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I. Introduction. It is natural to relate the center problem for polynomial planar vec-
tor fields ([F-P], [F-Po], [Z1], [Z2]) to normal form theory. Our purpose in this conference
is to provide an extension to 2m-dimensional vector fields (m > 1) of the center problem.
We use normal form theory and methods of analytic geometry (Artin’s approximation
theorem [A], [P] and Gabrielov theorem [Ga]).

The center problem calls for finding the necessary and sufficient conditions for which
a polynomial planar vector field, tangent to rotation at the origin, has all its orbits
periodic in a neighborhood of this point. In such a case, the vector field is said to be a
center. This problem is solved for quadratic vector fields (cf. [D], [F-Po], [Z1], [Z2]) and
cubic vector fields with homogeneous nonlinearities (cf. [F-Po], [Z1], [Z2]). For m > 1,
we need to distinguish between formal centers and analytic centers. We show that the
set of polynomial vector fields with a formal center is an algebraic set and we give a
characterization of the analytic centers.

The methods that we introduce here can be useful also in the study of Hamiltonian
systems. We show for instance that the set of polynomial integrable Hamiltonian systems
(of fixed degree) tangent to a rotation and such that the frequencies do not depend on
the initial conditions (called the harmonic set here) is a real algebraic set. Let us now
state more precisely our results and notations.

Let X be a germ of analytic vector field at 0 ∈ R2m with a linear part (multi-rotation):

j1(X) =
m∑

i=1

λi

(
xi

∂

∂yi
− yi

∂

∂xi

)
.
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Let us assume that the coefficients λ = (λ1, . . . , λm) ∈ Rm are independent over Z:

(∗) If 〈λ, α〉 =
m∑

i=1

λiαi = 0, α = (α1, . . . , αm) ∈ Zm, then α = 0.

Definition. We say that X is an analytic center if X has m analytic first integrals
(f1, . . . , fm) which are tangent at the origin to (x2

1 + y2
1 , . . . , x

2
m + y2

m) up to the order
three.

We show the following

Theorem 1. If the vector field X is an analytic center then there are germs of analytic
coordinates x̃ = (x̃1, . . . , x̃m), ỹ = (ỹ1, . . . , ỹm) such that the vector field X preserves the
functions p1 = x̃2

1 + ỹ2
1 , p2 = x̃2

2 + ỹ2
2 , . . . , pm = x̃2

m + ỹ2
m.

Definition. We say that X is a formal center if X has m formal first integrals
(f̂1, . . . , f̂m) which are tangent to (x2

1 + y2
1 , . . . , x

2
m + y2

m) up to the order three.

Let X be a polynomial vector field on R2m:

X =
m∑

i=1

[
λi

(
xi

∂

∂yi
− yi

∂

∂xi

)
+

∑
2≤|α|+|β|≤d

fi;α,βx
αyβ ∂

∂xi
+ fi+m;α,βx

αyβ ∂

∂yi

]
,

where α = (α1, . . . , αm), β = (β1, . . . , βm) are multi-indices of length |α| = α1 + . . .+αm,
|β| = β1 + . . .+ βm, and where xα, yβ stand for xα = xα1

1 · · ·xαm
m , yβ = yβ1

1 · · · yβm
m .

We denote more shortly as f the finite collection of all the coefficients fi;α,β and
fi+m;α,β . The integer d is called the degree of X. A polynomial vector field of degree less
than d can be seen as a point f of a finite dimensional vector space F .

Obviously, any element of F defines a unique germ of analytic vector field at 0 ∈ R2m

of the type that we have previously considered.

Theorem 2. The set C of elements of F which have a formal center at 0 ∈ R2m is
algebraic.

Let us denote by Z the set of elements of F which have an analytic center at 0 ∈ R2m.
If m = 1 then, by a theorem of B. Malgrange ([M]), Z = C. If m = 1 and d = 2,

H. Dulac ([D]) gave explicitly the equations of the algebraic set C. The structure of C
is nevertheless not so simple and Żo la̧dek has recently given a complete description of it
([Z1], [Z2]). It seems much harder to do it if d > 2.

