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Abstract. By allowing the coproduct to be non-unital and weakening the counit and an-
tipode axioms of a C∗-Hopf algebra too, we obtain a selfdual set of axioms describing a coas-
sociative quantum group, that we call a weak C∗-Hopf algebra, which is sufficiently general to
describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can
be obtained by replacing the multiplicative unitary of Baaj and Skandalis with a partial isome-
try. The algebraic properties, the existence of the Haar measure and representation theory are
briefly discussed. An algorithm is explained how to construct examples (in particular ones with
non-integral dimensions) from non-Abelian cohomology.

1. Introduction. Recently the notion of weak C∗-Hopf algebra has been proposed

[3] to describe the symmetry underlying a (strict) monoidal compact C∗-category gene-

rated by finitely many irreducible objects. Finite dimensional weak C∗-Hopf algebras are

the proper generalizations of finite groups which cover also the situations where the in-

trinsic dimensions dq of some irreducible representations have non-integral values. Weak

Hopf algebras provide an axiomatic approach corresponding to—and in a certain sense

generalizing—the combinatorial concept of ‘quantum groupoids’ proposed by A. Ocne-

anu [12]. In contrast to weak quasi Hopf algebras [10] and rational Hopf algebras [16],

weak Hopf algebras have the advantage of being coassociative. This allows one to define

actions of the symmetry and leads to the notion of a crossed product algebra within

the C∗-algebra framework. The price one has to pay for having coassociativity and non-

integral dimensions at the same time is that the counits of weak Hopf algebras are not
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algebra maps (weak Hopf algebras do not have 1-dimensional representations) in general.

The notion of the weak Hopf algebra seems to provide the appropriate symmetry concept

for finite index reducible depth 2 inclusions of factors [11]. It may be important also to

the problem of quantum symmetry in low dimensional quantum field theories [6, 13, 14]

in the sense of the Doplicher–Roberts theory [4].

The way a weak Hopf algebra manages to remain coassociative while having a repre-

sentation category equivalent to that of a relaxed monoidal category can be visualized by

the ”blowing up” procedure. Let H be a quasi-Hopf algebra and define A = H⊗Mn. The

irreducible representations of H are clearly in one-to-one correspondence with those of

the blown up algebra A. Now the point is that there is more flexibility in skrooching the

coproduct on A than in H. Thus one may expect that if n is large enough an appropriate

skrooching will turn the coproduct on A to be coassociative. This was explicitely checked

on the example of the quasi-double of a finite group in [3].

We do not claim, however, that every weak Hopf algebra arises as a blowing up of

a (weak) quasi-Hopf algebra. In fact the interesting cases are the ones with non-integral

dimensions and these never arise in this way.

In Sect.2 we briefly review the main properties of weak Hopf algebras in the axiomatic

approach, without proofs. Namely: we consider the definition of the dual of a finite

dimensional weak C∗-Hopf algebra, the representation theory and the existence of a

Haar integral. The details will be published in [1].

The characteristic feature distinguishing a weak C∗-Hopf algebra A from a Hopf

algebra is the occurence of certain sub-C∗-algebras AL and AR within A that behave

like non-commutative generalizations of the number field |C in many senses. For example,

every representation of a pure weak C∗-Hopf algebra A represents AL and AR faithfully.

Or, the crossed product M>/A of a C∗-algebra M with respect to a left action of A

on M is an amalgamated tensor product M ⊗AL A where AL gets identified with an

appropriate subalgebra in M . In the Weyl algebra Â>/A this subalgebra is just ÂR.

There is a generalization of Drinfeld’s quantum double A ./ Â [5] for a weak C∗-Hopf

algebra A which, as a linear space, turns out to be the amalgamated tensor product of

A and Â with the identifications AR ∼= ÂL and AL ∼= ÂR (‘cyclic’ amalgamation). This

double has again the structure of a weak C∗-Hopf algebra.

