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Abstract. The Hamiltonian for an extended Hubbard model with phonons as introduced
by A. Montorsi and M. Rasetti is considered on a D-dimensional lattice. The symmetries of the
model are studied in various cases. It is shown that for a certain choice of the parameters a
superconducting SUq(2) holds as a true quantum symmetry, but only for D = 1.

1. Introduction. In this article we are going to study extensions of the Hubbard

model on a D-dimensional lattice and their symmetries.

The Hubbard model was originally introduced in [1] and is the simplest one describing

systems of itinerant interacting electrons in solid-state physics. Its importance is mainly

due to the fact that it is supposed to describe high-temperature superconductivity.

Since the work of Yang and Zhang [2,3] it has been known that the Hubbard model

has a (SU(2) × SU(2))/Z2-symmetry. This symmetry is the product of two separate

SU(2) symmetries: a “magnetic” symmetry, which accounts for the (antiferro-)magnetic

properties of the electron system, and a “superconductive” symmetry, which is supposed

to give rise to superconductivity when it is broken.

Montorsi and Rasetti investigated whether the symmetry of the standard Hubbard

model can be generalized to a quantum group symmetry of an extended Hubbard model.

In [4] they claim the existence of a “superconductive” SUq(2)-quantum group symme-

try and an unchanged “magnetic” SU(2)-symmetry for a Hubbard model with non-local

phonon interaction. We are able to verify this symmetry for a particular extension of

the Hubbard model, but find it to be restricted to 1-dimensional lattices. Moreover,
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the Quantum Symmetric Hubbard Model is not the standard Hubbard Model with

Phonons.

2. The extended Hubbard model. The Hamiltonian of the extended Hubbard

model is given by [4,5]:

HHub = H
(loc)
el +Hph +H

(loc)
el−ph +H

(non−loc)
el−ph (1)

where

H
(loc)
el = u

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ (2)

Hph =
∑
i

(
~pi

2

2M
+

1

2
Mω2~xi

2

)
(3)

H
(loc)
el−ph = −~λ ·

∑
i

(ni↑ + ni↓)~xi (4)

H
(non−loc)
el−ph =

∑
〈i<j〉

∑
σ

Tija
†
jσaiσ + h.c. (5)

with Tij given by

Tij = te−h̄ζ
~Rij ·~κ exp{ζ ~Rij · (~xi − ~xj) + i~κ · (~pi − ~pj)} (6)

In these expressions the Hamiltonian depends on the operators aiσ, a
†
iσ, ~pi, ~xi, where

aiσ, a
†
iσ are fermionic annihilation/creation operators for an electron with spin σ = {↑, ↓}

at site i, while ~pi, ~xi are momentum and displacement operators for an ion at site i with

the usual commutation relations.

The Hamiltonian also depends on ~Ri which gives the rest position of the the ion at

site i. Note that the expression ~Rij ≡ (~Rj−~Ri)

|~Ri−~Rj |
always has the same module and that in

the one-dimensional case it just amounts to a sign. |~Ri − ~Rj | is the interatomic distance

at equilibrium so that it does not depend on i, j. The explanation of the various terms

composing HHub is the following.

H
(loc)
el is the local electron-electron interaction and is the sum of two terms. The first

one, the on-site repulsion u
∑
i ni↑ni↓, is a reminiscent of the Coulomb repulsion between

the electrons and is determined by the parameter u. The second one, the chemical poten-

tial −µ
∑
i,σ niσ, shows that the Hamiltonian is written in a grand-canonical formalism,

and hence the parameter µ fixes the number of electrons in the lattice.

Hph is the kinetic term for the phonons, which are supposed to be described by a set

of decoupled Einstein oscillators with the same frequency ω and the same mass M .

H
(loc)
el−ph is the local phonon-electron interaction term [6,7], which at each site is an

attractive force proportional to the number of electrons and to the ion displacement with

coupling constant ~λ.

The crucial term is the non-local one. It is a hopping amplitude, and gives the prob-

ability that an electron can jump from one site to another one. Notice that we have

retained only the nearest neighbour terms 〈ij〉 and hence assumed negligible overlap be-

tween all other atomic orbitals. In the extended model this amplitude depends from the
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ion displacement and momentum, so that a non-local interaction between the phonons

and the ions is present.

Let’s study different special cases of the extended Hubbard model and see which

models one can recover.

2.1. Overview of the different models contained in the extended Hubbard model. In the

following table we give a list of the different models contained in the extended Hubbard

model. A more detailed explanation follows in the remarks.

