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Abstract. Given an abelian k-linear rigid monoidal category V, where k is a perfect field,
we define squared coalgebras as objects of cocompleted V⊗ V (Deligne’s tensor product of ca-
tegories) equipped with the appropriate notion of comultiplication. Based on this, (squared)
bialgebras and Hopf algebras are defined without use of braiding. If V is the category of k-vector
spaces, squared (co)algebras coincide with conventional ones. If V is braided, a braided Hopf
algebra can be obtained from a squared one.

Reconstruction theorems give equivalence of squared co- (bi-, Hopf) algebras in V and corre-
sponding fibre functors to V (which is not the case with the usual definitions). Finally, squared
quasitriangular Hopf coalgebra is a solution to the problem of defining quantum groups in braided
categories.

Introduction. Classical reconstruction theorem (e.g. Saavedra [7, Section 2.3.2.1])

asserts that a k-coalgebra can be reconstructed from the underlying functor from its

category of comodules to vector spaces. Saavedra [7, Section 2.6.3 a)] and later Schauen-

burg [8] also prove that an essentially small abelian k-linear category equipped with an

exact faithful functor ω to the category of finite dimensional k-vector spaces is equivalent

to the category of finite dimensional comodules over some k-coalgebra. A direct attempt

to generalise these results replacing the category of vector spaces by an abelian k-linear

rigid monoidal category V fails. For instance, the category of comodules over the coalge-

bra constructed from ω is bigger than the initial category (precise results are formulated

by Pareigis [6]). However, if one modifies the definitions of coalgebras and comodules

in a monoidal category, the reconstruction theorem will be recovered. This is the main

conclusion of this work.
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The new notion will be called a squared coalgebra. The monoidal version of the

reconstruction theorem dictates the definition of a squared bialgebra. Squared Hopf

(co)algebras based on V can be also defined, even if V is not braided, but satisfies a

much weaker condition! If V is braided, a squared Hopf (co)algebra determines a braided

Hopf algebra, but not vice versa. Finally, squared quasitriangular Hopf coalgebra is a

solution to the problem of defining quantum groups in braided categories.

All definitions are based on the notion of tensor product of abelian categories given

by Deligne [1]. The squared notions (coalgebras, bialgebras, Hopf algebras) are objects

of the cocompleted tensor square of the initial category V, whence the terminology. The

structure maps – comultiplication, multiplication etc. – are morphisms in tensor powers

of V. The associativity and other properties mean equality of two composite morphisms

in tensor powers of V.

More precisely, we use the cocompletions of tensor powers of V, where the cocom-

pletion of an abelian k-linear category A with finite dimensional k-spaces of morphisms

always means the category Â = ind−A, made of filtered inductive limits of objects of

A. If A is essentially small, Â is equivalent to the category Homk,l.e.(A
op,k -vect) of left

exact functors Aop → k -vect. (See Grothendieck and Verdier [3].)

We assume that k is a perfect field.

Let us recall the reconstruction theorem in details. If ω : C → k -vect is a faithful

exact k-linear functor and C is essentially small, then there is an equivalence F of C with

the category of C-comodules, where C is the k-coalgebra

C =

∫ X∈C
ω(X)⊗k ω(X)∗,

and ω is isomorphic to the composite of F and the underlying functor U : C -comod →
k -vect. When k -vect is replaced by an abelian k-linear rigid monoidal category V with

finite dimensional spaces HomV(-, -) such that End I = k (I is the unit object) and each

object has finite length, a version of reconstruction theorem holds, although F is no

longer an equivalence. It turns out that by modifying the definitions of coalgebras and

comodules one can make F into an equivalence, thus recovering the original form of the

theorem. Namely, instead of the coalgebra in V̂

C̄ =

∫ X∈C
ω(X)⊗ ω(X)∨, (1)

one can use the squared coalgebra

C =

∫ X∈C
ω(X)� ω(X)∨ ∈ V̂⊗ V, (2)

where � : V× V→ V⊗ V is the canonical functor of exterior tensor product.

To explain the definition of a squared coalgebra, we recall that the tensor product

functor ⊗ : V×V→ V can be decomposed as V×V �−→ V⊗V ~−→ V up to an isomorphism.

Using the functor � and the diagonal restriction functor ~ we can construct various

objects like C13�I2 ∈ V̂⊗3 (I is the unit object and the subindices indicate the tensorands

to which an object is placed), or like C12′ ⊗C2′′3 ∈ V̂⊗3 (this is the result of applying ~
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on the second and third places to C12 � C34 ∈ V̂⊗4), or like C1′1′′ = ~C ∈ V̂ (the dash

and the double dash indicate the order of multiplicands) etc. Notice that ~ applied to

(2) gives (1).

The reader is advised to consider the example V = H -comod (finite dimensional H-

comodules) throughout this work, where H is a Hopf k-algebra. Then V̂ = H -Comod (all

H-comodules), V⊗n = H⊗n -comod, V̂⊗n = H⊗n -Comod. The functor � : V×V→ V⊗V

sends a pair of H-comodules (X,Y ) to the H ⊗k H-comodule X ⊗k Y (exterior tensor

product of comodules) and the diagonal restriction functor ~ : V ⊗ V → V sends an

H ⊗k H-comodule to an H-comodule via the homomorphism of coalgebras m : H ⊗k
H → H – the multiplication. Thus, given an H ⊗k H-comodule C with the coaction

δ : c 7→ c(1)⊗ c(2)⊗ c(3) ∈ H ⊗kH ⊗k C we get the H⊗3-comodule C13� I2 = (C, δ : c 7→
c(1) ⊗ 1 ⊗ c(2) ⊗ c(3) ∈ H⊗3 ⊗k C), the H⊗3-comodule C12′ ⊗ C2′′3 = (C ⊗k C, c ⊗ d 7→
c(1) ⊗ c(2)d(1) ⊗ d(2) ⊗ c(3) ⊗ d(3) ∈ H⊗3 ⊗k C

⊗2), the H-comodule ~C = (C, δ : c 7→
c(1)c(2) ⊗ c(3) ∈ H ⊗k C) etc.

Now we may define a squared coalgebra as an object C ∈ V̂⊗ V equipped with the

comultiplication ∆123 : C13 � I2 → C12′ ⊗ C2′′3 and the counit ε : C1′1′′ → I1, which

satisfy the coassociativity axiom (an equation in V̂⊗4, see (2.1.1)) and two axioms for the

counit (equations (2.1.2a)-(2.1.2b) in V̂⊗2). A C-comodule is an object X ∈ V equipped

with the coaction δ : X1 � I2 → C12′ ⊗ X2′′ ∈ V̂⊗2, which is coassociative (equation

(2.2.1) in V̂⊗3) and counital (equation (2.2.2) in V̂⊗2). It turns out that for any object

Y ∈ V the object Y � Y ∨ ∈ V ⊗ V has the canonical structure of a squared coalgebra

and Y is a comodule over it. We deduce that the coend (2) is a squared coalgebra as

well. Moreover, the second part of the reconstruction theorem claims that any squared

coalgebra is isomorphic to a coalgebra of the form (2).

Thus, the full form of the reconstruction theorem asserts equivalence of the following

two categories: the category of k-linear exact faithful functors from an essentially small

category to V and the category of squared coalgebras in V. Philosophically, categories

over the category V are fully encoded in terms of coalgebras living in V (in fact, in V̂⊗ V)

and vice versa. Comparing the category of comodules CV over a squared coalgebra C and

the category of comodules C̄V over the ordinary coalgebra (comonoid) C̄ = ~C we get
C̄V = CV⊗V. That is expected from the description of the coend reconstructed from the

functor C̄V→ V given by Pareigis [6] in the case V = H -comod for a Hopf algebra H.

The monoidal version of the reconstruction theorem also holds. Namely, the category

of monoidal k-linear exact faithful functors ω : C → V (C is essentially small) and the

category of squared bicoalgebras in V are equivalent. A squared bicoalgebra is defined as

an object of V̂⊗ V having the structure of a squared coalgebra and of an algebra in the

monoidal category V̂⊗ V with compatibility axioms which require that the multiplication

and the unit were homomorphisms of coalgebras. (There are several monoidal structures

in V̂⊗ V and we chose a special one.)

The dual notion, squared bialgebras, is defined as a squared algebra structure plus a

coalgebra structure in V̂⊗ V with compatibility axioms. Unlike the case of vector spaces

the notion of squared bicoalgebra is not self-dual, so it has to be distinguished from

squared bialgebras. The choice of terminology is motivated by our primary interest in
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comodules rather than in modules. We shall simplify it further dropping the adjective

squared and keeping the term bicoalgebra.

Notice that a braiding in V is not required for work with bicoalgebras. However, if V

is braided any bicoalgebra B generates a braided bialgebra ~B in V. Not every braided

bialgebra comes from a bicoalgebra in that way.

To introduce Hopf algebras we require that the second dual X∨∨ of an object X ∈ V

were isomorphic to X via a functorial isomorphism ζ = ζX : X → X∨∨. Obviously,

this condition is weaker than existence of braiding. Given a squared coalgebra C in such

V, one can define the opposite coalgebra Cop. A (squared) Hopf coalgebra is defined as

a bicoalgebra H together with an isomorphism γ : Hop → H ∈ V̂⊗ V – the antipode

– satisfying two equations in V̂⊗ V. The reason for introducing Hopf coalgebras is the

following: the category of comodules over a Hopf coalgebra is rigid and the rigid version

of the reconstruction theorem holds: the category of monoidal k-linear exact faithful

functors ω : C → V, where C is rigid monoidal (and essentially small), and the category

of Hopf coalgebras in V are equivalent. The dual notion, squared Hopf algebras, is not

equivalent to the notion of Hopf coalgebras.