In Sect.3 we discuss Ocneanu’s quantum cohomology [12], which allows one to con-

struct a weak Hopf algebra from the data (K,F ) where K is a finite simplicial com-

plex having only two vertices • and ◦ and F is an appropriate 3-cocycle on K. A

subcomplex K• of K and the restriction F0 = F |K• form the data (K•, F0) deter-

mined up to equivalence uniquely by a monoidal category C. The edges of K• corre-

spond to irreducible objects r, the faces to intertwiners T : r → p × q, and the val-

ues of F0 on the tetrahedra to the recoupling coefficients of C. There exist several

possible ways to extend the data (K•, F0) to (K,F ), but each such extension de-

termines a unique weak C∗-Hopf algebra A the 6-j symbols of which are given pre-

cisely by F0. Among the various possibilities there exists a ”canonical” one which as-

signs to C a selfdual weak C∗-Hopf algebra A ∼= Â as its underlying symmetry alge-

bra.
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Weak Hopf algebras are also related to a generalization of the multiplicative unitary

of [2]. Let H be a finite dimensional Hilbert space and V be a partial isometry on H⊗H.

We call V a multiplicative isometry if the following relations hold on H⊗H⊗H:

V12V13V23 = V23V12 V13V23V
∗
23 = V ∗12V12V13

V ∗23V12V13 = V12V
∗
23 V12V

∗
12V23 = V23V12V

∗
12

If A is a weak C∗-Hopf algebra with a basis {bi} and {βi} is the dual basis in Â then

V =
∑
i βi ⊗ bi becomes a multiplicative isometry in any representation of the Weyl

algebra A>/Â. Under certain regularity conditions on V this is the most general example of

a multiplicative isometry and the weak C∗-Hopf algebra A can be uniquely reconstructed

from V . We wish to discuss this problem in a subsequent publication.

2. Weak C∗-Hopf algebras. In the sequel we will use Sweedler’s notation [15]: For

a coproduct ∆:A→ A⊗A we write ∆(x) = x(1)⊗x(2). Using coassociativity the iterated

coproduct x(1) ⊗ x(2)(1) ⊗ x(2)(2) can be simply written as x(1) ⊗ x(2) ⊗ x(3).
A weak ∗-Hopf algebra is a ∗-algebra A with unit 11 together with linear maps ∆:A→

A ⊗ A, ε:A → |C, and S:A → A called the coproduct, the counit, and the antipode

respectively, if the following axioms hold:

∆(xy) = ∆(x)∆(y) (A.1a)

∆(x∗) = ∆(x)∗ (A.1b)

(∆⊗ id) ◦∆ = (id ⊗∆) ◦∆ (A.1c)

ε(xy) = ε(x11(1))ε(11(2)y) (A.2a)

ε(x∗x) ≥ 0 (A.2b)

(ε⊗ id) ◦∆ = id = (id ⊗ ε) ◦∆ (A.2c)

S(xy) = S(y)S(x) (A.3a)

S ◦∗ ◦ S ◦∗ = id (A.3b)

∆ ◦ S = (S ⊗ S) ◦∆op (A.3c)

S(x(1))x(2) ⊗ x(3) = 11(1) ⊗ x11(2) (A.4a)

for all x, y ∈ A.

The weak ∗-algebra A is quasitriangular if there exists an element R ∈ A ⊗ A such

that

R∆(x) = ∆op(x)R

RR∗ = ∆op(11) R∗R = ∆(11)

(id⊗∆)(R) = R13R12 (∆⊗ id)(R) = R13R23

If furthermore A possesses a faithful ∗-representation on a Hilbert space it is called a

weak C∗-Hopf algebra.

In the case when A is a finite dimensional C∗ algebra the axiom (A.2b) may be

replaced with the apparently weaker requirement that ε be ∗-preserving: ε◦∗ = ¯ ◦ ε.
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(̄ means complex conjugation.) The resulting set of axioms is then equivalent to (A.1−4)

above.

In order to recover the axioms (and some of their consequences) of a (C)∗-Hopf alge-

bra, we can add either the condition that the coproduct be unital or that ε be multipli-

cative or that the maps ΠL/R defined by

ΠL(x) := x(1)S(x(2)) , ΠR(x) := S(x(1))x(2) (2.1)

both reduce to 11ε(x). In our more general case these maps – though are not conditional

expectations– are linear projections onto nontrivial ∗-subalgebras AL and AR, respec-

tively, that are isomorphic to each other. AL lies in the relative commutant of AR. The

antipode S maps them onto each other. The restriction of 1
ε(1)ε is a faithful state both

on AL and AR, so these subalgebras are faithfully represented in the GNS representation

corresponding to this state, called the trivial representation. One also proves that ∆(11)

lies in AR ⊗AL.