I) Hubbard model with: ζ = 0

a) generic case: ~λ 6= 0, ~κ 6= 0

b) with local phonon interaction: ~λ 6= 0, ~κ = 0
Lang-Firsov-transform.⇐======⇒ c)

c) no local phonon interaction: ~λ = 0, ~κ 6= 0
Mean field approx.

====⇒ Standard Hubbard

model

d) Standard Hubbard model plus decoupled Einstein oscillators: ~λ = 0, ~κ = 0

II) Hubbard model with: ζ 6= 0, but ~κ = 0

a) with local phonon interaction: ~λ 6= 0

b) no local phonon interaction: ~λ = 0

III) General case: ζ 6= 0, ~κ 6= 0, ~λ 6= 0

R e m a r k s. ad I) When ~κ = 0, ζ = 0, but ~λ 6= 0 (case Ib) the Hamiltonian HHub

can be used to describe bipolarons [8], a model in which there is only the local electron-

phonon interaction. Notice that equivalently, it is possible to describe the bipolarons

with an Hamiltonian of the type HHub with ~λ = 0 , but ~κ 6= 0 (case Ic). This can

be done by performing a unitary transformation, the Lang-Firsov transformation [9], on

aiσ, a
†
iσ, pi, xi with a unitary operator

U(~κ) ≡ exp

i~κ ·∑
l,σ

~pl nlσ

 . (7)

Performing a mean-field approximation on the phonon variables (when ~λ = 0), one re-

covers the standard Hubbard model.

ad II) When ~κ = 0 the Hamiltonian HHub describes the Hubbard model with phonons

added. To see this, remember that the hopping amplitude in (5) is originally defined by

Hubbard [1]

Tij =

∫
dDr Ψ∗(~r − ~Ri − ~xi)

(
− h̄

2∇2

2m

)
Ψ(~r − ~Rj − ~xj). (8)

where Ψ(~r − ~Ri) is the Wannier electron wave function. Tij is a function only of ~aij ≡
(~Ri + ~xi) − (~Rj + ~xj). We approximate the Wannier electron functions with atomic

orbitals, which show an asymptotic exponential decay Ψ(~r) ∼ e−ζ|~r| and find

∇~aijT (~aij) =

∫
dDr ζ

(~r − ~aij)
|~r − ~aij |

Ψ∗(~r − ~aij)
h̄2∇2

2m
Ψ(~r). (9)
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Because of the rapid exponential decay of Ψ(~r), we can also neglect ~r in |~r−~aij | so that [10]

∇~aijT (~aij) = −ζ ~aij
|~aij |

T (~aij) (10)

which integrates to T (~aij) = T0e
−ζ|~aij |.

|~aij | = |~Ri− ~Rj +~xi−~xj | can be approximated by |~xi−~xj | � |~Ri− ~Rj | such that [5]

Tij = t exp

(
−ζ (~Ri − ~Rj)

|~Ri − ~Rj |
(~xi − ~xj)

)
(11)

with a new constant t = T0 exp(−ζ|~Ri − ~Rj |).

3. Symmetries of the extended Hubbard model. None of the terms added to

Hubbard model affects the magnetic SU(2)-symmetry. Hence, we shall only be concerned

with the superconductive symmetry of the model in the sequel. Let’s denote the generators

of Uq(su(2)) with X±,H. They satisfy the commutation relations (see e.g. [11]):[
H,X(±)

]
= ±2X(±),

[
X+, X−

]
=
qH − q−H

q − q−1
(12)

3.1. Local commutation relations

Definition. Local representation of the superconductive Uq(su(2)) [4] at each site l:

ρs(X
+) ≡ K(+)

l = e−i
~Φ·~pla†l↑a

†
l↓ (13)

ρs(X
−) ≡ K(−)

l = ei
~Φ~plal↓al↑ = (K

(+)
l )† (14)

ρs(H) ≡ 2K
(z)
l = nl↑ + nl↓ − 1 (15)

The parameter ~Φ appearing in (13),(14) does not affect the Uq(su(2))-commutation

relations, and for the moment it should be regarded as a free variable, which will be

determined by the commutation relations with the Hamiltonian.
~Φ
2 can be interpreted as

the parameter of a Lang-Firsov transformation [9] of the fermionic operators.

Theorem 1. The local part of the Hamiltonian commutes with the local generators[
K

(+)
l , H(loc)

]
=
[
K

(−)
l , H(loc)

]
=
[
K

(z)
l , H(loc)

]
= 0 (16)

if and only if the following conditions are satisfied :

~Φ =
2~λ

h̄Mω2
, (17)

µ =
u

2
− 1

4
Mω2h̄2Φ2 =

u

2
−

~λ2

Mω2
. (18)

3.2. Global commutation relations. Switching signs on ρs(X
±) gives again a represen-

tation of Uq(su(2)). It is necessary to consider both representations, i.e.

