ON *-REPRESENTATIONS OF $U_{q}(s l(2))$: MORE REAL FORMS

EDUARD VAYSLEB
Department of Mathematics, UCLA
405 Hilgard Ave., Los Angeles, California 90095-1555, USA
E-mail: evaysleb@math.ucla.edu

Dedicated to M.P.

Abstract

The main goal of this paper is to do the representation-theoretic groundwork for two new candidates for locally compact (nondiscrete) quantum groups. These objects are real forms of the quantized universal enveloping algebra $U_{q}(s l(2))$ and do not have real Lie algebras as classical limits. Surprisingly, their representations are naturally described using only bounded (in one case only two-dimensional) operators. That removes the problem of describing their Hopf structure "on the Hilbert space level" ([W]).

1. Real forms of $U_{q}(s l(2))$ - algebraic preliminaries. There are several Hopf algebras over \mathbb{C} known by the same name $U_{q}(s l(2))$ (here we deal with a complex $q \neq-1,0,1$). The first one is given by the simply-connected rational form of Drinfeld's "Poisson-Lie deformation algebra" $U_{h}(s l(2))$ (see e.g. [CP, sec. 9.1]); it was introduced by Jimbo in [J] as $U_{q}^{(1)}=\left\langle k, k^{-1}, e, f\right\rangle$ with the relations

$$
\begin{gathered}
k k^{-1}=k^{-1} k=1 \\
k e=q e k ; \quad k f=q^{-1} f k \\
e f-f e=\frac{k^{2}-k^{-2}}{q-q^{-1}} \\
\Delta(k)=k \otimes k ; \Delta(e)=e \otimes 1+k^{2} \otimes e ; \Delta(f)=f \otimes k^{-2}+1 \otimes f \\
\varepsilon\left(k^{ \pm 1}\right)=1 ; \quad \varepsilon(e)=\varepsilon(f)=0 \\
S(k)=k^{-1} ; S(e)=-k^{-2} e ; S(f)=-f k^{2} .
\end{gathered}
$$

The other one is associated to the adjoint form of $U_{h}(s l(2))$ and is defined (see e.g. [L])

[^0]as $U_{q}^{(2)}=\left\langle K, K^{-1}, E, F\right\rangle$ with the relations
\[

$$
\begin{gather*}
K K^{-1}=K^{-1} K=1 \\
K E=q^{2} E K ; \quad K F=q^{-2} F K \tag{1}\\
E F-F E=\frac{K-K^{-1}}{q-q^{-1}} \\
\Delta(K)=K \otimes K ; \Delta(E)=E \otimes 1+K \otimes E ; \Delta(F)=F \otimes K^{-1}+1 \otimes F \\
\varepsilon\left(K^{ \pm 1}\right)=1 ; \varepsilon(E)=\varepsilon(F)=0 \\
S(K)=K^{-1} ; S(E)=-K^{-1} E ; S(F)=-F K .
\end{gather*}
$$
\]

For a fixed q we see that $U_{q}^{(2)}$ is a Hopf subalgebra of $U_{q}^{(1)}$ generated by $k^{2}=K, k^{-2}=$ $K^{-1}, e=E, f=F$. As explained in [CP, sec. 9.1] these two Hopf algebras are in some sense the only rational forms of $U_{h}(s l(2))$.

Definition 1. A real form or a Hopf*-algebraic structure of a Hopf algebra A is a conjugate-linear map on $A: a \rightarrow a^{*}$ such that
(i) $1^{*}=1,(a b)^{*}=b^{*} a^{*},\left(a^{*}\right)^{*}=a$ for all $a, b \in A$ (in other words $(A, *)$ is a *-algebra);
(ii) $\varepsilon\left(a^{*}\right)=\overline{\varepsilon(a)}, \Delta\left(a^{*}\right)=((* \otimes *) \Delta)(a)$ for all $a \in A$ (i.e. the counit ε and comultiplication Δ are ${ }^{*}$-homomorphisms).

Two *-algebras $\left(A_{1}, *_{1}\right)$ and $\left(A_{2}, *_{2}\right)$ are equivalent if there is an algebraic isomorphism $\phi: A_{1} \rightarrow A_{2}$ such that $\phi \circ *_{1}=*_{2} \circ \phi$. If ϕ is also a coalgebraic isomorphism we say that $\left(A_{1}, *_{1}\right)$ and $\left(A_{2}, *_{2}\right)$ are equivalent Hopf ${ }^{*}$-algebras.