If, in addition, V is braided, we get the equivalence of the category of monoidal k-

linear exact faithful functors ω : C → V, where C is rigid braided, and of the category

of quasitriangular Hopf coalgebras, appropriately defined. In particular, the category of

comodules over a quasitriangular Hopf coalgebra is braided. This is not trivial, and al-

lows to introduce a non-obvious braiding for the bigger category of comodules over the

braided Hopf algebra ~H. However, it seems impossible, in general, to introduce a braided

structure of any kind for the whole category of comodules over a braided Hopf algebra

not related with Hopf coalgebras. Thus the notion of a quasitriangular Hopf coalgebra is

the closest to the idea of a “quantum group in a braided category”.

In particular, applying the (re)construction theorem to the identity functor Id : V→
V, we get a quasitriangular Hopf coalgebra structure of the coend

C =

∫ X∈V
X �X∨,

and this is the most interesting case for us. Similar notions exist for ribbon categories.

1. Tools

1.1. Tensor product of abelian categories. In this work k will denote a perfect field.

1.1.1. Definition. We say that an abelian k-linear category A is a category with

length if

1. for any pair of objects X,Y ∈ A the k-vector space HomA(X,Y ) is finite dimen-

sional, and

2. any object X ∈ A has finite length.

The most impressive result from the theory of such categories is:

1.1.2. Proposition (Deligne [1] Corollary 2.17). Let A be an abelian k-linear category

with length. Assume that there exists an object X ∈ A such that any object Y ∈ A is a
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subquotient of Xn = X ⊕ . . . ⊕X for some n. Then the category A is equivalent to the

category mod-A for some finite dimensional k-algebra A.

From now on k is a perfect field. We shall remind the definition of a tensor product of

abelian k-linear categories, belonging to Deligne [1], in a modified form, using his results,

valid in assumption of perfectness.

1.1.3. Definition (following Deligne [1] Definition 5.1). Let A1, . . . ,An be k-linear

abelian categories with length. A k-linear abelian category A1⊗ . . .⊗An, equipped with

a k-multilinear, exact in each variable functor

� : A1 × . . .×An → A1 ⊗ . . .⊗An

is called a tensor product of A1, . . . ,An if for each k-linear abelian category A the induced

functor

Homk,r.e.(A1 ⊗ . . .⊗An,A)→ Homk,r.e.(A1 × . . .×An,A), F 7→ F ◦ �

from the category of k-linear right exact functors to the category of k-multilinear right

exact in each variable functors is an equivalence.

1.1.4. R e m a r k. Equivalently, one can use left exact functors in the above definition

(Deligne [1, Proposition 5.13]).

1.1.5. Proposition (Deligne [1] Proposition 5.13). The tensor product of k-linear

abelian categories with length exists and is a category with length. It is unique up to an

equivalence. The functor similar to that of Definition 1.1.3

Homk,e.(A1 ⊗ . . .⊗An,A)→ Homk,e.(A1 × . . .×An,A), F 7→ F ◦ �

with the right exact functors replaced by exact functors is also an equivalence. The natural

map

⊗i Hom(Xi, Yi)→ Hom(�iXi,�iYi)
is an isomorphism.

This follows mainly from:

1.1.6. Proposition (Deligne [1] Proposition 5.3, Corollary 5.4). Let Ai be Ai -mod,

where Ai are finite dimensional k-algebras, 1 6 i 6 n. Then A = A1 ⊗k . . .⊗k An -mod

equipped with the exterior tensor product functor � : (X1, . . . , Xn) 7→ X1 ⊗k . . .⊗kXn is

a tensor product of A1, . . . ,An.

Notice that any category with length A is a filtered inductive limit of its full subcat-

egories of the form 〈X〉 – the full subcategory formed by the objects Y ∈ A, which are

subquotients of Xn for some n. Here X is an object of A. This remark is used together

with Propositions 1.1.2, 1.1.6.

Let A1, . . . ,An,B1, . . . ,Bn be k-linear abelian categories with length and let Ti :

Ai → Bi be k-linear left (resp. right) exact functors. By definition, there exists a k-linear

left (resp. right) exact functor

T = ⊗iTi : ⊗iAi → ⊗iBi, T (�iXi) = �iT (Xi).
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1.1.7. Proposition (Deligne [1] Proposition 5.14). If Ti are exact (resp. exact and

faithful, resp. equivalence of Ai with a full subcategory of Bi stable with respect to sub-

quotients), then T has the same property.

1.2. Monoidal categories. We shall remind only few definitions here. For the developed

introduction see [5].

1.2.1. Definition. A rigid category C is a monoidal category in which for every

object X ∈ C there exist dual objects X∨, ∨X ∈ C and morphisms of evaluation and

coevaluation

ev: X ⊗X∨ → I = ��X X∨, ev: ∨X ⊗X → I = ��∨X X ,

coev: I → X∨ ⊗X =
��

X∨ X
, coev: I → X ⊗ ∨X =

��
X ∨X

,

satisfying standard equations.

In a rigid monoidal category C there is a pairing

(X ⊗ Y )⊗ (Y ∨ ⊗X∨) ∼−→ (X ⊗ (Y ⊗ Y ∨))⊗X∨ →
X⊗ev⊗X∨−−−−−−−→ (X ⊗ I)⊗X∨ rx⊗X∨−−−−−→ X ⊗X∨ ev−→ I,

which induces an isomorphism j+X,Y : Y ∨⊗X∨ → (X⊗Y )∨, such that the above pairing

coincides with

(X ⊗ Y )⊗ (Y ∨ ⊗X∨)
1⊗j+−−−→ (X ⊗ Y )⊗ (X ⊗ Y )∨ ev−→ I.

The equation

coevX⊗Y =
(
I coevY−−−−→ Y ∨ ⊗ Y ' Y ∨ ⊗ I ⊗ Y 1⊗coevX ⊗1−−−−−−−−→

Y ∨ ⊗X∨ ⊗X ⊗ Y j+⊗1−−−→ (X ⊗ Y )∨ ⊗ (X ⊗ Y )
)

also holds. Similarly, there is an isomorphism j−X,Y : ∨Y ⊗ ∨X → ∨(X ⊗ Y ).

There are canonical isomorphisms

X → ∨(X∨), X → (∨X)∨.

To simplify notations we assume the functors -∨ and ∨- inverse to each other (we can

always achieve this replacing the category by an equivalent one). We shall denote the

iterated duals by X(n∨) = X∨...∨ (n times) and X(−n∨) = ∨...∨X (n times) for n > 0.

The graphical notation for the braiding and its inverse is

c = (cX,Y : X ⊗ Y → Y ⊗X) =

Y X

X Y
���� HH

HH , c−1 =

X Y

Y X

H
HH

H

��
�� .
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In a rigid monoidal braided category there are functorial isomorphisms

�
�
X

X∨∨

u2
1 =

�
�
X

X∨∨

, u2
−1 =

�
X

∨∨X

, u−2
1 =

�
X

∨∨X

, u−2
−1 =







J
J

J
J
J

�
�

\
\

\
\
\

�
�� � �� �����

�

�
1.3. Monoidal abelian categories. Let V = (V,⊗, a, I, r, l) be a monoidal abelian ca-

tegory. Then it has a canonical k-linear structure, where k = EndV I is a commutative

ring, I is the unit object. For λ ∈ EndV I, f ∈ HomV(X,Y ) the morphism λf is defined

as (X l−1

−−→ I ⊗ X λ⊗f−−−→ I ⊗ Y l−→ Y ). We assume that V is a rigid monoidal abelian

category with length and the unit object I such that k = End I is a perfect field. Then

the object I is simple.

The tensor product functor X⊗- (resp. -⊗X) has a right adjoint X∨⊗- (resp. -⊗∨X)

and a left adjoint ∨X ⊗ - (resp. -⊗X∨). Therefore, the functor ⊗ : V×V→ V is exact in

each variable and it is k-bilinear by the choice of k-linear structure. By Proposition 1.1.5

there exists a k-linear exact functor ~ : V⊗V→ V called the diagonal restriction functor,

such that ⊗ is isomorphic to the composite

V× V �−→ V⊗ V ~−→ V.

The functors X 7→ X∨, X 7→ ∨X, quasiinverse to each other, are also exact.

1.3.1. Proposition. The functor ~ : V⊗ V→ V is faithful.

1.4. System of notations. The functors � and ~ have their analogues acting between

categories V⊗n and such. There are several isomorphic functors of that kind. We denote

their common value by subindices. So, applying the functor

V⊗n1 × V⊗n2 × V⊗n3 × . . .→ V⊗p

to (A,B,C, . . .) we get Ai1...in1
⊗ Bj1...jn2

⊗ Ck1...kn3
⊗ . . . , where the sign ⊗ may be

changed to � or ~ for purely aesthetical reasons and contains no additional information.

Everything is encoded in terms of indices, which are all distinct and are taken from the

set

{i1, . . . , in1 , j1, . . . , jn2 , k1, . . . , kn3 , . . .}
= {1′, 1′′, 1′′′, . . . , 1m1 , 2′, 2′′, 2′′′, . . . , 2m2 , 3′, . . . , 3m3 , . . . , p′, . . . , pmp}.