ρ±s (X+) = ±ρs(X+), ρ±s (X−) = ±ρs(X−), ρ±s (H) = ρs(H), (19)

if the convention is chosen that fermionic operators on different sites anticommute. For

each lattice site l a sign σ(l) ∈ {1,−1} and the associated representation ρ
σ(l)
s will be
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determined by the symmetry. The local commutation relations are not affected by this

choice.

Further, it is necessary to fix some ordering of the lattice sites to be able to define a

tensor product and hence to construct a global symmetry.

Definition. Global representation of the superconductive Uq(su(2)) [4]:

K(+) =
⊗
l

ρσ(l)
s (∆(N−1)(X+)) =

∑
l

σ(l)
∏
r<l

eαK
(z)
r K

(+)
l

∏
r>l

e−α
∗K(z)

r , (20)

K(−) =
⊗
l

ρσ(l)
s (∆(N−1)(X−)) =

∑
l

σ(l)
∏
r<l

eα
∗K(z)

r K
(−)
l

∏
r>l

e−αK
(z)
r , (21)

K(z) =
⊗
l

ρσ(l)
s (∆(N−1)(H)) =

∑
l

K
(z)
l , (22)

∆ is the coproduct of Uq(su(2)) (see e.g. [11]), α = ln(q) is the deformation parameter,

N is the number of lattice sites.

Theorem 2. The non-local part of the Hamiltonian commutes with the non-local gen-

erators [
K(+), H(non−loc)

]
=
[
K(−), H(non−loc)

]
=
[
K(z), H(non−loc)

]
= 0 (23)

if and only if the following conditions are satisfied :

σ(i) = −σ(j) for i, j nearest neighbours, (24)

2~κ = ~Φ, (25)

Reα = −~Rij · ~Φζh̄, (26)∏
i<r<j

eαK
(z)
r =

∏
i<r<j

e−α
∗K(z)

r . (27)

R e m a r k s t o T h e o r e m 2. Eq. (24) imposes that nearest neighbours must have

opposite signs. This gives a restriction on the possible lattices, e.g. a triangular lattice

could not be chosen.

Eq. (25) fixes the parameter ~Φ of (13),(14) and relates it to the parameter ~κ appearing

in the Hamiltonian HHub (6). As ~κ can be interpreted as the parameter of a Lang-

Firsov transformation on the Hamiltonian, while
~Φ
2 can be interpreted as the parameter

of a Lang-Firsov transformation on the generators of the symmetry, eq. (25) can be

interpreted as a consistency relation, requiring the same transformation to be done on

the Hamiltonian and on the generators.

Eq. (26) determines the real part of the deformation parameter α of the quantum

group. In order for such equation to make sense it is necessary to choose a lexicographic

ordering of the lattice sites, so that the sign of the term ~Rij does not depend on the

particular couple i, j. Notice that there is no restriction on the imaginary part of the

deformation parameter, so that we can safely choose it to be real.

Eq. (27) is a strong condition in the case α 6= 0. It requires that if i, j is a couple of

nearest neighbours then i < r implies j ≤ r , while i > r implies j ≥ r for all r. However,
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such a condition implies that the lattice Λ on which the Hubbard model is defined is

one-dimensional, and that the ‘normal’ ordering of the sites is chosen, in which the sites

are numbered from left to right in increasing or decreasing order.

P r o o f. (Sketch) The fact that K(z) commutes with H(non−loc) given by (5) is im-

mediate.

We have to calculate[
K(+), H(non−loc)

]
=

t
∑
〈i<j〉

e−h̄ζ
~Rij ·~κ

{
(a†i↓a

†
i↑a
†
j↓a
†
j↑ai↑aj↓ − a

†
i↓a
†
i↑a
†
j↓a
†
j↑ai↓aj↑)

×

[
Zij

(
2 cosh

(
1

2
~Rij · ~Φζh̄

)
− 2 cosh

(
1

2
~Rij · ~Φζh̄+

1

2
α∗
))

+ Zji

(
2 cosh

(
1

2
~Rij · ~Φζh̄

)
− 2 cosh

(
1

2
~Rij · ~Φζh̄+

1

2
α

))]

+ (a†i↑a
†
j↓a
†
j↑aj↑ + a†i↓a

†
j↓a
†
j↑aj↓)e

1
2
~Rij ·~Φζh̄

[
Zij(e

1
2α

∗
− 1) + Zji

(
e−

~Rij ·~Φζh̄e−
1
2α − 1

)]

