, \ldots, \mathcal{F}_k$ are translation foliations (T.F.) if for any $1 \leq i < j \leq k$ we have $\nabla_{T\mathcal{F}_i}T\mathcal{F}_j \subset T\mathcal{F}_j$ and $\nabla_{T\mathcal{F}_j}T\mathcal{F}_i \subset T\mathcal{F}_i$, where $T\mathcal{F}_i$ and $T\mathcal{F}_j$ are the vector subbundles of tangent vectors to the leaves of \mathcal{F}_i and \mathcal{F}_j respectively.

This kind of structures appears, in a natural way, when we consider a bilagrangian fibration $\pi : (N, \omega, \omega_1) \to M$ whose fibres are tori \mathbf{T}^n . Then M is endowed with two integer affine structure \mathcal{A} and \mathcal{A}_1 and a (1, 1) tensor field J which transforms \mathcal{A} on \mathcal{A}_1 . The eigenspaces of J give rise to a family of translation foliations $\mathcal{F}_1, \ldots, \mathcal{F}_k$ which are transverse (often with some singularities, see [1]).

Another example is given by Veronese webs when they are affine. Veronese webs have been introduced by Gelfand and Zakarevich for studying the bihamiltonian systems of odd dimension (see [5]).

Translation foliations on surfaces have been studied by Darboux (see [3]).

Here we will consider the case of two translation foliations \mathcal{F}_1 and \mathcal{F}_2 which are transverse, i.e. $TM = T\mathcal{F}_1 \oplus T\mathcal{F}_2$, such that dim $\mathcal{F}_1 = \operatorname{codim} \mathcal{F}_2 = 1$. For the sake of

¹⁹⁹¹ Mathematics Subject Classification: Primary 53C12; Secondary 53A15.

Supported by DGICYT under grant PB94-1485.

The paper is in final form and no version of it will be published elsewhere.

^[171]

simplicity \mathcal{F}_1 and \mathcal{F}_2 shall be assumed orientable. This last condition is always satisfied by taking a finite covering if necessary. Let us remark that \mathcal{F}_1 and \mathcal{F}_2 are transversely orientable as well.

In affine coordinates the property of translation is equivalent to the following one: consider an open set A_1 of a leaf \mathcal{F}_1 , an open set A_2 of a leaf of \mathcal{F}_2 and a point $p \in A_1 \cap A_2$; given $q_1 \in A_1$ and $q_2 \in A_2$ then $A_1 + q_2 - p$ is an open set of the leaf of \mathcal{F}_1 passing through q_2 , and $A_2 + q_1 - p$ is an open set of the leaf of \mathcal{F}_2 passing through q_1 (obviously where it has a meaning). In other words, around p foliations \mathcal{F}_1 and \mathcal{F}_2 are completely determined by the leaves of \mathcal{F}_1 and \mathcal{F}_2 passing through this point.

In this paper we show that \mathcal{F}_2 always has a transverse affine structure. Besides one of the three following possibilities holds:

1) Foliation \mathcal{F}_2 is given by a fibration over S^1 . Then \mathcal{F}_1 has a great degree of freedom. Nevertheless \mathcal{F}_1 is spanned by an \mathcal{F}_2 -foliate and \mathcal{F}_2 -parallel vector field.

2) Foliation \mathcal{F}_2 has trivial holonomy and all its leaves are dense. Then there exist real numbers a_0, \ldots, a_{k-1} and a non-singular vector field X, tangent to \mathcal{F}_1 , which is both \mathcal{F}_2 -parallel and \mathcal{F}_2 -foliate, such that $\nabla_X^k X = \sum_{j=0}^{k-1} a_j \nabla_X^j X$. Moreover $k \leq \operatorname{rank} M + 1$.

Therefore, in affine coordinates, \mathcal{F}_1 is described by a curve $\gamma(t)$ which is a solution of the equation $\gamma^{(k+1)} = \sum_{j=1}^k a_{j-1} \gamma^{(j)}$.

3) Foliation \mathcal{F}_2 has non-trivial holonomy. Then \mathcal{F}_2 has a finite number of minimal sets, all of them with non-trivial holonomy, and there exist natural numbers $r_1 = 1 < r_2 < \ldots < r_k$ such that, around each point, we may find affine coordinates on which the polynomial curve $\gamma(t) = (t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0)$ describes \mathcal{F}_1 .

Moreover:

If $r_k > k$ then all the non-compact leaves of \mathcal{F}_2 have trivial holonomy; on the other hand the compact ones are just the only minimal sets.

If the affine manifold (M, ∇) is complete then $r_j = j, j = 1, \ldots, k$ and all the leaves of \mathcal{F}_2 are dense.

1. Examples.

(a) Consider two imbeddings $f_1: S^1 \to \mathbf{T}^n$; $f_2: \mathbf{T}^{n-1} \to \mathbf{T}^n$, where \mathbf{T}^k is the torus of dimension k, and a point $p \in \mathbf{T}^n$. Assume that:

(I) There exists $\alpha_0 \in S^1$ and $\beta_0 \in \mathbf{T}^{n-1}$ such that $p = f_1(\alpha_0) = f_2(\beta_0)$ and $\{f_{1*}\pi_1(S^1, \alpha_0), f_{2*}\pi_1(\mathbf{T}^{n-1}, \beta_0)\}$ spans $\pi_1(\mathbf{T}^n, p)$.

(II) For any $(\alpha, \beta) \in S^1 \times \mathbf{T}^{n-1}$ the subspaces $f_{1*}(T_{\alpha}S^1)$ and $f_{2*}(T_{\beta}\mathbf{T}^{n-1})$, after being carried to $0 \in \mathbf{T}^n$ by means of the canonical connection, are transverse.

Then the map $F : (\alpha, \beta) \in S^1 \times \mathbf{T}^{n-1} \to f_1(\alpha) + f_2(\beta) \in \mathbf{T}^n$ is a diffeomorphism and the foliations \mathcal{F}_1 and \mathcal{F}_2 , defined by the submersions $\pi_2 \circ F^{-1} : \mathbf{T}^n \to \mathbf{T}^{n-1}$ and $\pi_1 \circ F^{-1} : \mathbf{T}^n \to \mathbf{S}^1$, are T.F.