The dual Â of A is defined to be the space of linear functionals ϕ on A and is equipped

with a multiplication and a comultiplication obtained by tranposing the comultiplication

and multiplication of A w.r.t the canonical pairing 〈 , 〉: Â × A → |C. The unit element

of Â is 1̂1 := ε. The antipode Ŝ and the ∗-operation of Â are defined respectively by

〈Ŝ(ϕ), x〉 = 〈ϕ, S(x)〉 (2.2)

〈ϕ∗, x〉 = 〈ϕ, S(x)∗〉 (2.3)

It is proven in [3] that if (A, 11,∆, ε, S) satisfies Axioms (A1–4) and dimA is finite then

(Â, 1̂1, ∆̂, ε̂, Ŝ) satisfies Axioms (A1–4), too. That is the notion of a finite dimensional

weak ∗-Hopf algebra is selfdual.

The representation theory of a finite dimensional weak C∗-Hopf algebra A generalizes

the one of a finite group (i.e it is a ’finite quantum group’) in the sense that the ca-

tegory RepA, whose objects are the finite dimensional (not necessarily non-degenerate)
∗-representations of A and the arrows the intertwiners between them is a compact mo-

noidal C∗-category. If A is quasitriangular then RepA is braided.

An interesting phenomenon of the theory of finite dimensional weak C∗-Hopf algebras

is that their trivial representation may be reducible. More precisely: the irreducible ob-

jects of RepA are of two different kinds. There are nilpotent ones, that is for which D×D
is the zero object. The irreducible objects that are not nilpotent generate a monoidal full

subcategory Rep 0A with conjugates. Furthermore the set of objects of Rep 0A has a uni-

que partition into subsets, such that the elements of each subset define a monoidal full

subcategory with conjugates, and the monoidal unit in each subcategory is irreducible.

The monoidal product of objects that belong to different subcategories is the zero object,

and the intertwiner space between them is 0 dimensional.

If the fusion rules of A are Abelian then there are no nilpotent representations. In the

language of C∗ algebras the partition of the irreducible representations corresponds to

a decomposition into a direct sum of C∗-algebras. That is A is a direct sum of two C∗-

algebras: the ’semisimple’ and the ’nilpotent’ part. The ’semisimple’ part can be decom-

posed as a weak C∗-Hopf algebra into a direct sum of pure weak C∗-Hopf algebras, that

is to ones on which the state 1
ε(1)ε is pure (hence the trivial representation irreducible).
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Like compact groups finite dimensional weak C∗-Hopf algebras possess unique Haar

measures in the following sense. There exists a unique h ∈ A characterized by the property

xh = ΠL(x)h , hx = hΠR(x) , ∀x ∈ A. (2.4)

and by the normalization conditions ΠL(h) = 11 = ΠR(h). For Hopf algebras ΠL/R = 11ε,

therefore this definition coincides with the usual one [15]. The Haar measure h satisfies

the following important properties: it is a hermitean projector invariant under S and

〈1̂1, h〉 = ε(11) (2.5a)

h(1)x⊗ h(2) = h(1) ⊗ h(2)S(x) x ∈ A (2.5b)

One proves that the Haar measure defines a faithful state on the dual via the formula

Â 3 ϕ 7→ 〈ϕ, h〉, so Â is also a C∗-algebra, proving that the dual of a finite dimensional

weak C∗-Hopf algebra is a weak C∗-Hopf algebra again.

A new feature compared to Hopf algebras is that since S2 6= id, similarly to Worono-

wicz’s compact matrix pseudogroups [17], the Haar state is not a trace in general.