The list of all Hopf ${ }^{*}$-algebraic structures of $U_{q}^{(1)}$ was given in [MM], they exist only for $q \in \mathbb{R}$ or $|q|=1$ and are the following:

$$
\begin{aligned}
& s u_{q}^{(1)}(2): k^{*}=k, e^{*}=f k^{2}, f^{*}=k^{-2} e ; \quad q \in \mathbb{R} \\
& s u_{q}^{(1)}(1,1): k^{*}=k, e^{*}=-f k^{2}, f^{*}=-k^{-2} e ; \quad q \in \mathbb{R}, \\
& s l_{q}^{(1)}(2, \mathbb{R}): k^{*}=k, e^{*}=e, f^{*}=f ; \quad|q|=1 .
\end{aligned}
$$

Remark 1. As an associative algebra A has two more ${ }^{*}$-structures on which the condition (i) of definition 1 is satisfied but the comultiplication fails to be *-homomorphic. These *-algebras and their interesting representation theory are discussed in [V1].

The list of real forms of $U_{q}^{(2)}$ is given by Twietmeyer in [T] (in fact he describes the real forms for all $U_{q}(\mathcal{G})$ where \mathcal{G} is a simple Lie algebra); it contains five Hopf *-algebras (see also [CP, p.310]):

$$
\begin{aligned}
& s u_{q}^{(2)}(2): K^{*}=K, E^{*}=F K, F^{*}=K^{-1} E ; \quad q \in \mathbb{R} ; \\
& s u_{q}^{(2)}(1,1): K^{*}=K, E^{*}=-F K, F^{*}=-K^{-1} E ; \quad q \in \mathbb{R} ; \\
& s l_{q}^{(2)}(2, \mathbb{R}): K^{*}=K, E^{*}=E, F^{*}=F ; \quad|q|=1 ; \\
& A_{4}(q): K^{*}=K, E^{*}=i F K, F^{*}=i K^{-1} E ; \quad q \in i \mathbb{R} ; \\
& A_{5}(q): K^{*}=K, E^{*}=-i F K, F^{*}=-i K^{-1} E ; \quad q \in i \mathbb{R} .
\end{aligned}
$$

Observation. There is a natural correspondence between the real forms of $U_{q}^{(1)}$ and the first three real forms of $U_{q}^{(2)}$, namely $s u_{q}^{(2)}(2), s u_{q}^{(2)}(1,1), s l_{q}^{(2)}(2, \mathbb{R})$ are subHopf
*-algebras of respectively $s u_{q}^{(1)}(2), s u_{q}^{(1)}(1,1), s l_{q}^{(1)}(2, \mathbb{R})$ each generated by $k^{ \pm 2}, e, f$.
These Hopf *-algebras have the corresponding classical objects (cocommutative Hopf *-algebras built on real forms of $s l(2))$ as their limits at $q=1$ (see e.g. [CP]).

We want to study the real forms $A_{4}(q)$ and $A_{5}(q)$ of $U_{q}^{(2)}$ which do not have obvious classical limits because their quantization parameter q is in the domain $i \mathbb{R}$ which does not contain 1.

Let us first use some symmetries of $U_{q}(s l(2))$ to establish equivalences of these real forms.

Proposition 1. (a) The Hopf isomorphism $U_{q}^{(2)} \rightarrow U_{-q}^{(2)}$ sending $K \rightarrow K, E \rightarrow E$, $F \rightarrow-F$ makes $A_{4}(q)$ and $A_{5}(-q)$ equivalent Hopf ${ }^{*}$-algebras for all $q \in i \mathbb{R}$.
(b) The antipode $S: K \rightarrow K^{-1}, E \rightarrow-K^{-1} E, F \rightarrow-F K$ can be viewed as an algebraic isomorphism $U_{q}^{(2)} \rightarrow U_{q^{-1}}^{(2)}$. It yields the following: for all $q \in i \mathbb{R}$

$$
A_{4}(q) \cong A_{4}\left(q^{-1}\right), \quad A_{5}(q) \cong A_{5}\left(q^{-1}\right) \quad \text { as }{ }^{*} \text {-algebras }
$$

(c) An algebraic isomorphism $U_{q}^{(2)} \rightarrow U_{-q}^{(2)}$ sending
$K \rightarrow K^{-1}, E \rightarrow-q F, F \rightarrow q^{-1} E$ gives: for all $q \in i \mathbb{R}$

$$
A_{4}(q) \cong A_{4}(-q), \quad A_{5}(q) \cong A_{5}(-q) \quad \text { as *-algebras }
$$

(d) The equivalent pairs listed in $(b),(c)$ are not equivalent as Hopf *-algebras.