(b) On $\widetilde{M} = \mathbf{R} \times \mathbf{R}^+$ we consider the equivalence relation $x\mathcal{R}y$ if and only if $y_1 = x_1 + k_1$ and $y_2 = \exp(k_2)x_2$ where $k_1, k_2 \in \mathbf{Z}$, and the foliations $\widetilde{\mathcal{F}}_1$, given by the curves $x_2 \exp(-x_1) = \text{constant}$, and $\widetilde{\mathcal{F}}_2$, associated to vector field $\frac{\partial}{\partial x_1}$. Set $M = \widetilde{M}/\mathcal{R}$. By projecting $\widetilde{\mathcal{F}}_1$ and $\widetilde{\mathcal{F}}_2$ manifold M is endowed with two foliations \mathcal{F}_1 and \mathcal{F}_2 which are

T.F. with respect to the projected connection.

(c) Let $\{e_1, e_2\}$ be a basis of the Lie algebra of \mathbf{T}^2 . Now equip \mathbf{T}^2 with the affine connection given by $\nabla_{e_1}e_1 = e_2$; $\nabla_{e_i}e_j = 0$ otherwise. Then the foliations \mathcal{F}_1 , associated to e_1 , and \mathcal{F}_2 , associated to e_2 , are T.F. Moreover \mathcal{F}_1 is parabolic, i.e. around each point there exist affine coordinates on which the leaf of \mathcal{F}_1 passing through this point can be written (t, t^2) , and \mathcal{F}_2 is geodesic.

In Example (b) \mathcal{F}_2 is geodesic as well and the leaves of \mathcal{F}_1 are written (t, ae^t) in suitable affine coordinates.

(d) Hopf structure. Given positive natural numbers r_2, \ldots, r_n , set $X = \frac{\partial}{\partial x_1} + \sum_{j=2}^n x_1^{r_j-1} \frac{\partial}{\partial x_j}$ and $Y = x_1 \frac{\partial}{\partial x_1} + \sum_{j=2}^n r_j x_j \frac{\partial}{\partial x_j}$; then [X, Y] = X. On $\widetilde{M} = \mathbf{R}^n - \{0\}, n \ge 2$, the foliations $\widetilde{\mathcal{F}}_1$, associated to X, and $\widetilde{\mathcal{F}}_2$, defined by $dx_1 = 0$, are T.F. with respect to the canonical connection of \mathbf{R}^n . On the other hand they are preserved by the flow ϕ_t of Y.

On M we define the equivalence relation $x\mathcal{R}y$ if and only if $\phi_{\ell}(x) = y$ for some $\ell \in \mathbb{Z}$. As the vector field Y is both affine and foliate the quotient manifold M, i.e. $S^1 \times S^{n-1}$, is affine and the projected foliations \mathcal{F}_1 and \mathcal{F}_2 are T.F. Foliation \mathcal{F}_2 has non-trivial holonomy and, in suitable affine coordinates, each leaf of \mathcal{F}_1 is given by the curve $(t, t^{r_2}, \ldots, t^{r_n})$.

Other foliations which are T.F. may be constructed in the same way. For example on $\mathbf{R}^3 - \{0\}$ we can set $Y = 2x_1\frac{\partial}{\partial x_1} + 4x_2\frac{\partial}{\partial x_2} + x_3\frac{\partial}{\partial x_3}$ and consider the foliations $\widetilde{\mathcal{F}}_1$, given by $\frac{\partial}{\partial x_1} + (x_1 + x_3^2)\frac{\partial}{\partial x_2}$, and $\widetilde{\mathcal{F}}_2$ associated to $\frac{\partial}{\partial x_2}$; $-2x_3\frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_3}$. (e) On \mathbf{T}^3 consider the affine connection obtained by setting $\nabla_{\frac{\partial}{\partial \alpha_1}}\frac{\partial}{\partial \alpha_1} = \frac{\partial}{\partial \alpha_3}$;

(e) On \mathbf{T}^3 consider the affine connection obtained by setting $\nabla_{\frac{\partial}{\partial \alpha_1}} \frac{\partial}{\partial \alpha_1} = \frac{\partial}{\partial \alpha_3}$; $\nabla_{\frac{\partial}{\partial \alpha_2}} \frac{\partial}{\partial \alpha_2} = 2 \frac{\partial}{\partial \alpha_3}$; $\nabla_{\frac{\partial}{\partial \alpha_i}} \frac{\partial}{\partial \alpha_j} = 0$ otherwise, and the translation foliations \mathcal{F}_1 and \mathcal{F}_2 spanned by $\frac{\partial}{\partial \alpha_1} + 2^{-\frac{1}{2}} \frac{\partial}{\partial \alpha_2}$ and $\frac{\partial}{\partial \alpha_1} - 2^{-\frac{1}{2}} \frac{\partial}{\partial \alpha_2}$; $\frac{\partial}{\partial \alpha_3}$ respectively. Now the affine structure is integer, \mathcal{F}_1 is parabolic and all the leaves of \mathcal{F}_2 are dense.

(f) Consider a compact connected affine manifold (M, ∇) equipped with two translation foliations \mathcal{F}_1 and \mathcal{F}_2 , such that dim $\mathcal{F}_1 = \operatorname{codim} \mathcal{F}_2 = 1$ and $T\mathcal{F}_1 \oplus T\mathcal{F}_2 = TM$. Let G be the group of affine diffeomorphisms of (M, ∇) which preserve \mathcal{F}_1 and \mathcal{F}_2 . Consider a second compact connected affine manifold W. Assume that W, \mathcal{F}_1 and \mathcal{F}_2 are orientable. If \widetilde{W} is the universal covering of W then $\widetilde{W} \times M$ can be endowed with the translation foliations $\widetilde{\mathcal{F}}_1$ and $\widetilde{\mathcal{F}}_2$ given by $T\widetilde{\mathcal{F}}_1 = \{0\} \times T\mathcal{F}_1$ and $T\widetilde{\mathcal{F}}_2 = TW \times T\mathcal{F}_2$. Therefore, by suspending each morphism from $\pi_1(W)$ to G, we obtain a new example of translation foliations.

If $(M, \mathcal{F}_1, \mathcal{F}_2)$ is as in Example (d), then Y gives rise to a vector field Y', on M, whose flow ϕ'_t is included in G. Now by taking $W = S^1$ and ϕ'_b , where $b \notin \mathbf{Q}$, as image of a generator of $\pi_1(S^1)$, one constructs an example of translation foliations where the codimension one foliation only has one (dim M > 2) or two (dim M = 2) compact leaves. The other ones are locally dense (note that all the leaves of \mathcal{F}_2 were proper; obviously the number of compact leaves of this last foliation is the same as before).