3. Examples via non-abelian cohomology. In this Section we give an algorithm,

to construct a pair of finite dimensional weak C∗-Hopf algebras in duality from a so-

lution of a pentagon type of equation. Similar situation is met in Algebraic Quantum

Field Theory[8], when one is going to reconstruct the superselection symmetry of a given

model. As it was pointed out in [9], the field theoretical model determines some represen-

tation theoretical data of the underlying symmetry, such as the fusion coefficients Nr
pq,

the recoupling coefficients F and the braiding matrices, satisfying some polynomial (pen-

tagonal and hexagonal) equations. (The braiding aspect – so the hexagon equation – is

not treated here.) Although our construction requires more than what is provided by the

data Nr
pq and F , it is always possible to extend them in such a way that they determine

a weak C∗-Hopf algebra.

First we describe in detail the input of our construction: a simplicial complex K with

a |C-valued 3-chain F , satisfying a unitarity condition and the Big Pentagon equation.

The complex K has two 0-simplices, u and e and three kinds of 1-simplices:e - ei , u - uj , and e - uk , where i, j and k run through three possi-

bly different finite index sets. The 2-simplices are built up from the allowed 1-simplices:

e- ee
�� @Rα , u- uu

�� @Rβ , e- ue
�� @Rγ e- uu

�� @Rδ , where we do not make any restriction

on the finite index sets run through by α, β, γ and δ. The 3-simplices are built up from

the 2-simplices and they carry no new index:

e ee
e

�
��

@@R

@
@R

��	
?
- , e uu

u
�
��

@@R

@
@R

��	
?
- , e eu

u
�
��

@@R

@
@I

��	
?
- , e ee

u
�
��

@@R

@
@R

��	
?
- , u uu

u
�
��

@@R

@
@R

��	
?
- . (3.1)

Let F be a |C-valued 3-chain on this complex. We call its k’th component its restriction

to the 3-simplices with k e and 4− k u vertices. We use the following index-notation
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for any component of F :

F0(pqrs )( e
αepqα

s
er

)( f

αs
pf
α
f
qr

) = F0( e ee
e

���

@
@R

@@
R

�
�	
?
-

p

s

q

r

e
f

), (3.2)

where αepq is the face index of the 2-simplex u- u
e

u
��
p
@R
qα . F is called unitary if any of its

components Fk is unitary in the sense that∑
eαβ

Fk(pqrs )( e
αβ

)( f
γδ

) Fk(pqrs )
( e
αβ

)( f
′

γ′δ′
)

= δff ′δγγ′δδ,δ′∑
fγδ

Fk(pqrs )( e
αβ

)( f
γδ

) Fk(pqrs )( e′
α′β′

)( f
γδ

) = δee′δαα′δβ,β′ k = 1 . . . 4. (3.3)

Then F2 is invertible in the sense that there exists another 3-chain F̃2 supported on the

same 3-simplices as F2, such that∑
rβδ

F̃2(pqrs )( e
αβ

)( f
γδ

) F2(p
′qr
s )( e

α′β
)( f
γ′δ

) = δpp′δα,α′ , δγγ′ . (3.4)

F is called a 3-cocycle if it satisfies the Big Pentagon equation expressing the requirement

that the value of F computed in the two triangularizations of the object
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�
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=
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K
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�
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�
�

�

?

a

c

d

b

s

f

r

q

p e

(with any of its allowed colorings) be the same. Explicitly:∑
e,αepqα

s
erα

c
ae

FA(pqrs )( e
αepqα

s
er

)( f

αs
pf
α
f
qr

) FB(aerd )( c

αcaeα
d
cr

)( s

αdasα
s
er

) FC(apqc )( b

αbapα
c
bc

)( e
αcaeα

e
pq)

=

=
∑
αd
bf

FD(apfd )( b

αbapα
d
bf

)( s

αdasα
s
pf

) FE(bqrd )( c

αc
bq
αdcr

)( f

αd
bf
α
f
qr

). (3.5)
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Depending on the values of {ABCDE} (the coloring of the figure) we call them (P0) (for

{00000}), (P1) (for {01111}), (P2) (for {12221}), (P3) (for {22332}, (P4) (for {33433})
and (P5) (for {44444}). (In any case the name (Pk) refers to the number k of the

appearing vertices of type e .) These equations are not all independent: (P0) and (P5)

do follow from the others.