Proof of (d). The coalgebraic structure of $U_{q}^{(2)}$ does not depend on the parameter q. By [T] for any coalgebraic isomorphism $\phi: U_{q_{1}}^{(2)} \rightarrow U_{q_{2}}^{(2)}$ we must have

$$
\phi(K)=K, \quad \phi(E)=\alpha F K+\beta E, \quad \phi(F)=\gamma F+\delta K^{-1} E .
$$

It is easy to check that no such map can be a *-algebraic isomorphism between $A_{4}(q)$ and $A_{4}\left(q^{-1}\right)$ or between $A_{4}(q)$ and $A_{4}(-q)$.

Thus the real forms $A_{4}(q)$ and $A_{5}(q)$ are in fact only one Hopf *-algebra. We will choose to consider it as $A_{5}(q)$ and denote this real form $s u_{q, i}(2)$. So we assume from now on:

$$
K^{*}=K, \quad E^{*}=-i F K, \quad F=i E^{*} K^{-1}
$$

2. *-Representations of $s u_{q, i}(2)$. Let us use the real parameter $p=i q^{-1}$. By Proposition 1 it is enough to consider the case $p \in(0,1]$.Then $s u_{q, i}(2)$ is the ${ }^{*}$-algebra generated by K, K^{-1}, E with the relations: $K K^{-1}=K^{-1} K=1$ and

$$
\begin{align*}
& K E=-p^{-2} E K ; \quad K E^{*}=-p^{2} E^{*} K \tag{2}\\
& E E^{*}+p^{2} E^{*} E=\frac{p}{1+p^{2}}\left(I-K^{2}\right) \tag{3}
\end{align*}
$$

We see from (3) that in the sense of the usual ${ }^{*}$-algebraic ordering (i.e. $a^{*} a \geq 0$ for all a):

$$
0 \leq K^{2} \leq I, \quad 0 \leq E E^{*} \leq \frac{p}{1+p^{2}} I, \quad 0 \leq E^{*} E \leq \frac{1}{p\left(1+p^{2}\right)} I
$$

In order to be able to avoid unbounded operators (for some time at least) let us take the following definition:

DEFINITION 2. By a representation of the ${ }^{*}$-algebra $s u_{q, i}(2)$ we understand a pair of bounded operators $K=K^{*}$ and E on a Hilbert space \mathcal{H} such that: (i) the operators K, E, E^{*} satisfy the relations (2) and (3); (ii) the operator K has an (unbounded) inverse K^{-1}, i.e. $\operatorname{Ker} K=0$.

Let us start with the "quasiclassical" situation when $q=i(p=1)$. In this case the relations (2), (3) transform into:

$$
\begin{align*}
& K E=-E K ; \quad K E^{*}=-E^{*} K \tag{4}\\
& E E^{*}+E^{*} E=\frac{1}{2}\left(I-K^{2}\right) \tag{5}
\end{align*}
$$

Proposition 2. For $q=i$ the *-algebra su ${ }_{q, i}(2)$ has the following irreducible representations:

1) one-dimensional: $K= \pm 1, E=E^{*}=0$;
2) two-dimensional;
a) degenerate;

$$
K= \pm s\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\sqrt{\frac{1-s^{2}}{2}}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)
$$

where $s \in(0,1)$;
b) nondegenerate

$$
K= \pm s\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\sqrt{\frac{1-s^{2}}{2}}\left(\begin{array}{cc}
0 & t \zeta \\
\sqrt{1-t^{2}} & 0
\end{array}\right)
$$

where $s \in(0,1), t \in(0,1),|\zeta|=1$.
Observe at this point that in every irreducible representation the operators K^{-1} and $F=i E^{*} K^{-1}$ are bounded - so there will be no problem to consider the comultiplication on the representation level. Recall that such problems do arise for the quantum groups $E_{q}(2)$ and $S U_{q}(1,1)$ ([W]).