(g) Given $B \in SL(\mathbf{Z}, 2)$ let $\varphi_B : \mathbf{T}^2 \to \mathbf{T}^2$ be the associated isomorphism. Consider an element $A \in SL(\mathbf{Z}, 2)$ with two distinct positive real eigenvalues λ_1, λ_2 . Let $\{d_1, d_2\}$ be a basis of the Lie algebra of \mathbf{T}^2 such that $(\varphi_A)_* d_i = \lambda_i d_i$, i = 1, 2. Now endow $\mathbf{T}^4 = \mathbf{T}^2 \times \mathbf{T}^2$ with the affine structure given by $\nabla_{e_1} e_1 = e_3$; $\nabla_{e_i} e_j = 0$ otherwise, where $e_1 = (d_1, 0), e_2 = (d_2, 0), e_3 = (0, d_1), e_4 = (0, d_2)$. Let \mathcal{F}_1 and \mathcal{F}_2 the translation foliations spanned by e_1 and $\{e_2, e_3, e_4\}$ respectively.

By suspending the diffeomorphism $\phi = (\varphi_A, \varphi_{A^2})$ as in Example (f) $(W = S^1)$ one constructs two translation foliations \mathcal{F}'_1 and \mathcal{F}'_2 , on a compact affine 5-manifold M', the first one parabolic and the second one with non-trivial holonomy and dense leaves. Note that the affine manifold M' is complete (see Corollary 5.1).

2. The polynomial points of \mathcal{F}_1 . If each leaf of \mathcal{F}_2 is compact and its holonomy is trivial, i.e. if \mathcal{F}_2 is given by a fibration over S^1 , the leaves of \mathcal{F}_1 have a great degree of freedom as Example (a) shows. Nevertheless they are the orbits of a non-singular vector field X which is both \mathcal{F}_2 -foliate and \mathcal{F}_2 -parallel. Indeed, as \mathcal{F}_1 and \mathcal{F}_2 are T.F. all \mathcal{F}_2 -foliate vector field is parallel. Conversely if a non-singular \mathcal{F}_2 -foliate vector field X, tangent to \mathcal{F}_1 , is \mathcal{F}_2 -parallel then \mathcal{F}_1 and \mathcal{F}_2 are T.F. (even if the leaves of \mathcal{F}_2 are dense). Obviously \mathcal{F}_2 has transverse affine structures.

From now on we will suppose, if necessary, that \mathcal{F}_2 is not given by a fibration over S^1 . We will say that a non-singular curve $\gamma: I \to M$ describes \mathcal{F}_1 at p if $p \in \gamma(I)$ and γ lies on the leaf of \mathcal{F}_1 passing through p. A point $p \in M$ will be called *polynomial* (for \mathcal{F}_1) if there exists a curve γ , describing \mathcal{F}_1 at p, which is polynomial in affine coordinates. The set P of all polynomial points is open and saturated for \mathcal{F}_2 .

THEOREM 1. Let H be a leaf of \mathcal{F}_2 with non-trivial holonomy. Then the holonomy of H is linear and $H \subset P$.

COROLLARY 1.1. Assume that \mathcal{F}_2 has non-trivial holonomy. Then:

(I) \mathcal{F}_2 has a finite number of minimal sets, all of them with non-trivial holonomy.

(II) P = M.

First we deduce Corollary 1.1 from Theorem 1. The number of exceptional minimal sets of \mathcal{F}_2 is finite and the union of all its compact leaves is a closed set (for codim $\mathcal{F}_2 = 1$). By Theorem 1 the holonomy of each leaf is linear so there are a finite number of compact leaves, all of them with non-trivial holonomy. By Sacksteder's theorem each exceptional minimal set contains a leaf with non-trivial holonomy (see [8]). This proves (I).

On the other hand by Theorem 1 again, P contains every leaf with non-trivial holonomy, so it contains all the minimal sets. Therefore P = M; otherwise we could find a minimal set on ∂P . This proves (II).

Now for proving Theorem 1 we will study the holonomy of \mathcal{F}_2 referred to \mathcal{F}_1 .

Consider a point $p \in M$. Let H_i , i = 1, 2, be the leaf of \mathcal{F}_i passing through p and let τ be a loop at p on H_2 . In affine coordinates, around p, the holonomy map φ_{τ} associated to τ , referred to the transversal H_1 , is given by the restriction of an affine transformation A of \mathbf{R}^n respecting the orientation and locally sending H_1 on H_1 ; moreover A(p) = p.

Indeed, first consider the case of an arc τ' on H_2 contained in a convex affine coordinate domain. As \mathcal{F}_1 and \mathcal{F}_2 are T.F., its holonomy map $\varphi_{\tau'}$, referred to the leaves of \mathcal{F}_1 passing through the ends of τ' , is the restriction of a translation of \mathbf{R}^n . Now divide τ into small pieces contained each of them in a convex affine coordinate domain.

Consider an affine coordinate system with p as origin, i.e. $p \equiv 0$. In this case A is a linear transformation of \mathbf{R}^n . On the other hand, if γ describes \mathcal{F}_1 at p and $\gamma(0) = p$ then there exist two open intervals I' and I'', containing zero, and a diffeomorphism $\varphi: I' \to I''$ such that $\varphi(0) = 0$ and $A \circ \gamma = \gamma \circ \varphi$ on I'.

Deriving with respect to t yields $A(\gamma'(0)) = \varphi'(0) \cdot \gamma'(0)$, i.e. $\gamma'(0)$ is an eigenvector of A with eigenvalue $\varphi'(0) > 0$ since \mathcal{F}_2 is transversely orientable.

PROPOSITION 1. If $\varphi_{\tau} \neq$ Id then there exist an eigenspace W of \mathbf{R}^n , a basis $\{e_1,\ldots,e_k\}$ of it, natural numbers $1 = r_1 < r_2 < \ldots < r_k$ and a positive real $\lambda \neq 1$ such that:

(I) $Ae_j = \lambda^{r_j} e_j, \ j = 1, \dots k.$ (II) The curve $\gamma(t) = \sum_{j=1}^k t^{r_j} e_j$ describes \mathcal{F}_1 at p and $p = \gamma(0)$. Moreover $\varphi_{\tau}(\gamma(t)) = \gamma(\lambda t)$, i.e. the map φ_{τ} is linear.

 Remark . The isomorphism A regarded as a linear transformation of T_pM belongs to the holonomy group, at p, of the affine connection.

On the other hand, if $\tilde{\tau}$ is another loop at p on H_2 then $\varphi_{\tilde{\tau}}(\gamma(t)) = \gamma(\tilde{\lambda}t)$ because $\varphi_{\widetilde{\tau}}(\gamma(t)) = \widetilde{A}(\gamma(t))$ for some $\widetilde{A} \in GL(\mathbf{R}^n)$. Therefore the holonomy of each leaf of \mathcal{F}_2 is linear.