The number means the tensorand in V⊗p to which the present tensorand goes, and the

superscripts determine the order in which several terms are tensored to get an object of

V – tensorand from V⊗p. Another way to describe such functor is to give a permutation

from Sn and two partitions n = n1 + n2 + n3 + . . . = m1 +m2 + . . .+mp.

Examples. If X,Y ∈ V, C ∈ V⊗ V then X1′ ⊗ Y1′′ denotes the usual tensor product

of X and Y , X1′′ ⊗ Y1′ is Y ⊗ X. Similarly, C1′1′′ is ~C and C1′′1′ is ~PC, where

P : V⊗ V → V⊗ V is the permutation functor, P (X � Y ) = Y �X. The three objects

X1�C23, X2�C13, C12�X3 of V⊗3 differ by the place where X goes. Applying ~⊗IdV :
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V⊗3 → V⊗2 to X1 �C23 we get X1′ ⊗C1′′2. Applying IdV⊗~ : V⊗3 → V⊗2 to C12 �X3

we get C12′ ⊗X2′′ . The functor IdV⊗~ ⊗ IdV : V⊗4 → V⊗3 (tensoring the second and

the third places), applied to C � C, gives C12′ ⊗ C2′′3.

To use the same system of notations for morphisms we should write indices for both

source and target. However, we shall abbreviate the notation using only one set of indices,

either for the source, or for the target. Thus, instead of

1′1′′ε1 : C1′1′′ → I1,

12′C12′ ⊗ 2′′2′′′ε2′′ : C12′ ⊗ C2′′2′′′ → C12′ ⊗ I2′′

we write ε : C1′1′′ → I and C12′ ⊗ ε2′′ . Instead of

123∆12′2′′3 : C13 � I2 → C12′ ⊗ C2′′3,

124∆12′2′′4 � I3 : C14 � I2 � I3 → C12′ ⊗ C2′′4 � I3
we write ∆123 and ∆124 � I3.

Sometimes we simplify X1′ , X1′′ , X1′′′ , X14 , . . . to X1, X2, X3, X4, . . ..

1.5. Monoidal structures on V⊗ V. Let V be a k-linear abelian monoidal category

with length. Then V⊗ V has a monoidal structure as well. In fact, there are four monoidal

structures, since we may choose between (V,⊗) and (V,⊗op) in both tensorands. The

main monoidal structure, which we fix from now on, is:

⊗̄ : (V⊗ V)× (V⊗ V) −→ V⊗ V

(A12, B12) 7−→ A1′2′′ ⊗B1′′2′

(X � Y, V �W ) 7−→ (X ⊗ V )� (W ⊗ Y ).

1.5.1. Theorem. If (V,⊗) is rigid, then (V⊗ V, ⊗̄) is rigid as well.

1.6. Ind-objects. Following Grothendieck and Verdier [3] we consider the category of

ind-objects of a given k-linear abelian category A. Recall that an ind-object of A is

a functor X : I → A from a filtered partially ordered set I, in particular, an arrow

xij : Xi → Xj ∈ A is given for i < j, i, j ∈ I. The set of morphisms from X : I → A to

Y : J → A is

lim←−
I

lim−→
J

Hom(Xi, Yj).

We denote the category of ind-objects of A by Â as a synonym of standard notation

Ind(A). The category Â is a k-linear abelian category [3, Exercise 8.9.9]. Small projective

and inductive limits in Â are representable in Â (Grothendieck and Verdier [3, Proposi-

tions 8.9.1 and 8.9.5]).

1.6.1. Theorem (Grothendieck and Verdier [3] Theorem 8.3.3).Let A be essentially

small, then the functor

Â −→ Homk,l.e.(A
op,k -Vect),

(X : I → A) 7−→ (Y 7→ lim−→
I

Hom(Y,Xi))

with values in the category of k-linear left exact functors is an equivalence of categories.



SQUARED HOPF ALGEBRAS 119

If A,B are k-linear abelian essentially small categories, then any functor F : A → B

extends to a functor F̂ : Â → B̂, X 7→ F ◦ X. If F is k-linear (resp. right exact, resp.

exact), so is F̂ (Grothendieck and Verdier [3, Corollary 8.9.8]). The functor F̂ : Â → B̂

commutes with filtered inductive limits [3, Proposition 8.6.3]. If F is right exact, F̂

commutes with arbitrary inductive limits.

1.6.2. Proposition. Let any object of A have finite length. Then the category Â is

equivalent to its full subcategory consisting of functors X : I → A such that xij : Xi → Xj

is a monomorphism for any pair i < j.

1.6.3. R e m a r k. Let X : I → A be in Â and let J ⊂ I be a cofinal set. Then the

ind-object X ′ = X|J : J → A is isomorphic to X in Â.

Let X : I → A be an ind-object such that xij : Xi → Xj are monomorphisms, i < j.

We say that X is closed under intersections if

(a) for any subset J ⊂ I there is an element i = ∩J ∈ I such that i 6 j for any j ∈ J
and i is the biggest element with this property;

(b) for any subset J ⊂ I there is a finite subset J ′ ⊂ J such that for any finite K,

J ′ ⊂ K ⊂ J , and any r > K the subobject Xi is the intersection of subobjects Xk,

k ∈ K, in Xr, that is, the canonical morphism

Xi → lim←−
k∈K

(Xk
xkr−−→ Xr)

is an isomorphism.

1.6.4. Proposition. (a) Any ind-object is isomorphic in Â to an ind-object closed

under intersections.

(b) Let X : I → A, Y : J → A be ind-objects. Assume that Y is closed under

intersections. Then any morphism f : X → Y ∈ Â can be represented by a monotonous

map m : I → J and a family of morphisms fi : Xi → Ym(i).

2. Squared coalgebras

2.1. Definitions. Let V be a k-linear abelian rigid monoidal category with length.

2.1.1. Definition. A squared coalgebra C = (C,∆, ε) in V̂ is an object C ∈ V̂⊗ V

equipped with a comultiplication ∆123 : C13 � I2 → C12′ ⊗ C2′′3 ∈ V̂⊗3 and a counit

ε : C1′1′′ → I ∈ V̂, such that coassociativity holds:

C14 � I2 � I3 ∆124�I3−−−−−−−−→ C12′ ⊗ C2′′4 � I3

∆134�I2

y yC12′⊗∆2′′34

C13′ ⊗ C3′′4 � I2
∆123′⊗C3′′4−−−−−−−−→ C12′ ⊗ C2′′3′ ⊗ C3′′4

(2.1.1)

and ε is the counit:(
C12

∼−→ C1′2 ⊗ I1′′
∆1′1′′2−−−−→ C1′1′′ ⊗ C1′′′2

ε⊗C−−−→ I1′ ⊗ C1′′2
∼−→ C12

)
= idC (2.1.2a)(

C12
∼−→ I2′ ⊗ C12′′

∆12′2′′−−−−→ C12′ ⊗ C2′′2′′′
C⊗ε−−−→ C12′ ⊗ I2′′ ∼−→ C12

)
= idC (2.1.2b)
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Graphical notations partially explain the choice of indices and help to memorise them.

Comultiplication is denoted

C C1 2′ 2′′ 3

��1 3C

∆ = ,

the counit is denoted

��
1′ 1′′C

ε = .

The coassociativity equation is

C C C1 2′ 2′′ 3′ 3′′ 4

����1 4C

C C C1 2′ 2′′ 3′ 3′′ 4

����
1 4C

= ,

the equations for the counit are

��
��

=1′ 1′′ 1′′′

1 2C

1 2C

1 2C

1 2C

��
��

= 2′′′2′′2′

21 C

21 C

.

2.1.2. Definition. A squared coalgebra homomorphism (C,∆, εC)→ (D,∆, εD) is a

morphism f : C → D ∈ Mor V̂⊗ V such that

C13 � I2 ∆123−−−→ C12′ ⊗ C2′′3

f13�I2

y y f12′⊗f2′′3
D13 � I2 ∆123−−−→ D12′ ⊗D2′′3

commutes and equation

(~C ~f−−→ ~D εD−−→ I) = εC

holds.

Squared coalgebras form a category denoted Coalgsq(V̂). Its full subcategory consi-

sting of squared coalgebras, which are objects of V⊗ V, is denoted Coalgsq(V).

2.2. Comodules

2.2.1. Definition. A left comodule X ∈ V̂ over a squared coalgebra C is an object

X of V̂ equipped with the coaction

δ = δX : X1 � I2 → C12′ ⊗X2′′ ∈ V̂⊗ V,
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which is coassociative:

X1 � I2 � I3 δ12�I3−−−−−−−→ C12′ ⊗X2′′ � I3

δ13�I2

y yC12′⊗δ2′′3

C13′ � I2 ⊗X3′′
∆123′⊗X3′′−−−−−−−→ C12′ ⊗ C2′′3′ ⊗X3′′

(2.2.1)

and counital: (
X ∼−→ X ⊗ I ~δ−−→ (~C)⊗X ε⊗X−−−→ I ⊗X ∼−→ X

)
= idX . (2.2.2)

Graphical notation for the coaction is

C X1 2′ 2′′

��1 X

δ =

and it will be explained later. Coassociativity takes the form

C C X1 2′ 2′′ 3′ 3′′

����1

C C X1 2′ 2′′ 3′ 3′′

����
1

=

XX

and counitality is

��
��

=1′ 1′′ 1′′′

1 X

1 X

1 X

1 X

.