Proof. It follows from (4) that K^{2} commutes with everything, so irreducibility implies

$$
K^{2}=\text { const } I
$$

Since $0 \leq K^{2} \leq I$ and $\operatorname{Ker}^{2}=K e r K=0$ we can write

$$
K^{2}=s^{2} I, \quad s \in(0,1] .
$$

If $K^{2}=I$ (i.e. $s=1$) the relation (5) gives

$$
E E^{*}+E^{*} E=0 \Rightarrow E=E^{*}=0
$$

Otherwise for $\widetilde{K}=\widetilde{K}^{*}=\frac{1}{s} K, \widetilde{E}=\sqrt{\frac{2}{1-s^{2}}} E$ we have

$$
\widetilde{K}^{2}=I ; \quad \widetilde{K} \widetilde{E}+\widetilde{E} \widetilde{K}=0 ; \quad \widetilde{K} \widetilde{E}^{*}+\widetilde{E}^{*} \widetilde{K}=0 ; \quad \widetilde{E} \widetilde{E}^{*}+\widetilde{E}^{*} \widetilde{E}=I
$$

which is very close to the canonical anticommutation relations. Now we use the standard CAR representation technique: Let $\widetilde{K}, \widetilde{E}, \widetilde{E}^{*}$ act on a Hilbert space \mathcal{H}. Consider the orthogonal decomposition $\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$such that \widetilde{K} acts as $\pm I$ on $\mathcal{H}_{ \pm}$. Then the relations imply that $\widetilde{E}\left(\mathcal{H}_{ \pm}\right)=\mathcal{H}_{\mp}, \widetilde{E}^{*}\left(\mathcal{H}_{ \pm}\right)=\mathcal{H}_{\mp}$, and besides $\widetilde{E}^{2},\left(\widetilde{E}^{*}\right)^{2}$ commute with
everything and so are central. This means every irreducible representation has dimension 2. The rest is just computation.

Theorem 1. For $p=i q^{-1} \in(0,1)$ the ${ }^{*}$-algebra $s u_{q, i}(2)$ has the following irreducible representations:

1) one-dimensional: $K= \pm 1, E=E^{*}=0$;
2) infinite-dimensional degenerate:

$$
\begin{gathered}
K= \pm s \operatorname{diag}\left(1,-p^{2}, p^{4},-p^{6}, \ldots\right) \\
E=\left(\begin{array}{cccccc}
0 & \sqrt{\mu_{1}} & 0 & \ldots \ldots & \ldots & \\
\cdots & 0 & \sqrt{\mu_{2}} & 0 & \ldots & \ldots \\
\cdots & \ldots & 0 & \sqrt{\mu_{3}} & 0 & \ldots \\
\ldots & \ldots & \ldots & \ddots & \ddots & \ddots
\end{array}\right)
\end{gathered}
$$

where $s \in(0,1), \mu_{n}=\frac{p}{\left(1+p^{2}\right)^{2}}\left\{1-\left(-p^{2}\right)^{n}\right\}\left[1-s^{2}\left(-p^{2}\right)^{n-1}\right], n \geq 1$.
We will give a self-contained ad hoc argument. A more general technique for the representations (possibly unbounded) of *-algebras of the type (2),(3) is given in [V2] and used in [V1]. It is closely related to the Mackey imprimitivity systems.

Proof of Theorem 1. Denote $C=E^{*} E \geq 0$. Consider the polar decomposition $E=U|E|$ of operator E, where a nonnegative $|E|$ and a partial isometry U are such that

$$
|E|^{2}=E^{*} E=C, \quad \operatorname{Ker}|E|=K e r U=K e r E
$$

Then from (2) we have

$$
K C=K E^{*} E=-p^{2} E^{*} K E=E^{*} E K=C K
$$

so K and C are commuting selfadjoint operators. Also from (2):

$$
K U|E|=-p^{-2} U|E| K=-p^{-2} U K|E|
$$

Since U and $|E|$ have the same (K-invariant) nullspace this relation is equivalent to

$$
\begin{equation*}
K U=-p^{-2} U K, \quad K U^{*}=-p^{2} K U^{*} \tag{6}
\end{equation*}
$$

Claim: The partial isometry U must have a nullspace. Suppose it does not, then $U^{*} U=I$. In this case (6) gives

$$
U^{*} K^{2} U=p^{-4} K^{2} \Longrightarrow \operatorname{Spec}\left(p^{-4} K^{2}\right) \subseteq \operatorname{Spec}\left(K^{2}\right)
$$

But since $p^{-4}>1$ and $K^{2}>0$ we see that K^{2} is unbounded. This cannot be since (3) means $K^{2} \leq I$.