+ (a†i↓a
†
i↑a
†
j↓ai↓ + a†i↓a

†
i↑a
†
j↑ai↑)e

− 1
2
~Rij ·~Φζh̄

[
Zij(e

~Rij ·~Φζh̄e
1
2α

∗
− 1) + Zji(e

− 1
2α − 1)

]

+ (a†i↓a
†
j↑ − a

†
i↑a
†
j↓)

[
Zije

1
2
~Rij ·~Φζh̄e

1
2α

∗
+ Zjie

− 1
2
~Rij ·~Φζh̄e−

1
2α)

]}
+
∑
l

∑
〈i,j〉,i<l<j

σ(l)e−h̄ζ
~Rij ·~κe−i

~Φ·~pla†l↑a
†
l↓

∏
r<l,r 6=i

eαK
(z)
r

∏
r>l,r 6=j

e−α
∗K(z)

r

×
[
eαK

(z)
i e−α

∗K
(z)
j , ei~κ·(~pi−~pj)+ζ ~Rij ·(~xi−~xj)a†j↑ai↑ + a†j↓ai↓ + h.c.

]
.

where we have introduced the abbreviation

Zij = σ(i)e−i(
~Φ−~κ)·~pi−i~κ·~pj+ζ ~Rij ·(~xi−~xj)

∏
r<i,r 6=j

eαK
(z)
r

∏
r>i,r 6=j

e−α
∗K(z)

r . (28)

The sums containing different numbers of fermionic operators must all be separately

zero, because they are linearly independent. (We have chosen a normal ordering in the

fermionic operators.) By studying the term containing a†i↓a
†
j↑ − a

†
i↑a
†
j↓, the conditions

(24)-(27) are obtained. It turns out that the same conditions guarantee that also the

other sums vanish.

3.3. Summary (see the following table)

R e m a r k. After choosing an appropriate ordering of the lattice sites for model III)

in the 1-dimensional case, we set κ = −~Rij · ~κ. The models Ib),Ic) and IIa) have no

symmetry, because the condition 2~κ = 2~λ
h̄Mω2 is not satisfied.
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Classical Symmetry Quantum Symmetry

α = 0 α 6= 0, q = exp(α)

D arbitrary D = 1

Id), IIb): SU(2)s-symmetry; µ = u
2 , III): SUq(2)s-symmetry;

Reα = 2κζh̄,

Ia): SU(2)s-symmetry, µ = u/2− h̄2κ2Mω2, ~λ = h̄Mω2~κ

if µ = u/2− h̄2~κ2Mω2, ~λ = h̄Mω2~κ

Ib),Ic),IIa): no symmetry

4. Discussion. The standard Hubbard model Id) (with decoupled Einstein oscil-

lators) and the Hubbard model IIb) without local phonon interaction (~λ = 0) have a

superconductive SU(2)s symmetry at “half-filling” µ = u/2. Two other models Ia),

III) with local phonon interaction (λ 6= 0) have superconducting symmetries SU(2)s
and SUq(2)s respectively at µ = u/2 − h̄2κ2Mω2. It is well known [9] that a Lang-

Firsov transformation can be performed on the model Ia), shifting the parameters and

thereby eliminating the local phonon interaction ~λ. The resulting Hamiltonian has a

SU(2)s-symmetry at “half-filling” µ = u/2. It turns out that a Lang-Firsov transfor-

mation with the unitary operator (7) can also be used to eliminate the local electron-

phonon interaction term from the Extended Hubbard Model. The parameters are shifted

according to

~λ→ ~λ−Mω2h̄~κ, u→ u− 2h̄~λ · ~κ+Mω2h̄2~κ2, µ→ µ+ h̄~λ · ~κ− 1/2Mω2h̄2~κ2 (29)

and the hopping term H
(non−loc)
el−ph becomes

t
∑
〈i<j〉,σ

eζ
~Rij ·(~xi−~xj)q

1
2 a†jσaiσ

(
1 + (q−

1
2 − 1)ni,−σ

)(
1 + (q

1
2 − 1)nj,−σ

)
+ h.c. (30)

The resulting Hamiltonian has a superconducting SUq(2)s quantum symmetry at “half

filling” µ = u/2 (!) with ~λ = 0 and only for D = 1.

It is even possible to eliminate all phonon terms from this Quantum Symmetric Hamil-

tonian by a mean field approximation [8,9] without breaking the quantum symmetry. More

precisely one performs a thermal average over Hph-eigenstates and assumes uncorrelated

Einstein oscillators (note that ~λ = 0 !). The exponential in the hopping term is then

approximated by a temperature-dependent constant.
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