The definition above should be generalised. Let A be a k-linear abelian category with

length.

2.2.2. Definition. A left comodule X ∈ ̂V⊗A over a squared coalgebra C ∈
Coalgsq(V̂) is an object X = X10 ∈ ̂V⊗A equipped with the coaction

δ = δX : X10 � I2 → C12′ ⊗X2′′0 ∈ (V⊗ V⊗A)̂
such that coassociativity (2.2.1) in (V⊗3 ⊗A)̂ and counitality (2.2.2) in ̂V⊗A hold.

When A = k -vect this reduces to the previous definition.

2.2.3. Definition. A morphism of left C-comodules (X, δX) → (Y, δY ) in V̂ (resp.

in ̂V⊗A) is f : X → Y ∈ V̂ (resp. f : X10 → Y10 ∈ ̂V⊗A) such that

X1 � I2 δX−−→ C12′ ⊗X2′′

f1�I2

y yC12′⊗f2′′

Y1 � I2 δY−−→ C12′ ⊗ Y2′′

(resp. the same diagram in (V⊗ V⊗A)̂ ) commutes.
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Left C-comodules form a category, which is denoted CV̂ (resp. C ̂V⊗A). It has a full

subcategory CV (resp. C(V⊗A)) formed by objects from V (resp. V⊗A).

It is easy to show that if f : X → Y is a morphism of comodules in CV̂ (resp. C ̂V⊗A,
CV, C(V⊗A)), and

Ker f ker f−−−→ X coim f−−−−→ Coim f ' Im f im f−−−→ Y coker f−−−−→ Coker f

is its canonical decomposition in V̂ (resp. ̂V⊗A, V, V⊗A), then the objects Ker f ,

Coim f , Im f , Coker f have unique C-comodule structure such that the morphisms above

are morphisms of comodules. It follows:

2.2.4. Proposition. The category CV̂ (resp. C ̂V⊗A, CV, C(V⊗A)) is k-linear and

abelian and the underlying functor U : CV̂→ V̂ (resp. U : C ̂V⊗A→ ̂V⊗A, U : CV→ V,

U : C(V⊗A)→ V⊗A) is exact and faithful.

Any k-linear exact functor F : A → B induces a k-linear exact functor V ⊗ F :
C ̂V⊗A→ C ̂V⊗B.

2.2.5. Example. (C,∆) is a C-comodule from CV̂⊗ V (resp. V̂⊗ V
C

). It is called

the left regular comodule.

2.3. The fundamental theorem on coalgebras

2.3.1. Theorem. Any comodule from CV̂ (resp. C ̂V⊗A) is a union, i.e. filtered

inductive limit, of its subcomodules from CV (resp. C(V⊗A)).

2.3.2. Corollary. ĈV ' CV̂ and
(
C(V⊗A)

)̂ ' C ̂V⊗A.

2.3.3. Theorem (fundamental theorem on coalgebras). A squared coalgebra C ∈
Coalgsq(V̂) is a filtered inductive limit of its subcoalgebras from Coalgsq(V).

Let A be a k-linear abelian category with length and let C be a squared coalgebra

in V.

2.3.4. Theorem. The functor Ψ : (CV) ⊗ A → C(V⊗A) induced by (CV) × A →
C(V⊗A), (X,M) 7→ X �M , is an equivalence.

2.4. The category of fibre functors. Let V be a k-linear abelian category. Extending

the definition of Saavedra [7] let us call a fibre functor to V a k-linear exact faithful

functor a : A → V, where A is a k-linear abelian essentially small category. Following

Schauenburg [8] we define the category of fibre functors.

2.4.1. Definition. Let the category A = A(V) have fibre functors to V as objects

and let morphisms from a : A → V to b : B → V be equivalence classes of pairs (F, φ),

where F : A → B is a functor and φ : a ∼−→ bF is a functorial isomorphism. Two such

pairs (F, φ) and (G, γ) are equivalent if there is a functorial isomorphism ζ : F → G such

that

γ =
(
a φ−→ bF bζ−→ bG

)
. (2.4.1)

The composite of two morphisms represented by (F, φ) and (G, γ) is represented by

(GF, γF ◦ φ). Clearly, HomA(a, b) is a set.



SQUARED HOPF ALGEBRAS 123

Now let V be a k-linear abelian rigid monoidal category with length.

There is a functor Φ : Coalgsq(V̂)→ A(V), C 7→ (U : CV→ V), where U is the under-

lying functor. To a squared coalgebra morphism f : C → D corresponds the equivalence

class of the pair (F, φ), where

F (X, δX) = (X,X1 � I2 δX−−→ C12′ ⊗X2′′
f⊗X−−−→ D12′ ⊗X2′′)

and φ is the identity automorphism U→ U.

Our primary goal is to show that the functor Φ is an equivalence.

2.4.2. The coend Let C be a k-linear abelian category with length. The coend C of a

bifunctor B : P× Pop → C is defined in [5] as an object of Ĉ which is the inductive limit

of the diagram

B(X,X)
B(X,f)←−−−− B(X,Y )

B(f,Y )−−−−−→ B(Y, Y ),

where f : X → Y runs over MorP. That is, C is equipped with a morphism iX :

B(X,X)→ C ∈ Ĉ for each X ∈ ObP, the diagram

B(X,Y )
B(f,Y )−−−−−→ B(Y, Y )

B(X,f)

y y iY
B(X,X) iX−−−−−→ C

is commutative for any f : X → Y ∈ MorP, and C is universal between such objects. If

P is small, we can say that the sequence⊕
f :X→Y ∈MorP

B(X,Y )
B(X,f)−B(f,Y )−−−−−−−−−−→

⊕
X∈ObP

B(X,X) ⊕iX−−−→ C → 0

is exact. So in this case the coend exists. More generally, it exists for essentially small P.

It is denoted C =
∫X∈P

B(X,X).

Let us consider the particular case. Let p : P → V be a functor from an essentially

small category P, let C = V⊗ V and let B : P × Pop → C, B(X,Y ) = pX � (pY )∨. The

coend is denoted

C =

∫ X∈P
pX � (pX)∨. (2.4.2)

The object M �M∨ ∈ V⊗ V has a canonical squared coalgebra structure for any

M ∈ V. Namely,

∆123 = M � coev�M∨ : M � I �M∨ →M �M∨ ⊗M �M∨,
ε = ev : M ⊗M∨ → I.

Compare these formulae with the graphical notations on page 120. The object M has a

canonical structure of a left M �M∨-comodule, namely,

δ = M � coev : M1 � I2 →M1 �M∨2′ ⊗M2′′ .

Compare with the graphical notations on page 121. In particular, this holds for M = pX.

2.4.3. Proposition. If the coend (2.4.2) exists, it has a unique squared coalgebra

structure such that the structure morphisms iX : pX � (pX)∨ → C are coalgebra mor-

phisms.
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Since pX is a pX � (pX)∨-comodule, it is a C-comodule as well for any X ∈ ObP.

2.4.4. Proposition. If the coend C exists, the map ObP → ObCV, X 7→ (pX, δ)

extends to the functor F : P→ CV, f 7→ pf such that p =
(
P F−→ CV U−→ V

)
.

2.5. Reconstruction theorems. Now we come back to the case of a fibre functor a :

A→ V. Assume that P ⊂ A is a full subcategory equivalent to A and O = ObP is a set.

Denote p = a|P : P → V. Notice, that coend (2.4.2) serves as the coend of the bifunctor

Aop ×A→ V⊗ V, (X,Y ) 7→ aX � (aY )∨ as well.

2.5.1. Theorem. The functor F : A→ CV is an equivalence of categories.

In particular case V = k -vect this theorem was proved by Saavedra [7] (see also

Schauenburg [8]).

2.5.2. Theorem. (a) The map (a : A → V) 7−→ Ca constructed in Section 2.4.2

extends to a functor

Ψ : A(V)→ Coalgsq(V̂).

(b) The functor Fa : A→ Φ(Ψ(A)) = CaV constructed in Theorem 2.5.1 together with

id : a→ U ◦ Fa gives an isomorphism of functors

F : IdA(V)
∼−→ ΦΨ.

(c) The functors Φ : Coalgsq(V̂) → A(V), C 7→ CV, and Ψ : A(V) → Coalgsq(V̂),

a→ Ca, are equivalences, quasiinverse to each other.

In the case of V = k -vect this theorem was proved by Schauenburg [8].

Constructing another adjunction ΨΦ ∼−→ Id, is also of practical interest.

2.5.3. Proposition. (a) Let C be a squared coalgebra in V̂ and let X ∈ V. The

structures of C-comodules in X and squared coalgebra homomorphisms X�X∨ → C are

in bijective correspondence.

(b) If δ : X1 � I2 → C12′ ⊗X2′′ is a comodule structure, then

ı̈ = ı̈X =
(
X1 �X∨2 ∼−→ X1 � I2′ ⊗X∨2′′

δ12′⊗X
∨
2′′−−−−−−→

C12′ ⊗X2′′ ⊗X∨2′′′
C12′⊗ev2′′−−−−−−−→ C12′ ⊗ I2′′ '−→ C12

)
(2.5.1)

is a homomorphism of squared coalgebras.