Next we want to show that, unless we have the trivial case $E=E^{*}=0$, operator U^{*} must be an isometry. Since $E^{*}=|E| U^{*}$ the relation (3) in polar coordinates becomes:

$$
\begin{equation*}
U C U^{*}=\frac{p}{1+p^{2}}\left(I-K^{2}\right)-p^{2} C \tag{7}
\end{equation*}
$$

Consider the subspace $\mathcal{K}=K \operatorname{Ker} U \cap K e r U^{*}$. Then (6) shows it is K-invariant. Besides, $\operatorname{Ker} E=K e r U$ implies $E=0$ and also we have $E^{*}=|E| U^{*}=0$ on this subspace. So \mathcal{K} is an invariant subspace and (7) shows that $\left.K^{2}\right|_{\mathcal{K}}=I$ - this gives us one-dimensional irreducible representations.

Claim: Let $\xi \in \operatorname{Ker} U^{*} \cap(\operatorname{Ker} U)^{\perp}$ then $\xi=0$. To prove it take $\eta=U \xi$, then we have $\|\eta\|=\|\xi\|$ and $U^{*} \eta=\xi, U^{*} \xi=0$. Now (7) shows:

$$
U C U^{*} \xi=0=\frac{p}{1+p^{2}}\left(I-K^{2}\right) \xi-p^{2} C \xi \Longrightarrow C \xi=\frac{p^{-1}}{1+p^{2}}\left(I-K^{2}\right) \xi
$$

so we compute:

$$
\begin{gathered}
\frac{p}{1+p^{2}}\left(I-K^{2}\right) \eta-p^{2} C \eta \stackrel{(7)}{=} U C U^{*} \eta=U C \xi=U \frac{p^{-1}}{1+p^{2}}\left(I-K^{2}\right) \xi \stackrel{(6)}{=} \\
=\frac{p^{-1}}{1+p^{2}}\left(I-p^{4} K^{2}\right) U \xi=\frac{p^{-1}}{1+p^{2}}\left(I-p^{4} K^{2}\right) \eta
\end{gathered}
$$

But then $p^{2} C \eta=-\frac{1-p^{2}}{1+p^{2}}\left(p^{-1} I+p K^{2}\right) \eta$. Now recall that $0<p<1$ and C and K^{2} are nonnegative operators. We have a contradiction, unless $\eta=0 \Rightarrow \xi=U^{*} \eta=0$.

Now we know that there is a nonzero subspace $\mathcal{H}_{0}=\operatorname{Ker} U$, and U^{*} is an isometry. Then we have an orthogonal decomposition:

$$
\mathcal{H}=\mathcal{H}_{0} \oplus U^{*} \mathcal{H}_{0} \oplus\left(U^{*}\right)^{2} \mathcal{H}_{0} \oplus \ldots
$$

Again (6) shows that $K: \mathcal{H}_{0} \rightarrow \mathcal{H}_{0}$; denote $K_{0}=\left.K\right|_{\mathcal{H}_{0}}$. Then each $\mathcal{H}_{n}=\left(U^{*}\right)^{n} \mathcal{H}_{0}$ is also K-invariant and $K_{n}=\left.K\right|_{\mathcal{H}_{n}}=\left(-p^{2}\right)^{n} K_{0}$. Besides, $C_{0}=\left.C\right|_{\mathcal{H}_{0}}=0$, and (7) means:

$$
C_{n+1}=\left.C\right|_{\mathcal{H}_{n+1}}=\frac{p}{1+p^{2}}\left(I-K_{n}^{2}\right)-p^{2} C_{n}
$$