It is clear that Theorem 1 follows from Proposition 1. For proving this last result we shall examine all the possible cases.

First case: The real Jordan canonical form of A only has one block. Then there exists a basis $\{e_1,\ldots,e_n\}$ of \mathbf{R}^n such that $Ae_j = \lambda e_j + e_{j-1}, j = 2,\ldots n$, and $Ae_1 = \lambda e_1$. Naturally $\lambda = \varphi'(0)$. It will be shown that near the origin γ lies on the line $\mathbf{R}\{e_1\}$. We will do it for $t \ge 0$; the other side is analogous.

A point $t_0 \in I'$ is called *stationary* if $\varphi(t_0) = t_0$. When $\lambda \neq 1$ the only stationary point close to $0 \in I'$ is the zero itself (mean value theorem).

LEMMA 1. If $t_0 > 0$ is stationary then $\gamma([0, t_0]) \subset \mathbf{R}\{e_1\}$.

 $\mathrm{P\,r\,o\,o\,f.}\ \mathrm{The\,\,map}\ \varphi:[0,t_0]\to[0,t_0]\ \mathrm{is\ a\ diffeomorphism\ and\ }A^k\circ\gamma=\gamma\circ\varphi^k\ \mathrm{where}$ $\varphi^k = \varphi \circ \ldots \circ \varphi$. Set $\gamma(t) = \sum_{j=1}^n \gamma_j(t) e_j$. If $\gamma_n(t) \neq 0$ for some $t \in [0, t_0]$ then $\lambda = 1$ since otherwise $A^k(\gamma(t)) = \sum_{j=1}^{n-1} f_{jk}(t) e_j + \lambda^k \gamma_n(t) e_n$ tends to infinity (if $\lambda < 1$ take negative k) and the set $\gamma_n([0, t_0])$ is not compact.

But if $\lambda = 1$ the (n-1)-th coordinate of $A^k(\gamma(t))$ equals $\gamma_{n-1}(t) + k\gamma_n(t)$ which again tends to infinity unless $\gamma_n(t) = 0$. In other words $\gamma_n = 0$. Now the same reasoning shows that $\gamma_{n-1} = \ldots = \gamma_2 = 0.$

By replacing A and φ with A^{-1} and φ^{-1} respectively if necessary, Lemma 1 allows us to suppose $\varphi(t) < t$ for any t > 0. Therefore $0 < \lambda \leq 1$ and $\lim_{k \to \infty} \{\varphi^k(t)\} = 0$.

1.a) First assume $\lambda = 1$. The (n-1)-th coordinate of $A^k(\gamma(t))$ equals $\gamma_{n-1}(t) + k\gamma_n(t)$ which tends to infinity etc... In short $\gamma_2 = \ldots = \gamma_n = 0$.

1.b) Now assume $0 < \lambda < 1$.

LEMMA 2. Let g be a function defined around zero such that $g(\varphi(t)) = \lambda g(t)$. If g(0) = g'(0) = 0 then g(t) = 0 for any t > 0 close to zero.

Proof. There exist $t_0 > 0$, a constant B > 0 and a positive integer number k such that $|\lambda^{-k}(\varphi^k)'(t)| \leq B$ for all $t \in [0, t_0]$. Indeed, as $\varphi'(0) = \lambda < 1$ we can find $0 < \lambda' < 1$ and $t_0 > 0$ such that $\varphi(t) \leq \lambda' t$ on $[0, t_0]$. Therefore $\varphi^k(t) \leq (\lambda')^k t$.

Set $\mu = |\max\{\varphi''(t) \mid t \in [0, t_0]\}|$. Then

$$|\varphi'(\varphi^{k-1}(t))| \le |\varphi'(0)| + \mu \varphi^{k-1}(t) \le \lambda + \mu \cdot (\lambda')^{k-1}t$$

Hence

$$\begin{aligned} |\lambda^{-k}(\varphi^{k})'(t)| &= |\lambda^{-1}\varphi'(\varphi^{k-1}(t))| \cdot |\lambda^{1-k}(\varphi^{k-1})'(t)| \\ &\leq |1+\mu\lambda^{-1}(\lambda')^{k-1}t| \cdot |\lambda^{1-k}(\varphi^{k-1})'(t)| \leq \dots \\ &\leq \prod_{j=1}^{k-1} (1+\mu\lambda^{-1}(\lambda')^{j}t) |\lambda^{-1}\varphi'(t)| \leq \exp(\mu\lambda^{-1}\lambda'(1-\lambda')^{-1}t) |\lambda^{-1}\varphi'(t)| \leq B. \end{aligned}$$

On the other hand $g(t) = \lambda^{-k} g(\varphi^k(t))$ when $t \in [0, t_0]$; so

$$|g'(t)| \le |\lambda^{-k}(\varphi^k)'(t)| \cdot |g'(\varphi^k(t))| \le B|g'(\varphi^k(t))| \to 0,$$

because $\{\varphi^k(t)\} \to 0$ and g'(0) = 0. Therefore g = 0 on $[0, t_0]$, since g(0) = 0.

Consider the curve γ again. If $n \geq 2$ then $\gamma'_2(0) = \ldots = \gamma'_n(0) = 0$ as $\gamma'(0)$ is an eigenvector. Moreover $\gamma_n(\varphi(t)) = \lambda \gamma_n(t)$ for $A(\gamma(t)) = \gamma(\varphi(t))$, whence $\gamma_n = 0$. But then $\gamma_{n-1}(\varphi(t)) = \lambda \gamma_{n-1}(t)$ etc... To sum up $\gamma_2 = \ldots = \gamma_n = 0$.

Finally by changing the parametrization of the curve if necessary, we may suppose $\gamma(t) = te_1$.

Second case: The real Jordan canonical form of A has two or more blocks. Consider a decomposition $V = \bigoplus_{\ell=1}^{m} V^{\ell}$ where each V^{ℓ} is an eigenspace and each linear map $A_{|V^{\ell}}$ has one block only.

Set $\gamma = (\gamma^1, \ldots, \gamma^m)$. Then every component $(\gamma^\ell)'(0)$ is an eigenvector of $A_{|V^\ell}$ and at least one of them does not vanish, for example $(\gamma^1)'(0)$. The first case applied to γ^1 and $A_{|V^1}$, allows us to find a basis $\{e_1^1, \ldots, e_{n_1}^1\}$ of V^1 and a parametrization of γ such that $Ae_j^1 = \lambda_1 e_j^1 + e_{j-1}^1$, $j = 2, \ldots, n_1$, $Ae_1^1 = \lambda_1 e_1^1$, $\gamma^1(t) = te_1^1$ and $\varphi(t) = \lambda_1 t$.