(c) If ı̈X : X1 �X∨2 → C12 is a squared coalgebra homomorphism, then

δ =
(
X1 � I2 X1�coev2−−−−−−−→ X1 �X∨2′ ⊗X2′′

ı̈12′⊗X2′′−−−−−−→ C12′ ⊗X2′′
)

is a C-comodule structure on X.

(d) There is a unique squared coalgebra homomorphism hC : C ′
def
= Ψ(ΦC)→ C such

that for any X ∈ CV the composite coalgebra morphism ı̈X : X � X∨ iX−−→ C ′ hC−−→ C is

the canonical (2.5.1).

(e) The family hC : Ψ(ΦC) → C gives an isomorphism of functors h : ΨΦ →
Id

Coalgsq(V̂)
.

2.5.4. Corollary. Any squared coalgebra C is the union of the images of the cano-

nical morphisms (2.5.1) for all comodules X.
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This is a detailed form of the fundamental theorem on coalgebras 2.3.3.

2.6. Comodules over ordinary coalgebras. Let C be a squared coalgebra in V. Then

C̄ = ~C ∈ V is an ordinary coalgebra in V. How big is the category of C̄-comodules in

comparison with C-comodules?

First of all, any C̄-comodule is a union of its rigid subcomodules, C̄V̂ = ̂̄CV. This is

a general fact. It follows from the embedding δ : X ↪→ C̄ ⊗ X of C̄-comodules and the

fundamental theorem on coalgebras.

2.6.1. Theorem. The functor

CV× V ⊗−→ C̄V, (X, δX)× Y 7→ (X ⊗ Y, δ̄X ⊗ Y )

δ̄X =
(
X ' X ⊗ I ~δX−−−→ C1′1′′ ⊗X1′′′ = C̄ ⊗X

)
makes C̄V into CV⊗ V.

2.6.2. Corollary. Let A be a k-linear abelian essentially small category, let ω : A→
V be a k-linear exact faithful functor, and C̄ =

∫X∈A
ωX ⊗ (ωX)∨. Then the category of

C̄-comodules C̄V is equivalent to A⊗ V.

This is closely related with results of Pareigis [6].

3. Squared bicoalgebras. Before we discuss bicoalgebras, let us consider the opera-

tion of tensor product of squared coalgebras. Notice that a braiding in V is not required.

3.1. Tensor product of squared coalgebras. Recall that V ⊗ V has a rigid monoidal

structure (A⊗̄B)12 = A1′2′′ ⊗B1′′2′ (Theorem 1.5.1).

3.1.1. Proposition. Let A,B ∈ Coalgsq(V̂). The tensor product A⊗̄B has a coalge-

bra structure

∆A⊗̄B :A1′3′′ ⊗B1′′3′ � I2
A1′3′′⊗∆1′′23′−−−−−−−−−→ A1′3′′ ⊗B1′′2′ ⊗B2′′3′ '

A1′3′′ ⊗B1′′2′ ⊗ I2′′ ⊗B2′′′3′
∆1′2′′3′′⊗B1′′2′⊗B2′′′3′−−−−−−−−−−−−−−−−→ A1′2′′ ⊗B1′′2′ ⊗A2′′′3′′ ⊗B243′ ,

(3.1.1)

εA⊗̄B : A14 ⊗B23 A⊗ε−−−→ A13 ⊗ I2 ' A12 ε−→ I1. (3.1.2)

The tensor product A⊗̄B is associative and turn Coalgsq(V̂) into a monoidal category.

Graphical notation and explanation of the comultiplication (3.1.1) and the counit

(3.1.2) is the following

��
1′ 1′′ 2′ 2′′ 2′′′ 24 3′ 3′′

1′ 1′′ 3′ 3′′

B B

B

A A

A

,∆ =



126 V. V. LYUBASHENKO

&%
11 12 13 14

B

A

.ε =

It reflects the canonical isomorphism j+ : Y ∨ ⊗ X∨ → (X ⊗ Y )∨ which is described in

Section 1.2 on page 116.

3.1.2. R e m a r k. Let A = X �X∨, B = Y � Y ∨. Then A⊗̄B = (X ⊗ Y ) � (Y ∨ ⊗
X∨)

1�j+−−−→ (X ⊗ Y )� (X ⊗ Y )∨ is a squared coalgebra isomorphism.

3.1.3. Proposition. Let M ∈ AV̂, N ∈ BV̂. Then M ⊗ N has the structure of an

A⊗̄B-comodule

δM⊗N=
(
M1′ ⊗N1′′ � I2 M⊗δN−−−−→M1′ ⊗B1′′2′ ⊗N2′′

'M1′ ⊗B1′′2′ ⊗ I2′′ ⊗N2′′′
δM⊗B⊗N−−−−−−−→ A1′2′′ ⊗B1′′2′ ⊗M2′′′ ⊗N24

)
. (3.1.3)

For L ∈ CV̂, both ways to construct an A⊗̄B⊗̄C-comodule structure on M ⊗ N ⊗ L

coincide.

Graphical notation for the coaction δM⊗N is

��
1′ 1′′ 2′ 2′′ 2′′′ 24

1′ 1′′

B

A

δM⊗N =

M N

M N

.

3.1.4. R e m a r k. If A = M �M∨, B = N � N∨, the coaction δM⊗N of A⊗̄B on

M ⊗ N is mapped by 1 � j+ to the canonical coaction of (M ⊗ N) � (M ⊗ N)∨ (see

Remark 3.1.2).

3.2. Bicoalgebras

3.2.1. Definition. A squared bicoalgebra B = (B,∆, ε,m, η) in V̂ is a squared coal-

gebra (B,∆, ε) ∈ Coalgsq(V̂) equipped with an algebra structure (B,m, η) in (V̂⊗ V, ⊗̄)

(such that the multiplication m : B⊗̄B → B ∈ V̂⊗ V is associative and η : I � I → B ∈
V̂⊗ V is the unit) and such that m, η are squared coalgebra homomorphisms, that is,

B1′3′′ ⊗B1′′3′ � I2
B1′3′′⊗∆1′′23′−−−−−−−−−→ B1′3′′ ⊗B1′′2′ ⊗B2′′3′

m13�I2

y y'
B13 � I2 B1′3′′ ⊗B1′′2′ ⊗ I2′′ ⊗B2′′′3′

∆123

y y∆1′2′′3′′⊗B1′′2′⊗B2′′′3′

B12′ ⊗B2′′3
m⊗m←−−−−−−−−− B1′2′′ ⊗B1′′2′ ⊗B2′′′3′′ ⊗B243′
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B14 ⊗B23 B⊗ε−−−→ B13 ⊗ I2 ∼−−−→ B12

~m

y y ε
B12 ε−−−−−−−−−−−−−−−−−−−−−−−→ I

I1 � I2 � I3
I1�r−1

I 2
�I3−−−−−−−→ I1 � I2′ ⊗ I2′′ � I3

η13�I2

y y η12′⊗η2′′3
B13 � I2 ∆123−−−−−−−→ B12′ ⊗B2′′3(

I ⊗ I ~η−−→ ~B ε−→ I
)

= rI

hold.

Morphisms of bicoalgebras are those preserving algebra and squared coalgebra struc-

tures. The category of bicoalgebras in V̂ is denoted Bicoalg(V̂).

3.2.2. R e m a r k. Definition of a squared bicoalgebra is not self-dual. One can define

dually squared bialgebras which are ordinary coalgebras and squared algebras.

For M,N ∈ BV̂ let us define a B-comodule structure on M ⊗N ∈ V̂ via (3.1.3):

M1′ ⊗N1′′ � I2 δM⊗N−−−−→ B1′2′′ ⊗B1′′2′ ⊗M2′′ ⊗N24
m⊗M⊗N−−−−−−→ B12′ ⊗M2′′ ⊗N2′′′ .

Proposition 3.1.3 shows that the tensor product of B-comodules is associative. The asso-

ciativity isomorphism coincides with that one of (V̂,⊗). Therefore, the category (BV̂,⊗)

is monoidal with the unit object (I, δI),

δI =
(
I1 � I2 η−→ B12 ' B12′ ⊗ I2′′

)
.

3.3. Monoidal reconstruction

3.3.1. Definition. Let (A,⊗) be a k-linear abelian monoidal essentially small cat-

egory. A monoidal fibre functor is a k-linear exact faithful monoidal functor (ωA, ω
A) :

A → V. Let the category of monoidal fibre functors M(V) have monoidal fibre func-

tors as objects and let morphisms from (ωA, ω
A) : A → V to (ωB, ω

B) : B → V be

equivalence classes of triples (F, f, φ), where (F, f) : A → B is a monoidal functor and

φ : (ωA, ω
A)→ (ωB, ω

B)◦(F, f) is an isomorphism of monoidal functors. Two such triples

(F, f, φ) and (G, g, γ) are equivalent if there is a functorial isomorphism ζ : F → G such

that (2.4.1) holds. The composite of two morphisms represented by (F, f, φ) and (G, g, γ)

is represented by (G ◦ F,Gf ◦ gF,F , γF ◦ φ).

The functor F from the above triple is exact and faithful. Forgetting the monoidal

structure we get a functor M(V) → A(V). It is faithful since ωBfX,Y is determined

uniquely by given F , φ from the condition φ : (ωA, ω
A) ∼−→ (ωB, ω

B) ◦ (F, f), and ωB is

faithful.

There is a functor Φ : Bicoalg(V̂) → M(V), B 7→ ((U, id) : BV → V). We want to

prove that this is an equivalence.