In the Quantum Field Theory context we are given only the subcomplex K• and the

restriction F0 of the 3-cocycle on it. We now describe a ”canonical” way to extend these

information to complete the data (K,F ). The complex is defined as follows. Its 1-simplices

with any allowed coloring are labelled with the irreducible sectors (charges) i, j, k, . . . of

the model. The 2-simplices u- u
k

u
��
i
@R
jα (and of any other allowed coloring) carry indices

α = 1 . . . Nk
ij , where Nk

ij are the fusion coefficients determined by the field theoretical

data. The components of the solution of the Big Pentagon equation also coincide, that is

we have F0 = F1 = F2 = F3 = F4 and are equal to the recoupling coefficients obtained

from the physical model.

Having a complex K and a unitary solution F of the Big Pentagon equation on it we

can define two finite dimensional weak C∗-Hopf algebras in duality: A corresponding to

the vertex u and Â corresponding to e . As a C∗-algebra A is a direct sum for the

edges u - uq : A: = ⊕qEndVq, where Vq is defined to be the Hilbert space spanned by

the orhtonormal basis e- u
j

u
��
i
@R
qα . That is we have the matrix units e eu

u
���

@@R

@@I

��	
?

a′

b′

a

b

qα′ α in A.

The C∗ algebra Â is defined just the same way but the role of u and e interchanged:

it has the matrix units u ue
e

��
	

@
@I

@@
R

�
��
?

a′

b′

a

b

qα′ α . The pairing between A and Â is defined with the

help of F̃2. Computed it on two matrix units, the result is F̃2 evaluated on the terahedron

obtained by rotating the square in the first argument by 1800 around its ’main diagonal’

and glued together with the square in the second argument at their coinciding edges:

〈 u ue
e

��
	

@@I

@@
R

���
?

a′

b′

a

b

pµ′ µ | e eu
u

���

@@R

@@I

��	
?

c′

d′

c

d

qν′ ν 〉: = δa′c′δad′δb′cδbdF̃2( e eu
u

���

@@R

@@I

��	
?
-

c′

d′

c

d

p
q

)

≡ δa′c′δad′δb′cδbdF̃2(pcqd′ )( c′
µ′ν′

)( dµν)
(3.6)

We can then define the comultiplication on A as the transpose of the multiplication in Â,

the counit as the pairing with the unit of Â. The antipode S is defined with the formula:

〈φ∗|x∗〉: = 〈φ|S−1(x)〉. (̄ means complex conjugation.) The weak Hopf algebra structre

of Â is the transpose of the ∗-algebra structure of A in the same way. Our definition then
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implies that the copruduts are coassociative((A.1c)), the counits are coalgebraic counits

((A.2c)) and S ◦∗ ◦S◦∗ = id ((A.3c)) in both cases. The remaining axioms are verified

using the concrete forms of the coproducts (computed using (P2) and (P3), respectively)

∆( e eu
u

�
��

@@R

@
@I

��	
?

a′

b′

a

b

rν′ ν )

=
∑
pq

∑
x′x

∑
µ′µκ′κλ

e eu
u

���

@@R

@@I

��	
?

a′

x′

a

x

pκ′ κ e eu
u

���

@@R

@@I

��	
?

x′

b′

x

b

qµ′ µ F1(a
′pq
b′ )( x′

κ′µ′
)( r
ν′λ

)F1(apqb )( xκµ)( rνλ),

∆̂( u ue
e

�
�	

@@I

@
@R

���
?

a′

b′

a

b

rν′ ν ) (3.7)

=
∑
pq

∑
x′x

∑
µ′µκ′κλ

u ue
e

��
	

@
@I

@@
R

�
��
?

a′

x′

a

x

pκ′ κ u ue
e

��
	

@
@I

@@
R

�
��
?

x′

b′

x

b

qµ′ µ F3(a
′pq
b′ )( r

ν′λ
)( x
′

κ′µ′
)F3(apqb )( r

νλ
)( xκµ)

and of the antipodes

S( e eu
u

�
��

@@R

@
@I

��	
?