If m > 1, a well known theorem of C. L. Siegel [S] shows that Z 6= C.
The basic tool we use to show Theorem 2 is the theory of formal normal forms for

finite dimensional families of vector fields. In the Hamiltonian case, this normal form is
better known as the Birkhoff normal form.

II. Proof of Theorem 1.

II.1. The normal form. We review some of the standard facts on normal form theory.
Let X be a germ of analytic vector field at 0 ∈ R2m with a linear part

j1(X) =
m∑

i=1

λi

(
xi

∂

∂yi
− yi

∂

∂xi

)
, with the condition (∗),
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then there exists a formal coordinate system (x′i, y
′
i) (i = 1, . . . ,m) such that

X =
m∑

i=1

[
Ai

(
x′i

∂

∂x′i
+ y′i

∂

∂y′i

)
+Bi

(
x′i

∂

∂y′i
− y′i

∂

∂x′i

)]
where the formal seriesAi,Bi (i = 1, . . . ,m) only depend on p′1 = x′1

2+y′1
2, p′2 = x′2

2+y′2
2,

. . . , p′m = x′m
2 + y′m

2.

R e m a r k s.

(i) Such a formal coordinate system is not unique. Any other coordinate system nor-
malizing X is of the form

x′′ = ξi(p′1, . . . , p
′
m) · x′i, y′′ = ηi(p′1, . . . , p

′
m) · y′i, i = 1, . . . ,m.

(ii) Any formal series ψ which is preserved by X (X · ψ = 0) must depend only on
p′1, . . . , p

′
m.

(iii) If m = 1, the theorem entails a formal series p′ = p′1 = x′1
2 + y′1

2 such that

X · p′ = 2p′A1(p′).

The coefficients of A1 are called the Lyapunov-Poincaré coefficients. They all van-
ish if and only if X has a formal first integral p′ and by a theorem of B. Malgrange ([M])
p′ is necessarily analytic.

Note that if one of the Lyapunov-Poincaré coefficients does not vanish then p′ is
not necessarily convergent.

(iv) If X is Hamiltonian relatively to

ω =
m∑

i=1

dxi ∧ dyi,

then there is a formal coordinate system (x′i, y
′
i) (i = 1, . . . ,m) such that

ω =
m∑

i=1

dx′i ∧ dy′i

and

X =
m∑

i=1

[
Bi

(
x′i

∂

∂y′i
− y′i

∂

∂x′i

)]
(namely Ai = 0). This is nothing else than the Birkhoff normal form of X.

II.2. Simplification of the analytic integrals. We prove now Theorem 1.

P r o o f. (Compare to ([V]) for Hamiltonian systems.) We consider a formal coordinate
system (x′i, y

′
i) in which X is in a normal form. We see that (f1, . . . , fm) are necessarily

functions of
p′1 = x′1

2 + y′1
2
, . . . , p′m = x′m

2 + y′m
2
.

Let Σ be the analytic set defined as the critical locus of f1, . . . , fm:

Σ = {(x, y)/df1 ∧ . . . ∧ dfm = 0}.
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The analytic equations of the critical locus have formal solutions x′i = y′i = 0. Artin’s
approximation theorem ([A]) yields analytic coordinates (xi, yi) (i = 1, . . . ,m) so that
Σ =

⋃
i

Σi,

Σi = {(x, y)/xi = yi = 0}.

We consider now the analytic function fi restricted to the analytic set Σi. The set Σi

is alternatively given by the formal equations x′i = y′i = 0. Each function fj (j 6= i) is
tangent to x′j

2 + y′j
2 and

fi = fi(p′1, . . . , p
′
m).

In restriction to Σi this entails a formal relation φ̂i between the fj (j = 1, . . . ,m)

fi = φ̂i(f1, . . . , f̂i, . . . , fm).

By a theorem of Gabrielov [Ga], it yields an analytic relation on Σi

fi = φi(f1, . . . , f̂i, . . . , fm).