If $\lambda_1 = 1$ then $\varphi_{\tau} = \text{Id.}$ Therefore assume $0 < \lambda_1 < 1$ (if $\lambda_1 > 1$ take A^{-1} and φ^{-1} instead of A and φ).

First consider the subspaces V^j such that $A_{|V^j}$ has a real eigenvalue. For the sake of simplicity suppose that it is the case of V^2 . Choose a basis $\{e_1^2, \ldots, e_{n_2}^2\}$ such that $Ae_j^2 = \lambda_2 e_j^2 + e_{j-1}^2, j = 2, \ldots n_2$, and $Ae_1^2 = \lambda_2 e_1^2$. Set $\gamma^2 = \sum_{j=1}^{n_2} h_{n_2-j} e_j^2$. Then $\lambda_2 h_0(t) = h_0(\lambda_1 t)$ as $A \circ \gamma = \gamma \circ \varphi$. So $h_0(t) = \lambda_2^{-r} h_0(\lambda_1^r t)$ and $h_0^{(k)}(t) = \lambda_1^{kr} \lambda_2^{-r} h_0^{(k)}(\lambda_1^r t)$.

From some positive integer number on $|\lambda_1^k \lambda_2^{-1}| < 1$, and $h_0^{(k)}(t) = 0$ because $\{\lambda_1^r t\} \rightarrow 0$. In other words, h_0 is a polynomial.

On the other hand $h_0^{(s)}(0) = \lambda_1^s \lambda_2^{-1} h_0^{(s)}(0)$. If λ_2 is not a positive power of λ_1 then $h_0 = 0$. Doing the same with h_1 , then with h_2 and so on, yields $h_0 = h_1 = \ldots = h_{n_2-1} = 0$; i.e. $\gamma^2 = 0$.

If $\lambda_2 = \lambda_1^k$, where $k \in \mathbf{N} - \{0\}$, then $h_0(t) = at^k$. Moreover $h_1(\lambda_1 t) = \lambda_2 h_1(t) + h_0(t)$ since $A \circ \gamma = \gamma \circ \varphi$. Hence $h_1^{(k+1)}(t) = \lambda_1^{k+1}\lambda_2^{-1}h_1^{(k+1)}(\lambda_1 t) = \lambda_1 h_1^{(k+1)}(\lambda_1 t)$ and $h_1^{(k+1)}(t) = \lambda_1^r h_1^{(k+1)}(\lambda_1^r t)$. Therefore $h_1^{(k+1)} = 0$ because $\{\lambda_1^r\} \to 0$.

In a word $h_1(t) = \sum_{j=0}^k b_j t^j$. Now the relation $h_1(\lambda_1 t) = \lambda_2 h_1(t) + h_0(t)$ implies that $h_0 = 0$ and $h_1(t) = b_k t^k$.

By a similar argument $h_1 = \ldots = h_{n_2-2} = 0$ and $\gamma^2(t) = ct^k e_1^2$.

For the other blocks with real eigenvalues we do the same. If $A_{|V^{\ell}}$ has no real eigenvalue by complexifying it we obtain two blocks with non-real eigenvalues λ' and $\bar{\lambda}'$ respectively. Obviously λ' and $\bar{\lambda}'$ are not powers of λ_1 therefore $\gamma^{\ell} = 0$.

By rearranging according to powers of t we obtain a family $\{e_1, \ldots, e_k\}$ of eigenvectors, with eigenvalues λ^{r_j} , $j = 1, \ldots k$, where $\lambda = \lambda_1$ and $1 = r_1 < r_2 < \ldots < r_k$, such that $\gamma(t) = \sum_{j=1}^k t^{r_j} e_j$. That completes the proof of Proposition 1.

3. The degree of flatness of \mathcal{F}_1 . Given a curve γ on M, by definition $\gamma^{(1)}$ is its velocity, $\gamma^{(2)}$ its acceleration, i.e. the covariant derivative of $\gamma^{(1)}$ along γ , $\gamma^{(3)}$ the covariant derivative of $\gamma^{(2)}$ along γ etc... In affine coordinates $\gamma^{(k)}$ is just the k-th derivative of γ with respect to the parameter. The maximum number of linearly independent successive derivatives $\gamma^{(1)}(t_0), \gamma^{(2)}(t_0), \ldots, \gamma^{(k)}(t_0)$ at a point $p = \gamma(t_0)$ does not depend on the parametrization. When γ describes \mathcal{F}_1 at p we denote this number by s(p). That defines a locally increasing function $s: M \to \mathbf{N}$ which is constant along the leaves of \mathcal{F}_2 since \mathcal{F}_1 and \mathcal{F}_2 are T.F.

LEMMA 3. Suppose that $s: M \to \mathbf{N}$ is constant and set k = s(M). Then a curve γ describing \mathcal{F}_1 , at a point, locally lies on a well defined affine k-plane; i.e. if we identify to each other an open set of M and one of \mathbf{R}^n by means of an affine system of coordinates, then γ is locally contained just in an affine k-plane of \mathbf{R}^n .

Continue to suppose k = s(M). Let \mathcal{G} be the vector subbundle of TM whose fibre at p is the subspace spanned by $\gamma^{(1)}(t_0)$, $\gamma^{(2)}(t_0)$, ..., $\gamma^{(k)}(t_0)$ when γ describes \mathcal{F}_1 at $p = \gamma(t_0)$. By Lemma 3, as \mathcal{F}_1 and \mathcal{F}_2 are T.F., around each point there exist affine coordinates (x_1, \ldots, x_n) on which \mathcal{G} is defined by $dx_{k+1} = \ldots = dx_n = 0$. Therefore \mathcal{G} is parallel and the foliation associated to it contains \mathcal{F}_1 . Besides $dx_1 \wedge \ldots \wedge dx_k$ locally defines a volume form ω , on \mathcal{G} , parallel as well. This form ω does not depend on the choice of the affine coordinate system up to a constant factor.