Let (ωA, ω
A) : (A,⊗) → (V,⊗) be a monoidal fibre functor. Assume that CA is the

coend (2.4.2) constructed from the functor ωA (classifying coalgebra of the category A).

Then, A ' CAV.
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3.3.2. Theorem. (a)The squared coalgebra CA is a bicoalgebra. The monoidal functor

ωA admits the factorisation

(ωA, ω
A) =

(
A

(FA,f
A)−−−−−→ CAV

(U,id)−−−−→ V
)
,

where FA is the equivalence from Theorem 2.5.1 and fAX,Y = ωA
X,Y .

(b) The correspondence (ωA, ω
A) 7→ CA extends to a functor

Ψ : M(V)→ Bicoalg(V̂).

3.3.3. Corollary. The monoidal functor (FA, f
A) : A→ Φ(Ψ(A)) = CAV construc-

ted in Theorem 3.3.2 together with id : (ωA, ω
A)→ (U, id)◦(FA, f

A) gives an isomorphism

of functors

F : IdM(V)
∼−→ ΦΨ.

P r o o f. We already know by Theorem 2.5.2 that F is an isomorphism of the forgetful

functor M(V) → A(V) with ΦΨ : M(V) → M(V) → A(V). Theorem 3.3.2 implies that

this isomorphism is in M(V).

3.3.4. Theorem. The functors Φ : Bicoalg(V̂) → M(V), B 7→ BV and Ψ : M(V) →
Bicoalg(V̂), (ωA, ω

A) 7→ CA are equivalences, quasiinverse to each other.

P r o o f. By Theorem 3.3.2 Φ is essentially surjective on objects. Corollary 3.3.3 implies

that Φ is full. By Theorem 2.5.2 Φ is faithful, hence, Φ is an equivalence. Ψ is quasi-inverse

to Φ by Corollary 3.3.3.

In the case V = k -vect this theorem was proved by Schauenburg [8].

To construct explicitly the isomorphism ΨΦ→ IdM(V) let us use the results for A(V).

Let B be a bicoalgebra in V̂, let A = BV, let ωA = U : BV→ V and ωA = id. It was shown

in Proposition 2.5.3 that there is a unique coalgebra isomorphism hB : CA = ΨΦ(B)→ B

such that for any X ∈ BV the composite X�X∨ iX−−→ CA
hB−−→ B is the canonical coalgebra

morphism (2.5.1).

3.3.5. Proposition (bicoalgebra reconstruction).The morphism hB : CA → B is an

isomorphism of bicoalgebras giving the functorial isomorphism

h : ΨΦ→ Id
Bicoalg(V̂)

.

3.4. Relationship with braided bialgebras. Let us consider the case of braided V. Then

it makes sense to consider braided (quasiclassical) bialgebras.

There is a unique functorial isomorphism φ : (~X)⊗(~Y )→~(X⊗̄Y ), X,Y ∈ V⊗ V,

such that for X = A�B, Y = C �D it equals

φ = (432)+
∼ : (A⊗B)⊗ (C ⊗D)→ (A⊗ C)⊗ (D ⊗B),

�
�
�

�
�
�PP

PP
.φ = PP

Indeed, it extends uniquely to arbitrary X,Y ∈ V⊗ V via resolutions

0→M i−→ A�B
∑

fl�gl−−−−−−→ C �D.
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3.4.1. Proposition. When V is braided, there is a monoidal functor

(~, φ, r−1
I ) : (V⊗ V, ⊗̄, I � I)→ (V,⊗, I).

3.4.2. Proposition. Let B = (B,∆, ε,m, η) be a bicoalgebra in V̂. Denote

B̄= ~B = B12,

∆̄=
(
B12 ' B13 ⊗ I2 ∆123

−−−→ B12 ⊗B34
)
,

η̄=
(
I

r−1
I−−→ I ⊗ I ~η−−→ ~B

)
,

m̄=
(
B12 ⊗B34 φ−→ B14 ⊗B23 ~m−−−→ B12

)
.

Then (B̄, ∆̄, ε, m̄, η̄) is a braided bialgebra in V̂.

3.4.3. Proposition. There exists a k-linear exact faithful monoidal functor

(F, id, id) : BV→ B̄V, F (X, δX) = (X, δ̄X), F (f) = f,

δ̄X =
(
X

r−1
X−−→ X ⊗ I ~δX−−−→ B̄ ⊗X

)
,

commuting with the underlying functor.

4. Hopf coalgebras. In addition to standard assumptions of Section 1.3 we assume

that X∨∨ is functorially isomorphic to X ∈ V. Let us call such categories rigid-involutive.

In particular, braided categories are rigid-involutive. However, we don’t need the braiding

in V and our study of Hopf algebras applies to non-braided V as well.

Let us pick a functorial isomorphism ζX : X → X∨∨. Our notions will explicitly

depend on the choice of ζ. Different choices lead to isomorphic constructions.

4.1. Opposite coalgebras

4.1.1. Proposition. Let p : P→ V be a functor and let p∨ : Pop → V be the composite

functor, p∨ = ∨◦p, that is, p∨(X) = p(X)∨, p∨(f : X → Y ) = (p(f)t : p(Y )∨ → p(X)∨).

Let Cp and Cp∨ be the corresponding squared coalgebras. Then there is an isomorphism

z : PCp → Cp∨ ∈ V̂⊗ V, which satisfies the following diagram

pX∨ � pX pX∨�ζ−−−−−→ pX∨ � pX∨∨

PiX

y y iX∨
PCp

z−−−−−→ Cp∨

(4.1.1)

for each X ∈ ObP. There are unique coalgebra structures (pX∨ � pX,∆op, εop) and

(PCp,∆
op, εop) such that each morphism in diagram (4.1.1) is a coalgebra morphism.

For M = pX this is

∆op: M∨ � I �M 1�coev�1−−−−−−−→M∨ �M∨∨ ⊗M∨ �M
1�ζ−1⊗1�1−−−−−−−−→M∨ �M ⊗M∨ �M, (4.1.2)

εop: M∨ ⊗M 1⊗ζ−−−→M∨ ⊗M∨∨ ev−→ I. (4.1.3)

4.1.2. Definition. Let C be a squared coalgebra in V̂. The opposite coalgebra Cop =

(PC,∆op, εop) is the unique coalgebra structure on PC such that P ı̈M : M∨�M → PC
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is a squared coalgebra homomorphism for any C-comodule M ∈ CV, where M∨ �M is

equipped with coalgebra structure (4.1.2), (4.1.3).

To check the existence of the opposite coalgebra notice that any coalgebra has the

form Cp for some P ⊂ CV and apply Proposition 4.1.1.

4.1.3. R e m a r k. The duality yields an equivalence of categories (CV)op → CopV,

(M, δM ) 7→ (M∨, δ′M∨), where δ′ is given by

δ′M∨ =
(
M∨ � I M∨�coev−−−−−−→M∨ �M∨∨ ⊗M∨ M∨�ζ−1⊗M∨−−−−−−−−−→

M∨ �M ⊗M∨ P ı̈M⊗M∨−−−−−−→ (PC)12′ ⊗M∨2′′
)
.

This follows by Proposition 4.1.1.

Clearly, another choice of ζ gives an isomorphic coalgebra structure in PC.

4.1.4. Proposition. Each functorial isomorphism ζ : X → X∨∨ determines a func-

tor

Pζ : Coalgsq(V̂)→ Coalgsq(V̂), h 7→ Ph,

Pζ(C) = Cop = (PC,∆op, εop) = (PC,∆ζ , εζ).

All such functors are isomorphic.

4.2. Comparison with opposite coalgebra in braided case. If V is braided, we have the

usual notion of an opposite coalgebra. The following proposition shows that the new

notion of opposite coincides with traditional one at the quasiclassical level.

4.2.1. Proposition. Let C be a squared coalgebra in V̂, let ζ = u2
1 : X → X∨∨ and

let C̄op = (C̄, ∆̄op) be the quasiclassical opposite to C̄:

∆̄op =
(
C̄ ∆̄−→ C̄ ⊗ C̄ c−→ C̄ ⊗ C̄

)
.

Then the isomorphism, induced by the braiding

c : C̄op = (C12, ∆̄op, ε)→ (C21,∆op, εop) = Cop

is a coalgebra isomorphism.

4.3. The antipode. Hopf coalgebras are bicoalgebras, whose categories of comodu-

les are rigid. However, at the moment we use another definition: Hopf coalgebras are

bicoalgebras with an antipode. The first definition will be made a result.