We now define the analytic functions

gi = fi − φi(f1, . . . , f̂i, . . . , fm).

Note that they vanish identically on the set Σi.
In restriction to Σi, we have

d(fi|Σi) =
∑
j 6=i

∂φi

∂yj
d(fj |Σi).

But on Σi, there must be a linear relation between dfi and dfj (j 6= i). On Σi, the
functions fj (j 6= i) are generically independent. Thus the only possible relation is

dfi =
∑
j 6=i

∂φi

∂yj
dfj

and we conclude that gi is critical on Σi.
If we use the analytic coordinates (xi, yi), we have obtained that

gi = x2
i + y2

i + . . .

is zero and critical on xi = yi = 0.
The Morse lemma with parameters easily implies the existence of analytic coordinates

(x̃i, ỹi) such that
gi = x̃2

i + ỹ2
i

and the result of the theorem follows.

III. Proof of Theorem 2.

III.1. The normal form with parameters. Let X be a polynomial vector field

X =
m∑

i=1

[
λi

(
xi

∂

∂yi
−yi

∂

∂xi

)
+

∑
2≤|α|+|β|≤d

fi;α,βx
αyβ ∂

∂xi
+

∑
2≤|α|+|β|≤d

fi+m;α,βx
αyβ ∂

∂yi

]
.
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If the coefficients (λ1, . . . , λm) satisfy condition (∗), then there exists a formal coordinate
system (x′i, y

′
i) (i = 1, . . . ,m) such that

X =
m∑

i=1

Ai

(
x′i

∂

∂x′i
+ y′i

∂

∂y′i

)
+Bi

(
x′i

∂

∂y′i
− y′i

∂

∂x′i

)
where the formal series Ai, Bi (i = 1, . . . ,m) only depend on

p′1 = x′1
2 + y′1

2
, . . . , p′m = x′m

2 + y′m
2
.

Proposition III.1. The formal coordinate system (x′i, y
′
i) (i = 1, . . . ,m) can be cho-

sen so that the coefficients of the formal series (Ai, Bi) are polynomial functions of the
coefficients

f = (fi;α,β , fi+m;α,β).

This proposition extends the fact that, for m = 1, the Lyapunov-Poincaré coefficients
are polynomial functions of the coefficients of the vector field.

P r o o f. It is more convenient to use the complex coordinates

zi = xi +
√
−1 yi, zi = xi −

√
−1 yi

and to write the vector field as

X =
m∑

i=1

[√
−1λi

(
zi

∂

∂zi
− zi

∂

∂zi

)
+

∑
2≤|α|+|β|≤d

gi;α,βz
αz−β ∂

∂zi
+ gi+m;α,βz

αz−β ∂

∂zi

]
A formal coordinate system (x′i, y

′
i) (or alternatively z′i, z

′
i) can be produced by induction

as follows. The system must be so that

X · z′i = z′iψi, X · z′i = z′iψi

where ψi = Ai +
√
−1Bi is a function of

p′1 = z′1 · z′1, . . . , p′m = z′m · z′m.

The k-jet of z′j can be obtained inductively from the k− 1-jet by an equation of the form
n∑

i=1

λi

(
zi

∂

∂zi
− zi

∂

∂zi

)
· z′j

(k) = Θj

where Θj is known and depends polynomially of the coefficients f .
Let us denote by Pk the set of polynomial functions in (z1, . . . , zm; z1, . . . , zm) and f ,

of degree less than k in (z, z).
Let j1(X) : Pk → Pk be the mapping induced by the derivative along the vector field:

j1(X) =
∑m

i=1 λi

(
zi

∂
∂zi

− zi
∂

∂zi

)
.

Given G ∈ Pk, there is a unique decomposition

G = N +R

where N =
∑

αNα(F )pα belongs to the kernel of j1(X) and R =
∑

α,β
α6=β

Rαβ(f)zαzβ

belongs to the image of j1(X).
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N contributes to the normal form and we can write

R = j1(X) · F with F =
∑
α6=β

Rαβ(f)
α− β

zαzβ

which contributes to the change of coordinates.
We easily get the result of the proposition since at each step of the induction process

the coefficients of the polynomials depend polynomially of the coefficients f .