a′

b′

a

b

qν′ ν ) =
∑
pq′

∑
κ′κµ′µ

e eu
u

�
��

@@R

@
@I

��	
?

b

a

b′

a′

q′κ κ′ F̃2(paqb′ )( a′
µν′

)( b
µ′ν

)F2(pbq
′

a′ )( b′
µ′κ′

)( aµκ)

Ŝ( u ue
e

��
	

@@I

@@
R

���
?

a′

b′

a

b

qν′ ν ) =
∑
pq′

∑
κ′κµ′µ

u ue
e

��
	

@@I

@@
R

���
?

b

a

b′

a′

q′κ κ′ F̃2(qb
′p
a )( a′

ν′µ
)( b
νµ′

)F2(q
′a′p
b )( b′

κ′µ′
)( aκµ)

(3.8)

Axiom (A.1b) then trivially holds both in A and Â. This implies that so do (A.3a)

and (A.3b). (A.1a) follows from the unitarity of F1. Instead of axiom (A.2a) for A we

can prove using the unitarity of F3 the stronger statement that 1̂1(1)⊗ 1̂1(2)1̂1(1)′ ⊗ 1̂1(2)′ =

1̂1(1) ⊗ 1̂1(2) ⊗ 1̂1(3) in Â. According to our remark after Axioms (A.1–4), (A.2b) is now

equivalent to the the ∗-preserving property of the counit, which trivially holds. The proof

of (A.4) needs some calculation using (3.7) and (3.8), (P2) and the unitarity of F2 and

F1. This proves that A is a weak C∗-Hopf algebra, and by our result about the duals so

is Â.

The components of F have representation theoretical meaning: If p, q and r label

1-simplices of type u - uq
then the fusion coefficient Nr

pq for A is the number of the



WEAK C∗-HOPF ALGEBRAS 17

2-simplices u- u
r

u
��
p
@R
qα , so we may choose α = 1 . . . Nr

pq. In the basis e- u
j

u
��
i
@R
qα the

Wigner coefficients T rαpq of A have the matrix elements

(T rαpq )
(mβn)
(iγk)(lδj) = δklδimδjnF1(ipqj )( k

γδ
)( r
βα

) (3.9)

F0 then comprises the corresponding recoupling coefficients (see (P1)). Similarly, the

fusion coefficients for Â are equal to the number of 2-simplices of type e- ee
�� @R . The

matrix elements of the Wigner coefficients in the basis e- ue
�� @R are given by F̄3, and

the recoupling coefficients by F̄4.

Let us illustrate the above construction on two examples. The first one describes

the Lee-Yang fusion rules: N0
00 = 1, N1

01 = N1
10 = 1 and N0

11 = N1
11 = 1, otherwise

Nk
ij = 0. The complex is defined to have the 0-simplices u and e . The 1-simplices of

the kind u - ui
, e - ei

and e - ui
are all labelled with i = 0, 1. We have

the 2-simplices u- u
k

u
��
i
@R
j

, e- u
k

u
��
i
@R
j

, e- u
k

e
��
i
@R
j

and e- e
k

e
��
i
@R
j

if Nk
ij = 1. (No

face-indices are introduced.) The 3-simplices are built up from the 2-simplices whithout

any further constraint. The solution of (P0) on K• can be found in [7]:

F (0000 )00 = F (0110 )10 = F (0011 )01 = F (0101 )11 = F (0111 )11 = F (1100 )01 =

= F (1010 )11 = F (1110 )11 = F (1001 )10 = F (1011 )11 = F (1101 )11 = 1

F (1111 )10 = F (1111 )01 = z

F (1111 )00 = − F (1111 )11 = z2

where z =

√√
5−1
2 . It can be extended to a solution of the Big Pentagon equation by

F1 = F2 = F3 = F4: = F0. The resulting weak C∗-Hopf algebra structure (leading to

non-integral dimensions) is described in [3].

The other example describes the “blowing up” of a finite group G. As a C∗-algebra A

is C(G)⊗M|G|( |C) where C(G) denotes the Abelian algebra of complex valued functions

on G. The corresponding complex has the 0-simplices u and e . All the 1-simplices are

labelled by an element of G. We have a 2-simplex u- u
k

u
��
g
@R
h

(and of any other allowed

coloring) if the 0-curvature condition is met, that is gh = k inG. (No face index is needed.)