Set $f(t) = \omega(\gamma^{(1)}(t), \ldots, \gamma^{(k)}(t))$ and $\tau(u) = \gamma(\lambda(u))$. Then $\omega(\tau^{(1)}(u), \ldots, \tau^{(k)}(u)) = (\lambda'(u))^{\ell} f(\lambda(u))$ where $\ell = k(k+1)/2$. Therefore for each $p \in M$ there exists a curve that we call γ again, describing \mathcal{F}_1 at this point, such that $\omega(\gamma^{(1)}(t), \ldots, \gamma^{(k)}(t))$ is constant. Obviously this property does not depend on the choice of ω . Moreover if $\omega(\tau^{(1)}(u), \ldots, \tau^{(k)}(u))$ is constant as well, where $\tau(u) = \gamma(\lambda(u))$, then $(\lambda'(u))^{\ell}$ is constant and λ has to be an affine function of u. In other words the relation between two of these parametrizations is given by an affine transformation of \mathbf{R} . Therefore \mathcal{F}_1 is equipped with an affine structure.

By construction this affine structure is preserved by translation along the leaves of \mathcal{F}_2 because ω is parallel. Consequently, as \mathcal{F}_1 and \mathcal{F}_2 are T.F., we have:

THEOREM 2. If $s: M \to \mathbf{N}$ is constant then \mathcal{F}_2 has a transverse affine structure.

Now suppose that each leaf of \mathcal{F}_2 is dense and has trivial holonomy. Then s(M) = k for some $k \in \mathbf{N} - \{0\}$ and \mathcal{F}_2 has a transverse affine structure. By Seke's result (see

Theorem 8 of [9]), \mathcal{F}_2 is defined by a non-singular closed form α . Let X be the vector field tangent to \mathcal{F}_1 such that $\alpha(X) = 1$. Obviously X is \mathcal{F}_2 -foliate.

LEMMA 4. Let X be an \mathcal{F}_2 -foliate vector field tangent to \mathcal{F}_1 ; then X is parallel along \mathcal{F}_2 . Moreover, if Y is parallel along \mathcal{F}_2 so is $\nabla_X Y$.

By Lemma 4 each vector field $X_j = \nabla_X^j X$ is \mathcal{F}_2 -parallel; so $\nabla_X^k X = \sum_{j=0}^{k-1} a_j X_j$, where $a_j \in \mathbf{R}$, $j = 0, \dots, k - 1$, since s(M) = k.

Set $TM = T\mathcal{F}_1 \oplus T\mathcal{F}_2$ and let φ be the projection onto $T\mathcal{F}_2$. Given vector fields Z_1 and Z_2 tangent to \mathcal{F}_2 set, by definition, $\nabla'_{Z_1}Z_2 = \varphi(\nabla_{Z_1}Z_2)$. As \mathcal{F}_1 and \mathcal{F}_2 are T.F. it is easily seen that ∇' is a connection on the leaves of \mathcal{F}_2 whose torsion and curvature vanish.

On the other hand, as each X_j is \mathcal{F}_2 -parallel and \mathcal{F}_1 and \mathcal{F}_2 are T.F., it yields $\nabla' \varphi(X_j) = 0$; so $[\varphi(X_j), \varphi(X_\ell)] = 0$. But $\varphi(X_1), \ldots, \varphi(X_{k-1})$ are linearly independent because s(M) = k. Therefore $k \leq \operatorname{rank} M + 1$ (we recall that the rank of a compact manifold is the maximum number of commuting vector fields linearly independent everywhere). For example if \mathcal{F}_1 is as much twisted as possible, i.e. s(M) = n, then rank $M \ge n-1$ and M is a bundle over S^1 with fibre \mathbf{T}^{n-1} (see [2]).

In short:

THEOREM 3. If every leaf of \mathcal{F}_2 is dense and has trivial holonomy then there exist $k \in \mathbf{N} - \{0\}, a_0, \ldots, a_{k-1} \in \mathbf{R}$ and a non-singular vector field X such that:

(a) $s(M) = k \le \operatorname{rank} M + 1$.

(b) X is tangent to \mathcal{F}_1 , \mathcal{F}_2 -parallel and \mathcal{F}_2 -foliate; therefore \mathcal{F}_2 is given by a nonsingular closed 1-form.

(c) $\nabla_X^k X = \sum_{j=0}^{k-1} a_j \nabla_X^j X.$ Moreover X is unique up to a constant factor.

Let us remark that in affine coordinates \mathcal{F}_1 is described by a solution of the equation

$$\gamma^{(k+1)} = \sum_{j=1}^{k} a_{j-1} \gamma^{(j)},$$

therefore its shape is completely known.

EXAMPLE. Consider the torus \mathbf{T}^n equipped with the canonical affine structure. Then \mathcal{F}_2 has trivial holonomy (see the remark following Proposition 1).

As the slope of \mathcal{F}_1 along each leaf of \mathcal{F}_2 is constant, if all the leaves of this last foliation are dense then the vector field given by Theorem 3 is geodesic, i.e. $X = \sum_{j=1}^{n} b_j \frac{\partial}{\partial \theta_j}$ where $b_1, \ldots, b_n \in \mathbf{R}$. On the other hand \mathcal{F}_2 is defined by a closed 1-form $\alpha = \sum_{j=1}^n b'_j d\theta_j + \alpha'$, where $b'_1, \ldots, b'_n \in \mathbf{R}$ with $\sum_{j=1}^n b_j b'_j = 1$ and α' is the pull-back of a closed 1-form defined on the quotient of \mathbf{T}^n by the closures of the orbits of X.

If all the leaves of \mathcal{F}_2 are compact, consider an embedded curve $\tau: S^1 \to M$ transverse to \mathcal{F}_2 and cutting each of its leaves once. Then \mathcal{F}_1 is describes by its value on τ . Indeed given a vector field X' along τ , transverse to \mathcal{F}_2 , the parallel translation along the leaves of this foliation gives rise to a vector field X on \mathbf{T}^n , which defines a foliation \mathcal{F}_1 . Suppose that X is never tangent to \mathcal{F}_2 ; then \mathcal{F}_1 and \mathcal{F}_2 are T.F. if and only if X is \mathcal{F}_2 -foliate.

4. The non-trivial holonomy case. In this section we assume that \mathcal{F}_2 has at least a leaf with non-trivial holonomy. Given natural numbers $j_1 = 1 < j_2 < \ldots < j_\ell$ let $M_{1j_2\ldots j_\ell}$ be the set of all the points $p \in M$ for which the following property holds: there exist $t_0 \in \mathbf{R}$ and an affine coordinate system, defined around p, such that the curve $\gamma(t) = (t, t^{j_2}, \ldots, t^{j_\ell}, 0, \ldots, 0)$ describes \mathcal{F}_1 at $\gamma(t_0) = p$. By construction $M_{1j_2\ldots j_\ell}$ is an \mathcal{F}_2 -saturated open set. Besides $\partial M_{1j_2\ldots j_\ell} = \emptyset$, i.e. either $M_{1j_2\ldots j_\ell} = \emptyset$ or $M_{1j_2\ldots j_\ell} = M$.