4.3.1. Definition. Let H be a bicoalgebra in V̂. A right antipode in H (with respect

to ζ) is a morphism γ′ = γζ : Hop → H ∈ V̂⊗ V such that(
Hop 1′′1′ � I2

∆op

1′′21′−−−−→ Hop 1′′2′ ⊗Hop 2′′1′ = H1′2′′ ⊗Hop 1′′2′

H⊗γ′
1′′2′−−−−−−→ H1′2′′ ⊗H1′′2′

m−→ H12

)
=
(
H1′1′′ � I2 ε�I−−→ I1 � I2 η−→ H12

)
, (4.3.1)
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(
I1 �H2′′2′

∆2′′12′−−−−→ H2′′1′ ⊗H1′′2′ = Hop 1′2′′ ⊗H1′′2′

γ′
1′2′′⊗H−−−−−−→ H1′2′′ ⊗H1′′2′

m−→ H12

)
=
(
I1 �Hop 2′2′′

I�εop−−−−→ I1 � I2 η−→ H12

)
. (4.3.2)

A left antipode in H (with respect to ζ) is a morphism ′γ = ζγ : Hop → H ∈ V̂⊗ V such

that (
H1′′1′ � I2

∆1′′21′−−−−→ H1′′2′ ⊗H2′′1′ = Hop 1′2′′ ⊗H1′′2′

′γ1′2′′⊗H−−−−−−→ H1′2′′ ⊗H1′′2′
m−→ H12

)
=
(
Hop 1′1′′ � I2 εop�I2−−−−→ I1 � I2 η−→ H12

)
,(

I1 �Hop 2′′2′
∆op

2′′12′−−−−→ Hop 2′′1′ ⊗Hop 1′′2′ = H1′2′′ ⊗Hop 1′′2′

H⊗′γ1′′2′−−−−−−→ H1′2′′ ⊗H1′′2′
m−→ H12

)
=
(
I1 �H2′2′′

I�ε−−→ I1 � I2 η−→ H12

)
.

A (squared) Hopf coalgebra is a bicoalgebra which has a right and a left antipode.

Graphical expression of these equations is the following. Here X is an H-comodule

and ı̈X : X �X∨ → H is implicit.

m

γ′

��2

X∨X∨∨

21 H

1′ 1′′
X∨X

η

��
=

1 2H

X∨X

ζ−1

m

21 H

η

1 2H

γ′

��
X∨ X

1 2′ 2′′
XX∨

ζ��
XX∨

=

m

21 H

η

1 2H

′γ

��
X∨ X

21′ 1′′
XX∨

ζ��
XX∨

=
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m

′γ

��1

X∨X∨∨

21 H

2′ 2′′
X∨X

η

��
=

1 2H

X∨X

ζ−1

The dual notion is called squared Hopf algebra.

4.3.2. Proposition. Let (H, γ′, ′γ) be a Hopf coalgebra. Then γ′, ′γ : Hop → H are

homomorphisms of squared coalgebras.

4.3.3. Theorem. The category HV of comodules over a Hopf coalgebra H is rigid.

For the right dual of X one can take(
X∨, δX∨ : X∨1 � I2

δ′
X∨−−−→ Hop 12′ ⊗X∨2′′

γ′
12′⊗X

∨
2′′−−−−−−→ H12′ ⊗X∨2′′

)
,

for the left dual –

(∨X, δ∨X : ∨X1 � I2
′δ∨X−−−→ Hop 12′ ⊗ ∨X2′′

′γ12′⊗
∨X2′′−−−−−−−−→ H12′ ⊗ ∨X2′′

)
.

The evaluation and coevaluation morphisms are the same as in V.

The formulae

δX∨ =
(
X∨ � I X∨�coev−−−−−−→ X∨ �X∨∨ ⊗X∨ X∨⊗ζ−1⊗X∨−−−−−−−−−→ X∨1 �X2′ ⊗X∨2′′

ı̈2′1⊗X
∨

−−−−−−→ Hop 12′ ⊗X∨2′′
γ′⊗X∨−−−−−→ H12′ ⊗X∨2′′

)
,

δ∨X =
(∨X � I ∨X�coev−−−−−−→ ∨X �X ⊗ ∨X

tζ−1�X⊗∨X−−−−−−−−→ X∨1 �X2′ ⊗ ∨X2′′

ı̈2′1⊗
∨X−−−−−→ Hop 12′ ⊗ ∨X2′′

′γ⊗∨X−−−−→ H12′ ⊗ ∨X2′′
)
.

together with definition (2.5.1) of ı̈X imply

X∨1 �X2
X∨�ζ−−−−→ X∨1 �X∨∨2

P ı̈X

y y ı̈X∨
Hop 12

γ′−−−−→ H12

, (4.3.3)

X∨1 �X2

tζ�X−−−−→ ∨X1 �X2

P ı̈X

y y ı̈∨X
Hop 12

′γ−−−−→ H12

. (4.3.4)

4.3.4. Corollary. The right and the left antipodes γ′, ′γ : Hop → H of a Hopf

coalgebra are unique and invertible.

Uniqueness follows from the fundamental theorem on coalgebras (Corollary 2.5.4) and

diagrams (4.3.3), (4.3.4). Invertibility follows from the fact that X 7→ X∨, X 7→ ∨X are

equivalences. If only right antipode exists for H, it need not be invertible.



SQUARED HOPF ALGEBRAS 133

4.3.5. R e m a r k. The property of being a Hopf coalgebra does not depend on the

choice of ζ.

4.3.6. Proposition. Let H be a bicoalgebra in V̂.

(a) If H has a right antipode γζ : Hop → H with respect to ζ and it is invertible, then

tζ−1γ = Pγ−1
ζ is a left antipode for H with respect to tζ−1.

(b) If H has a left antipode ζγ : Hop → H with respect to ζ and it is invertible, then

γtζ−1 = P ζγ
−1 is a right antipode for H with respect to tζ−1.

In both cases H is a Hopf coalgebra.

4.4. Comparison with braided Hopf algebras. We recall that if V is braided, the tensor

functor (~, φ, r−1
I ) : V⊗ V → V from Proposition 3.4.1 transforms squared bicoalgebras

B into quasiclassical bialgebras B̄ (see Proposition 3.4.2).

4.4.1. Proposition. Let H be a squared Hopf algebra in V̂. Then H̄ is a quasiclassical

Hopf algebra in V̂. If γ′ is the right antipode for H with respect to ζ = u2
1, then

γH̄ =
(
H12 c−→ H21 ~γ′−−−→ H12

)
is the antipode for H̄. If ′γ is the left antipode for H with respect to ζ̃ = u2

−1, then

γ̃H̄ = γ−1
H̄

=
(
H12 c−1

−−→ H21 ~′γ−−−→ H12
)

is the skew antipode for H̄.

5. Quasitriangular Hopf coalgebras. We want to discuss braided monoidal cate-

gories. Naturally, we assume that V is braided. It was shown in Propositions 3.4.1, 3.4.2

that a monoidal functor (~, φ, r−1
I ) : (V⊗ V, ⊗̄, I � I) → (V,⊗, I) maps bicoalgebras H

to braided bialgebras H̄ = (~H, ∆̄, ε, m̄, η̄). The structure responsible for the braiding in
BV is the R-matrix. Bicoalgebras which admit an R-matrix will be called quasitriangu-

lar. We are going to establish correspondence between k-linear exact monoidal functors

ω : C → V which do not preserve braiding and quasitriangular bicoalgebras. Quasitrian-

gular Hopf coalgebra is a natural implementation of the idea of a quantum braided group

[4]. Although there are two R-matrices – R+ and R−, they are linearly expressed one

through another with the help of braiding in V.

5.1. R-matrices in Hopf coalgebras

5.1.1. Definition. A quasitriangular Hopf coalgebra in V̂ is a Hopf coalgebra H in

V̂ equipped with bilinear forms R+ : H̄ ⊗ H̄ → I, R− : H̄ ⊗ H̄ → I ∈ Mor V̂ called the

R-matrices such that

R+ =
(
H̄ ⊗ H̄ Ω−→ H̄ ⊗ H̄ R−−−→ I

)
, (5.1.1)

where Ω denotes the morphism 11 ⊗ (c32 ◦ c23)⊗ 14 : H12 ⊗H34 → H12 ⊗H34,

ε =
(
H̄ ' I ⊗ H̄ η̄⊗H̄−−−→ H̄ ⊗ H̄ R+−−→ I

)
,

ε =
(
H̄ ' H̄ ⊗ I H̄⊗η̄−−−→ H̄ ⊗ H̄ R+−−→ I

)
,
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H̄ ⊗ H̄ ⊗ H̄ m̄⊗H̄−−−−→ H̄ ⊗ H̄ R+−−→ I

)
=
(
H̄ ⊗ H̄ ⊗ H̄ H̄⊗H̄⊗∆̄−−−−−−→ H̄ ⊗ H̄ ⊗ H̄ ⊗ H̄

H̄⊗R+⊗H̄−−−−−−−→ H̄ ⊗ I ⊗ H̄ ' H̄ ⊗ H̄ R+−−→ I
)
,

(5.1.2a)

(
H̄ ⊗ H̄ ⊗ H̄ H̄⊗m̄−−−−→ H̄ ⊗ H̄ R−−−→ I

)
=
(
H̄ ⊗ H̄ ⊗ H̄ ∆̄⊗H̄⊗H̄−−−−−−→ H̄ ⊗ H̄ ⊗ H̄ ⊗ H̄

H̄⊗c−1⊗H̄−−−−−−−→ H̄ ⊗ H̄ ⊗ H̄ ⊗ H̄ R−⊗R−−−−−−→ I ⊗ I ' I
)
,

(5.1.2b)

(
H1′2′ ⊗H1′′2′′ ' H1′2′ ⊗H1′′2′′ ⊗ I1′′′

∆1′1′′′2′⊗H−−−−−−−−→ H1′1′′′ ⊗H1′′2′′ ⊗H142′

c−1

1′′1′′′
⊗l−1
H−−−−−−−→ H1′1′′ ⊗H1′′′2′′ ⊗ I14 ⊗H152′

H⊗∆1′′′142′′⊗H−−−−−−−−−−−→
H1′1′′ ⊗H1′′′14 ⊗H152′′ ⊗H162′

R+⊗m−−−−→ I1′ ⊗H1′′2 ' H12

)
=
(
H1′2′ ⊗H1′′2′′ ' H1′2′′ ⊗ I2′ ⊗H1′′2′′′

H⊗∆1′′2′2′′′−−−−−−−−→ H1′2′′′ ⊗H1′′2′ ⊗H2′′24

r−1
H
⊗c−1

2′′2′′′−−−−−−−−→ H1′2′′′ ⊗H1′′2′ ⊗ I2′′ ⊗H2425
∆1′2′′2′′′⊗H⊗H−−−−−−−−−−→

H1′2′′ ⊗H1′′2′ ⊗H2′′′24 ⊗H2526
m⊗R+−−−−→ H12′ ⊗ I2′′ ' H12

)
.