The 3-simplices are built up from the 2-simplices without any further restriction. A

solution of the Big Pentagon equation can then be given by F0 = F1 = F2 = F3 = F4 ≡ 1

for any allowed set of the labels of the 1-simplices. It is left to the reader to compute the

corresponding structural maps of the weak C∗-Hopf algebra.
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The construction described above is clearly not the most general. It is easy to see,

that it always leads to abelian intersection subalgebras AL and AR. However, to any pair

of finite dimensional weak C∗-Hopf algebras A and Â in duality, one can associate a (not

necessarily unitary) solution of the Big Pentagon equation as follows:

The 0-simplices of the complex are u and e . The 1-simplices of type u - ur

and e - er̂
carry labels referring to the equivalence classes of the irreducible repre-

sentations (simple direct summands Mnr ( |C)) of A and Â, respectively. There is only one

1-simplex of type e - u. The 2-simplices of type e- e
r

e
��
p
@R
qα and u- u

r

u
��
p
@R
qα are

labelled by α = 1 . . . Nr
pq where Nr

pq denotes the fusion coefficients of the irreducible repre-

sentations of A and Â, respectively. The 2-simplices of type e- uu
�� @R

ri and e- ue
��
r
@Ri

carry labels i = 1 . . . nr, so that they serve as an orthonormal basis for the linear space

carrying the defining representation of the simple direct summand Mnr ( |C) of A and Â,

respectively. We have all the 3-simplices built up from these allowed 2-simplices.

The 3-chains Fk are then identified with the appropriate representation theoretical

data: F1 comprises the Wigner coefficients for A, F̄3 for Â. F0 and F̄4 are obtained as the

corresponding recoupling coefficients. F2 is the Ocneanu cell read off the pairing between

A and Â.

This solution fails to be unitary in general. One can prove instead of unitarity only

F ∗1 F1 = F3F
∗
3 = 11 (expressing the orthonormality of the Wigner coefficients) and the

invertibility of F2 in the sense of (3.4) (which is equivalent to the non-degeneracy of the

pairing between A and Â.)

Notice that the above association of a complex K to A and Â is not unique. The

fusion rules of A and Â determine the subcomplex generated by u and e , respectively.

The C∗-algebra structures of A and Â determine only the numbers of the 2-simplices

e- uu
�� @R and e- ue

�� @R , respectively. We have no more constraint on the choice of

the complex.

As a last example we construct a finite dimensional weak C∗-Hopf algebra with non-

Abelian intersection subalgebras which — since it is generated by AL and AR — can be

considered as the blowing up of ”nothing”. It corresponds to a non-unitary solution of

the Big Pentagon equation.

Let N be any natural number and define the C∗-algebra A := MN ( |C) ⊗ MN ( |C).

Choose matrix units {eij}ij=1...N in the first factor and {eij}ij=1...N in the second.

Then

ε(eije
kl): =

1

N
δikδlj
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∆(eije
kl): =

1

N

∑
xx′

exx′e
kl ⊗ eijexx

′

S(eije
kl): = elke

ji

(3.10)

define a weak C∗-Hopf algebra in which the algebra generated by the elements {eij} and

{eij} are AR and AL, respectively.

This weak C∗-Hopf algebra corresponds to the solution of the Big Pentagon equation

on the complex which has the two 0-simplices u and e , the 1-simplices e - ui

i = 1 . . . N and the only 1-simplices of type u - u and e - e. We have all

the allowed 2-simplices built up from these 1-simplices, without introducing any new

face-label. Finally we have all the possible 3-simplices. The 3-chains Fk k = 0 . . . 4 are:

F0 ≡ 1, F1 ≡ 1√
N

, F2 ≡ 1
N , F3 ≡ 1√

N
and F4 ≡ 1 for any allowed set of the labels on the

1-simplices. One checks that F solves the Big Pentagon equation and F ∗1 F1 = F3F
∗
3 = 11,

but not the unitarity condition (3.3).
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