Indeed, if $\partial M_{1j_2...j_{\ell}} \neq \emptyset$ it contains a minimal set. Therefore, by reasoning as before, the boundary of $M_{1j_2...j_{\ell}}$ contains a leaf H of \mathcal{F}_2 with non-trivial holonomy. By Proposition 1 there exist natural numbers $r_1 = 1 < r_2 < \ldots < r_k$ such that $H \subset M_{1r_2...r_k}$.

LEMMA 5. Consider, on \mathbf{R}^n , the curves $\gamma(t) = (t, t^{j_2}, \ldots, t^{j_\ell}, 0, \ldots, 0)$ and $\lambda(t) = (t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0)$ where $1 < j_2 < \ldots < j_\ell$ and $1 < r_2 < \ldots < r_k$. Suppose that there exists an affine transformation $A : \mathbf{R}^n \to \mathbf{R}^n$ and a non-empty open interval I such that $A(\gamma(I)) \subset \lambda(\mathbf{R})$. Then $\ell = k$ and $j_i = k_i, i = 2, \ldots, \ell$.

Now Lemma 5 says us that $H \subset M_{1j_2...j_{\ell}}$ so $H \cap \partial M_{1j_2...j_{\ell}} = \emptyset$, contradiction.

We have assumed that \mathcal{F}_2 has non-trivial holonomy; therefore by Proposition 1 there exist natural numbers $r_1 = 1 < r_2 < \ldots < r_k$, a point $p_0 \in M_{1r_2...r_k}$ and an affine coordinate system, defined around this one, such that the curve $\gamma(t) = (t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0)$ describes \mathcal{F}_1 at $p_0 = \gamma(0)$. Moreover $M = M_{1r_2...r_k}$.

First case: Function $s: M \to \mathbf{N}$ is constant. Then s(M) = k and $r_i = i, i = 2, ..., k$ since $p_0 = \gamma(0)$ for some p_0 . It is easily seen that given $a \in \mathbf{R}^+$ and $b \in \mathbf{R}$ there exists an affine transformation A of \mathbf{R}^n , preserving the orientation such that $A(\gamma(t)) =$ $\gamma(at+b)$, i.e. all the points of γ are affinely equivalent on \mathbf{R}^n . Therefore for each $p \in M$ we can find affine coordinates, defined around this point, on which the curve $\gamma(t) =$ $(t, t^2, \ldots, t^k, 0, \ldots, 0)$ describes \mathcal{F}_1 at $\gamma(0) = p$.

In Example (d) and the second part of Example (f) (set $r_j = j$), \mathcal{F}_2 has one minimal set if $n \geq 3$ and two minimal sets if n = 2; they are compact leaves. In Example (g) the only minimal set of \mathcal{F}_2 is M itself.

On the other hand, as \mathcal{F}_2 has a transverse affine structure (Theorem 2), if the fundamental group of M is Abelian then the minimal sets of \mathcal{F}_2 are just the compact leaves (see [4] and [9]).

Second case: Function $s: M \to \mathbf{N}$ is not constant. Consider the curve $\gamma(t) = (t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0)$ and for each $a \in \mathbf{R} - \{0\}$ the affine transformation of \mathbf{R}^n : $A_a(x) = (ax_1, a^{r_2}x_2, \ldots, a^{r_k}x_k, x_{k+1}, \ldots, x_n)$. Then $A_a(\gamma(t)) = \gamma(at)$; so all the points of γ , unless the origin, are affinely equivalent and they have the same number of linearly independent successive derivatives, which equals k. Set $M' = s^{-1}(k)$. Then:

1) $k < r_k$, and s(p) < k if $p = \gamma(0)$. Moreover s(M - M') is the first natural number i such that $i + 1 < r_{i+1}$.

2) M - M' is transversely finite; therefore it is the union of a finite number of compact leaves of \mathcal{F}_2 , each of them with non-trivial holonomy (Corollary 1.1).

3) The leaves of \mathcal{F}_2 contained in M' have trivial holonomy (because s(p) < k if $p = \gamma(0)$) and M' does not contain any minimal set.

Besides around every point $p \in M$ we can find affine coordinates on which the curve $\gamma(t) = (t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0)$ describes \mathcal{F}_1 at p, where $p = \gamma(1)$ if $p \in M'$ and $p = \gamma(0)$ if $p \notin M'$.

Finally remark that the affine transformations of \mathbf{R}^n sending a non-empty open interval of the curve $\gamma(t) = (t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0)$ on a subset of $\gamma(\mathbf{R})$ are the transformations A_a defined before. As $A_a(\gamma(t)) = \gamma(at)$ the parameter t gives rise to an affine structure on each leaf of \mathcal{F}_1 , and a transverse affine structure of \mathcal{F}_2 because \mathcal{F}_1 and \mathcal{F}_2 are T.F. Moreover the holonomy of this affine transverse structure is a group of homotheties with the same center. This implies that on each connected component of M' either all the leaves of \mathcal{F}_2 are locally dense or all of them are proper. Even more this proves, in another way, that \mathcal{F}_2 has almost no holonomy, i.e. only the compact leaves have non-trivial holonomy (Theorem 7 of [9], see [4] as well).

In short:

THEOREM 4. If \mathcal{F}_2 has non-trivial holonomy and function $s: M \to \mathbf{N}$ is not constant then:

(I) $s(M) = \{\ell_1, \ell_2\}$ where $\ell_1 < \ell_2$.

(II) \mathcal{F}_2 has a transverse affine structure whose holonomy is group of homotheties of **R** with a common center.

(III) \mathcal{F}_2 has almost no holonomy; moreover $s^{-1}(\ell_1)$ is the union of all compact leaves of this foliation (a finite number).

Although there exist codimension one foliations with a transverse affine structure and exceptional minimal sets (see [6]), I do not know any example of translation foliations where \mathcal{F}_2 has an exceptional minimal set. Obviously in such a case $s: M \to \mathbf{N}$ has to be constant.

EXAMPLE. Suppose that $M = S^1 \times S^m$, $m \ge 2$. Then \mathcal{F}_2 has non-trivial holonomy and its minimal sets are compact leaves.

Indeed, by Theorem 3 if \mathcal{F}_2 has trivial holonomy, as $H^1(S^1 \times S^m, \mathbf{R}) = \mathbf{R}$, then \mathcal{F}_2 is defined by a fibration $\pi : S^1 \times S^m \to S^1$. Therefore each leaf of \mathcal{F}_2 is simply connected because the homotopy sequence. On the other hand (see Section 3) every leaf has an affine structure and, by parallel displacement, we may construct a parallel non-singular 1-form α on it. Obviously $d\alpha = 0$. So $[\alpha] \neq 0$ and the leaf is not simply connected, *contradiction*.