If there is a nontrivial projection P_{0} on \mathcal{H}_{0} that commutes with K_{0}, then $P_{1}=$ $U^{*} P_{0} U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ commutes with K_{1} and C_{1}, also $P_{2}=\left(U^{*}\right)^{2} P_{0} U^{2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ commutes with K_{2} and C_{2}, and so on. This would produce a nontrivial projection $P_{0} \oplus$ $P_{1} \oplus P_{2} \oplus \ldots$ on \mathcal{H} commuting with everything. So in the irreducible situation \mathcal{H}_{0} must be a one- dimensional eigenspace $\left\langle\xi_{0}\right\rangle$ for K with an eigenvalue $\kappa_{0} \neq 0$ (since $K e r K=0$). Then every $\mathcal{H}_{n}=\left\langle\xi_{n}=\left(U^{*}\right)^{n} \xi_{0}\right\rangle$ is a one-dimensional eigenspace for K and C with the eigenvalues determined by the formulas:

$$
\kappa_{n+1}=-p^{2} \kappa_{n}, \quad c_{n+1}=\frac{p}{1+p^{2}}\left(1-\kappa_{n}^{2}\right)-p^{2} c_{n}
$$

This gives all irreducible representations of the relations (6),(7) and we have to pick those for which $C \geq 0$. It is equivalent to the condition: $c_{n}>0$ for all $n \geq 1$ (since the corresponding $\xi_{n} \perp \mathcal{H}_{0}=\operatorname{Ker} C$) or $\kappa^{2}<1$ - so we parametrize $\kappa= \pm s, s \in(0,1)$.

Note that if we want we could represent the relations (2),(3) with no extra conditions on K. The relations (2):

$$
K E=-p^{-2} E K ; \quad K E^{*}=-p^{2} E^{*} K
$$

by themselves mean that the nullspace $\operatorname{Ker} K$ is an invariant subspace. So we have some irreducible representations of (2),(3) with $K=0$ and

$$
E E^{*}+p^{2} E^{*} E=\frac{p}{1+p^{2}} I
$$

These representations correspond to a boundary degenerate form of our quantum *algebra $s u_{q, i}(2)$.

Proposition 3. Besides the representations listed in Theorem 1 the relations (2), (3) have the following irreducible representations:

1) one-dimensional: $K=0, E=\frac{\sqrt{p}}{1+p^{2}} \zeta$; where $|\zeta|=1$;
2) infinite-dimensional: $K=0$,

$$
E=\left(\begin{array}{cccccc}
0 & \sqrt{\mu_{1}} & 0 & \ldots \ldots & \ldots & \\
\ldots & 0 & \sqrt{\mu_{2}} & 0 & \ldots & \ldots \\
\cdots & \cdots & 0 & \sqrt{\mu_{3}} & 0 & \ldots \\
\ldots & \ldots & \ldots & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $\mu_{n}=\frac{p}{\left(1+p^{2}\right)^{2}}\left\{1-\left(-p^{2}\right)^{n}\right\}, n \geq 1$.
The proof is a simpler version of the argument in the proof of Theorem 1.

References

[CP] A. Pressley, V. Chari, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994.
[J] M. Jimbo, A q-difference analog of $U(\mathcal{G})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[L] G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82. Classical groups and related topics, Amer. Math. Soc., Providence, 1990, pp. 59-77.
[MM] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, Y. Saburi, K. Ueno, Unitary representations of the quantum group $S U_{q}(1,1)$, Lett. Math. Phys. 19 (1990), 187204.
[T] E. Twietmeyer, Real forms of $U_{q}(\mathcal{G})$, Lett. Math. Phys. 24 (1992), 49-58.
[V1] E. Vaysleb, Infinite-dimensional ${ }^{*}$-representations of the Sklyanin algebra and of the quantum algebra $U_{q}(s l(2))$, Selecta Mathematica formerly Sovietica 12 (1993), 57-73.
[V2] E. Vaysleb, Collections of commuting selfadjoint operators satisfying some relations with a non-selfadjoint one, Ukrain. Matem. Zh. 42 (1990), 1258-1262; Engish transl. in Ukrain. Math. J. 42 (1990), 1119-1123.
[W] S. L. Woronowicz, Unbounded elements affiliated with C^{*}-algebras and non-compact quantum groups, Commun. Math. Phys. 136 (1991), 399-432.

[^0]: 1991 Mathematics Subject Classification: Primary 17B37; Secondary 16W30.
 The paper is in final form and no version of it will be published elsewhere.