III.2. The ideal of the coefficients of the normal form. We have already noticed that
the normalizing transformation is not unique, we prove now

Lemma III.2.1. The ideal , generated by the coefficients of ψi = Ai +
√
−1Bi, in the

ring C[f ] of polynomials in the coefficients f , is independent of the normalizing transfor-
mation.

P r o o f. From the previous remark ((i) in II.1), we deduce, given another normalizing
coordinate system (z′′i , z

′′
i ), that we have

z′′i = χi(p′1, . . . , p
′
m)z′i

z′′i = χi(p
′
1, . . . , p

′
m)z′i

so that
X · z′′i = ψi · χiz

′
i = ψiz

′′
i .

This yields

X =
∑

i

ψ′′i

(
z′′i

∂

∂z′′i
− z′′i

∂

∂z′′i

)
with

ψ′′i = ψi ◦ T

where

T : Rm
+ → Rm

+

T : (p′1, . . . , p
′
m) 7→ (p′′1 , . . . , p

′′
m) = (p′1|ψ1|2, . . . , p′m|ψm|2).

We get now

Proposition III.2.2. The ideal generated by the coefficients of the real power series
(A) (resp. (B)) is independent of the choice of the normalizing transformation.

P r o o f. The coefficients Ai (resp. Bi) are the real parts (resp., imaginary parts) of
ψi. It is obvious that the ideal generated by the coefficients of ψ ◦ T is contained in the
ideal generated by the coefficients of ψ. But T is invertible and so it is clear that the
ideal does not depend of the normalizing transform.

III.3. The center set and the harmonic set.

Definition III.3.1. The set of f such that A(f) = 0 is called the center set. It is
denoted by C. The elements of C have a formal center at the origin.

The set of f such that B(f) = 0, is called the harmonic set.

We now prove Theorem 2.
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P r o o f. f is a formal center if and only if X has m formal first integrals which are
tangent to x2

1 + y2
1 , . . . , x

2
m + y2

m. They are necessarily functions of p′1, . . . , p
′
m and so

X · p′1 = . . . = X · p′m = 0 and A(f) = 0. The set C is exactly given by the zero-set of the
ideal generated by the coefficients of A.

Theorem 2 is a generalization of a theorem of H. Dulac ([D]) for planar vector fields.
We observe now that the harmonic set is the zero set of the ideal generated by the

coefficients of B and so it is an algebraic set.
This set is of particular interest in the case of Hamiltonian systems.

IV. Application to Hamiltonian systems. We have already observed that in the
Hamiltonian case A(f) = 0. (The Hamiltonian vector fields are contained in the center
set C.) J. Vey ([V]) proved that a Hamiltonian vector field in F has an analytic center if
and only if it is analytically conjugated to its Birkhoff normal form.

Let us consider a Hamiltonian vector field X in Z. It is well known that X has
invariant tori p1 = c1, . . . , pm = cm on which the vector field X is linear.

The values λ1 +B1(c), . . . , λm +Bm(c) are the frequencies of X on the corresponding
tori.

Definition IV.1.We say that X is harmonic if all the frequencies of X are constants
independent of the invariant tori (and so equal to λ).

It is sometimes interesting to detect in parameter families of Hamiltonian systems
those which are harmonic. For instance on a Riemannian manifold, it is interesting to
find the metrics which are of Zoll type ([G]). We obtain as a corollary of our analysis:

Corollary. In the set of Hamiltonian systems contained in Z, the conditions for
which X is harmonic are algebraic.

References

[A] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291.
[B] N. N. Bautin, On the number of limit cycles which appear with the variation of coef-

ficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl.
Ser. 1, 5 (1962), 336–413. Translated from: Mat. Sbornik N.S. 30 (1952), 181–196.
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