A transverse affine structure S of \mathcal{F}_2 gives rise, through the local \mathcal{F}_2 -foliate vector fields which are tangent to \mathcal{F}_1 , to an affine structure on each leaf of \mathcal{F}_1 . When all these structures are complete we will say that S is complete (with respect to \mathcal{F}_1).

Let us call $\nabla(\mathcal{S})$ the connection on \mathcal{F}_1 associated to \mathcal{S} .

For example in the case of Theorem 3 the transverse affine structure S_1 associated to X is complete because $\nabla(S_1)_X X = 0$. On the other hand the transverse affine structure S_2 built up from the property that s(M) = k is complete iff $a_{k-1} = 0$, i.e. if and only if $S_1 = S_2$.

THEOREM 5. Assume that \mathcal{F}_2 has a complete transverse affine structure \mathcal{S} . If the holonomy of \mathcal{F}_2 is not trivial then all its leaves are dense (therefore the function $s : M \to \mathbf{N}$ is constant).

Proof. Let \widetilde{M} be the universal covering of M. Then the structure $(M, \mathcal{F}_1, \mathcal{F}_2)$ can be seen as the quotient of a structure $(\widetilde{M}, \widetilde{\mathcal{F}}_1, \widetilde{\mathcal{F}}_2)$ of the same kind (i.e. \widetilde{M} is an affine manifold and $\widetilde{\mathcal{F}}_1$ and $\widetilde{\mathcal{F}}_2$ are T.F.) by the action of a group G, isomorphic to the fundamental group of M, which operates properly discontinuously. Denote by $\pi : \widetilde{M} \to M$ the canonical projection. Since \mathcal{F}_2 is transversely orientable and has a transverse affine structure, there exist an $\widetilde{\mathcal{F}}_2$ -basic submersion $\varphi : \widetilde{M} \to \mathbf{R}$ and a morphism $\rho : G \to \mathrm{Aff}^+(\mathbf{R})$ such that $\varphi(g \cdot p) = \rho(g) \cdot \varphi(p)$ for any $g \in G$ and $p \in \widetilde{M}$ (see [4]).

Let X be the vector field on M, tangent to \mathcal{F}_1 , such that $\varphi_*(X) = \partial/\partial t$. If $\gamma(t)$ is an integral curve of X then $\pi(\gamma(t))$ is a geodesic of $\nabla(\mathcal{S})$. Therefore X is complete; consequently the fibration $\varphi: \widetilde{M} \to \mathbf{R}$ is a product and each $\varphi^{-1}(t)$ is a leaf of $\widetilde{\mathcal{F}}_2$.

We can suppose, without loss of generality, that the leaf $\pi(\varphi^{-1}(0))$ has non-trivial holonomy: so there exists 0 < a < 1 such that the map $t \to at$ belongs to $\rho(G)$.

First assume that $\rho(G)$ contains some translation. Then for each $t_0 \in \mathbf{R}$ the set $\rho(G)(t_0)$ is dense. As $\varphi : \widetilde{M} \to \mathbf{R}$ is a product, $\pi(\varphi^{-1}(\rho(G)(t_0)))$ is a dense leaf of \mathcal{F}_2 . But all the leaves of this foliation can be written in this way, so they are dense.

If $\rho(G)$ does not contain any translation then it is a group of homotheties with center $0 \in \mathbf{R}$. Moreover \mathcal{F}_2 has only a minimal set: the compact leaf $\pi(\varphi^{-1}(0))$, and every leaf of \mathcal{F}_1 intersects $\pi(\varphi^{-1}(0))$ just once. Let us choose the orientation of \mathcal{F}_1 whose pull-back by π equals that given by X on $\widetilde{\mathcal{F}}_1$. If L is a leaf of \mathcal{F}_1 then its α -limit is contained in the closed set $\pi(\varphi^{-1}([0, +\infty)))$. Therefore no leaf of this α -limit cuts $\pi(\varphi^{-1}(0))$, contradiction.

Remark. We recall that if the holonomy of \mathcal{F}_2 is not trivial then this foliation at most has one transverse affine structure (see [4] and [9]).

COROLLARY 5.1. Suppose that the affine manifold (M, ∇) is complete. If \mathcal{F}_2 has nontrivial holonomy then each of its leaves is dense (therefore $s : M \to \mathbf{N}$ is constant).

Proof. Now the affine manifold \widetilde{M} can be regarded as \mathbb{R}^n endowed with the canonical affine structure. Then every leaf \widetilde{L} of $\widetilde{\mathcal{F}}_1$ may be written, in suitable affine coordinates, in the form $\{(t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0) \mid t \in \mathbb{R}\}$. Indeed, \widetilde{L} locally is a pseudo-parabola and it has no ends on this curve because is a leaf.

Let S be the transverse affine structure of \mathcal{F}_2 constructed before (see Theorems 2 and 4). Set $\gamma(t) = (t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0), t \in \mathbf{R}$. If $\{(t, t^{r_2}, \ldots, t^{r_k}, 0, \ldots, 0) \mid t \in \mathbf{R}\}$ is a leaf of $\widetilde{\mathcal{F}}_1$ then it is easily seen that $\pi(\gamma(t))$ is a geodesic of $\nabla(S)$. Therefore S is complete. \blacksquare

References

- R. Brouzet, P. Molino and F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. (N.S.) 4(3) (1993), 269-296.
- [2] G. Châtelet and H. Rosenberg, *Manifolds which admit* \mathbf{R}^n actions, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 245–260.

F. J. TURIEL

- [3] G. Darboux, Leçons sur la Théorie générale de Surfaces, Gauthier-Villars, Paris.
- [4] C. Godbillon, Feuilletages: études géométriques, Progr. Math. 98, Birkhäuser, 1991.
- [5] I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and Bihamiltonian systems, J. Funct. Anal. 99 (1991), 150-178.
- [6] G. Hector, Quelques exemples de feuilletages-Espèces rares, Ann. Inst. Fourier (Grenoble) 26(1) (1976), 239–264.
- [7] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B, Aspects Math. E3, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1987.
- [8] R. Sacksteder, Foliations and pseudo-groups, Amer. J. Math. 87 (1965), 79-102.
- B. Seke, Sur les structures transversalement affines des feuilletages de codimension un, Ann. Inst. Fourier (Grenoble) 30(1) (1980), 1–29.