(5.1.3)

It is easier to look at these conditions in graphical form. Equation (5.1.2a) becomes

m̄

H̄

R+

H̄ H̄

R+

R+

∆̄

H̄H̄ H̄

=

(5.1.2b) becomes

R− R−
PP

PPP
��

��

H̄H̄

∆̄

H̄

=

H̄ H̄ H̄

m̄

R−

and (5.1.3) becomes

��YY ∨
$X Y ∨X∨

H

YX

X∨
=

R+ m

H

m R+

YX ��XX∨
' $YY ∨

Y ∨X∨

With a certain effort one can see that these properties are the dual ones to the equations

for R-matrix written by Drinfeld [2].

5.1.2. Theorem. Let (H,R+, R−) be a quasitriangular Hopf coalgebra. Then the

categories of comodules HV and H V̂ are braided and the braiding RX,Y : X⊗Y → Y ⊗X
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is given by

RX,Y =
(
X ⊗ Y δ̄X⊗δ̄Y−−−−−→ H̄ ⊗X ⊗ H̄ ⊗ Y (432)+

∼
−−−−−→ H̄ ⊗ H̄ ⊗ Y ⊗X

R+⊗Y⊗X−−−−−−−→ I ⊗ Y ⊗X ' Y ⊗X
)

=
(
X ⊗ Y δ̄X⊗δ̄Y−−−−−→ H̄ ⊗X ⊗ H̄ ⊗ Y (432)−

∼
−−−−−−→ H̄ ⊗ H̄ ⊗ Y ⊗X

R−⊗Y⊗X−−−−−−−→ I ⊗ Y ⊗X ' Y ⊗X
)
,

or

R+

δ̄X

H̄ �
�
��

δ̄Y
%
%
%%

bb

bb
bb

Y X

H̄

X Y

=RX,Y =

R+

δ̄X

H̄

δ̄Y

Y X

H̄

X Y

b
b
b
b
bb

��

��
�
�

��

. (5.1.4)

5.1.3. R e m a r k. One can define quasitriangular bicoalgebras in the same way as in

Definition 5.1.1, adding one condition – invertibility of (5.1.4).

5.1.4. R e m a r k. Equation (5.1.3) can be written in 4 equivalent forms. By (5.1.1)

one can replace c−1, R+ by c, R− in the left and/or, independently, in the right hand

side of (5.1.3).

5.1.5. Proposition. Let H be a bicoalgebra (e.g. a Hopf coalgebra). If HV has a

braiding RX,Y : X ⊗ Y → Y ⊗ X, then (H,R+, R−) is quasitriangular, where R+, R−
are determined by(

X ⊗X∨ ⊗ Y ⊗ Y ∨ ı̈X⊗ı̈Y−−−−→ H̄ ⊗ H̄ R±−−→ I
)

=
(
X ⊗X∨ ⊗ Y ⊗ Y ∨ X⊗c±1⊗Y ∨−−−−−−−−→ X ⊗ Y ⊗X∨ ⊗ Y ∨ RX,Y ⊗X∨⊗Y ∨−−−−−−−−−−→

Y ⊗X ⊗X∨ ⊗ Y ∨ Y⊗ev⊗Y ∨−−−−−−−→ Y ⊗ I ⊗ Y ∨ ' Y ⊗ Y ∨ ev−→ I
)
.

5.2. Braiding for comodules over a braided Hopf algebra. It seems that there is no

gadget, which would make the whole category of comodules over a braided Hopf algebra

into a braided category. That is why the framework of braided Hopf algebras seems

insufficient for the ideas like quantum braided groups. However, braided Hopf algebras,

which came from quasitriangular squared Hopf coalgebras, make an exception.

Let H be a quasitriangular Hopf coalgebra, and let H̄ = ~H. The category H̄V of

comodules over the braided Hopf algebra H̄ is equivalent to the tensor product HV⊗ V

of two braided rigid monoidal categories by Theorem 2.6.1. This allows to introduce a

braiding in H̄V.

Indeed, the tensor product

⊗ : (HV⊗ V)× (HV⊗ V) �−→ HV⊗ V⊗ HV⊗ V
1⊗P⊗1−−−−−→ HV⊗ HV⊗ V⊗ V ~⊗~−−−→ HV⊗ V,

(A⊗B)12 = A1′2′ ⊗B1′′2′′ for A,B ∈ HV⊗ V,

(M �X)⊗(N � Y ) = (M ⊗N)� (X ⊗ Y ) for M,N ∈ HV, X, Y ∈ V,

with the corresponding associativity and unit constraints makes (HV⊗ V,⊗, I � I) into

a monoidal category similarly to Section 1.5.
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5.2.1. Proposition. The functorial isomorphism ψ : A12⊗B34 → A13⊗B24, A,B ∈
HV⊗ V, determined by

ψ = 1⊗ c⊗ 1 : M ⊗X ⊗N ⊗ Y →M ⊗N ⊗X ⊗ Y

for M,N ∈ HV, X,Y ∈ V, gives a monoidal equivalence

(~, ψ, r−1
I ) : (HV⊗ V,⊗, I � I)→ (H̄V,⊗, I).

Each of the four isomorphisms

c±± : (M �X)⊗(N � Y ) = (M ⊗N)� (X ⊗ Y )

R±1�c±1

−−−−−−→ (N ⊗M)� (Y ⊗X) = (N � Y )⊗(M �X)

gives a braiding in (HV⊗ V,⊗, I � I). Thus, the category of H̄-comodules is braided as

well.

5.2.2. Corollary. The category (H̄V,⊗, I) has braidings c′±± such that

c′±± =
(
(M ⊗X)⊗ (N ⊗ Y ) 1⊗c⊗1−−−−→M ⊗N ⊗X ⊗ Y

R±1⊗c±1

−−−−−−→ N ⊗M ⊗ Y ⊗X 1⊗c−1⊗1−−−−−−→ (N ⊗ Y )⊗ (M ⊗X)
)

for M,N ∈ HV, X,Y ∈ V.

6. Ribbon Hopf coalgebras. Let us assume that V is braided. Fix the isomorphism

ζ = u2
1 : X → X∨∨. We want to discuss ribbon structures in the categories HV. A ribbon

structure in V is not required.

6.1. Ribbon twists

6.1.1. Definition. A ribbon Hopf coalgebra is a quasitriangular Hopf coalgebra H

equipped with a linear form Θ : H̄ → I ∈ V̂ such that(
I η̄−→ H̄ Θ−→ I

)
= idI , (6.1.1)(

H12 c12−−→ H21 γ12
ζ−−→ H12 Θ−→ I

)
= Θ, (6.1.2)(

H̄ ⊗ H̄ ∆̄⊗∆̄−−−→ H̄ ⊗ H̄ ⊗ H̄ ⊗ H̄ ∆̄⊗Θ⊗H̄⊗Θ−−−−−−−−→ H̄ ⊗ H̄ ⊗ I ⊗ H̄ ⊗ I
∼−→ H̄ ⊗ H̄ ⊗ H̄ H̄⊗c−−−→ H̄ ⊗ H̄ ⊗ H̄ H̄⊗∆̄⊗H̄−−−−−−→
H̄ ⊗ H̄ ⊗ H̄ ⊗ H̄ R+⊗R−−−−−−→ I ⊗ I ∼−→ I

)
=
(
H̄ ⊗ H̄ m̄−→ H̄ Θ−→ I

)
,

(6.1.3)

(
H12

∼−→ H1′2 ⊗ I1′′
∆1′1′′2−−−−→ H1′1′′ ⊗H1′′′2

Θ⊗H−−−→ I1′ ⊗H1′′2
∼−→ H12

)
=
(
H12

∼−→ H12′′ ⊗ I2′
∆12′2′′−−−−→ H12′ ⊗H2′′2′′′

H⊗Θ−−−→ H12′ ⊗ I2′′ ∼−→ H12

)
.(6.1.4)

6.1.2. Theorem. (a) The category HV of comodules over a quasitriangular Hopf

coalgebra H is ribbon if and only if H is ribbon.

(b) A linear form Θ : H̄ → I ∈ V̂ satisfying the equations (6.1.1)–(6.1.4) determines

a ribbon twist in HV by the formula

θX =
(
X δ̄−→ H̄ ⊗X Θ⊗X−−−→ I ⊗X ' X

)
∈ V.



SQUARED HOPF ALGEBRAS 137

(c) A ribbon twist θ in HV determines the unique functional Θ with the properties

(6.1.1)–(6.1.4) via the diagram

X ⊗X∨ θ⊗X∨−−−−→ X ⊗X∨

~ı̈X

y y ev

H̄ ∃Θ−−−−→ I

.
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