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Abstract. The post-Newtonian (PN) hydrodynamic equations are obtained in the (3+1)
formalism, which include the 2.5PN order as the reaction due to the quadrupole gravitational
radiation. These equations are valid in various slice conditions, while we adopt a kind of trans-
verse gauge condition to determine the shift vector. In particular, we describe methods to solve
the 2PN tensor potential which arises from the spatial 3-metric. Our formulaton in the PN ap-
proximation using the (3+1) formalism will be useful for numerical computations providing an
initial data for the final merging phase of coalescing binary neutron stars which can be treated
only by fully general relativistic simulations.

1. Introduction. Aiming at the direct detection of gravitational waves from rela-

tivistic astrophysical objects, kilometer-size interferometric gravitational wave detectors,

such as LIGO [1] and VIRGO [2], are now under construction. Coalescing binary neutron

stars are the most promising sources of gravitational waves for such detectors. After a

long time emission of gravitational waves, the orbital separation of binary becomes com-

parable to the radius of the neutron star. Then, each of binary neutron stars begins to

behave as a hydrodynamic object, not as a point particle, because they are tidally coupled

with each other. Recently, Lai, Rasio and Shapiro [3] have pointed out that such a tidal

coupling of binary neutron stars is very important for their evolution in the final merging

phase because the tidal effect causes the instability of their circular motion. The general

relativistic gravity is also important because in such a phase, the orbital separation is

less than ten times the Schwarzschild radius of the system. Thus, we need not only a

hydrodynamic treatment, but also a general relativistic one to study the final phase of

binary neutron stars.
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Surely fully general relativistic simulation must be the best method, but it is also

one of the most difficult ones. Although much effort has been focused and much progress

can be expected there [4], it will take a long time until numerical relativistic calculations

become reliable. One of the main reasons is that we do not know the behavior of the

geometric variables in the strong field around coalescing binary neutron stars. According

to this, we do not know what sort of gauge condition is useful and how to give an

appropriate general relativistic initial condition for coalescing binary neutron stars.

The other reason is a technical one: In numerical relativistic simulations, gravitational

waves are generated when we need to cover a region L > λ ∼ the wavelength in order to

perform accurate simulations. This is in contrast with the case of Newtonian and/or PN

simulations, in which we only need to cover a region (λ >)L > R ∼ the orbital separation.

At present, we had better search other methods to prepare an initial condition for binary

neutron stars.

The PN approximation in the fluid was pioneered by Chandrasekhar et al. [5] who ob-

tained the equation of motion up to the 2.5PN order. However, their expressions include

potentials for non-compact sources which should be solved rather carefully in practical

cases. On the other hand, using the ADM gauge, Blanchet, Damour and Schäfer obtained

the formula, including the 1PN effects and the quadrupole radiation reaction (2.5PN ef-

fect) [6], which only consists of potentials for compact sources. Their formula actually

works well in simulations of the coalescing binary neutron stars [7]. Our aim is to establish

the formulation up to the 2.5PN hydrodynamic equation for a fairly wide class of gauge

conditions and, in particular, to provide methods to solve the 2PN tensor potential which

does not appear at the 1PN order [6].

We use the units of c = G = 1 in this paper. Greek and Latin indices take 0, 1, 2, 3

and 1, 2, 3, respectively.

2. (3+1) Formalism for post-Newtonian approximation

(3+1) Formalism. In the (3+1) formalism, the metric is split as

gµν = γµν − n̂µn̂ν , (2.1)

where n̂µ = (−α, 0). Then the line element is written as

ds2 = −(α2 − βiβi)dt2 + 2βidtdx
i + γijdx

idxj . (2.2)

In order to distinguish the wave part from the non-wave part (for example, Newtonian

potential) in the metric, we use γ̃ij = ψ−4γij instead of γij where ψ = det(γij)
1/12 so

that det(γ̃ij) = 1 is satisfied. Using the extrinsic curvature, Kij , we define Ãij as

Ãij ≡ ψ−4Aij ≡ ψ−4
(
Kij −

1

3
γijK

)
. (2.3)

The Einstein equation is split into the constraint equations and the evolution equations.

The former are called Hamiltonian and momentum constraints which respectively become

∆̃ψ =
1

8
trR̃ψ − 2πρHψ

5 − ψ5

8

(
ÃijÃ

ij − 2

3
K2
)
, (2.4)

D̃j(ψ
6Ãji)−

2

3
ψ6D̃iK = 8πψ6Ji, (2.5)
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where we introduce ρH = Tµνn
µnν and Jj = −Tµνnµγνj , and D̃i, ∆̃ and trR̃ are the

covariant derivative, Laplacian and the scalar curvature with respect to γ̃ij . Evolution

equations for the spatial metric and extrinsic curvature are respectively

∂

∂n
γ̃ij = − 2αÃij + γ̃il

∂βl

∂xj
+ γ̃jl

∂βl

∂xi
− 2

3
γ̃ij

∂βl

∂xl
, (2.6)

∂

∂n
Ãij =

1

ψ4

[
α
(
Rij −

1

3
γijtrR

)
−
(
D̃iD̃jα−

1

3
γ̃ij∆̃α

)
− 2

ψ

(
ψ,iα,j + ψ,jα,i −

2

3
γ̃ij γ̃

klψ,kα,l

)]
+ α(KÃij − 2ÃilÃ

l
j) +

∂βm

∂xi
Ãmj +

∂βm

∂xj
Ãmi −

2

3

∂βm

∂xm
Ãij

− 8π
α

ψ4

(
Sij −

1

3
γijS

l
l

)
, (2.7)

∂

∂n
ψ =

ψ

6

(
−αK +

∂βi

∂xi

)
, (2.8)

∂

∂n
K = α

(
ÃijÃ

ij +
1

3
K2
)
− 1

ψ4
∆̃α− 2

ψ5
γ̃klψ,kα,l + 4πα(Sii + ρH), (2.9)

where Rij , γ, Sij and ∂
∂n denote, respectively, the Ricci tensor with respect of γij , deter-

minant of γij , Tklγ
k
iγ
l
j and ∂

∂t − β
i ∂
∂xi .

In order to clarify the wave property of γ̃ij , we impose a kind of transverse gauge* to

hij as

hij,j = 0. (2.10)

Finally, we consider the matter as the perfect fluid, Tµν = (ρ+ ρε+ P )uµuν + Pgµν ,

where uµ, ρ, ε and P are the four velocity, the mass density, the specific internal energy

and the pressure.

Post-Newtonian approximation. Each metric variable, which is relevant to the present

paper, is expanded as

ψ = 1 + (2)ψ + (4)ψ + (6)ψ + (7)ψ + . . . ,

α = 1− U +
(U2

2
+X

)
+ (6)α+ (7)α+ . . . ,

βi = (3)βi + (5)βi + (6)βi + (7)βi + (8)βi + . . . ,

hij = (4)hij + (5)hij + . . . ,

Ãij = (3)Ãij + (5)Ãij + (6)Ãij + . . . ,

K = (3)K + (5)K + (6)K + . . . ,

(2.11)

where subscripts denote the PN order (c−n) and U is the Newtonian potential satisfying

∆flatU = −4πρ. (2.12)

* Hereafter, we call this condition merely the transverse gauge.
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From Eqs.(2.6) and (2.7), the wave equation for hij is written as(
− ∂2

∂t2
+ ∆flat

)
hij

=
(

1− α2

ψ4

)
∆flathij +

( ∂2

∂n2
− ∂2

∂t2

)
hij

+
2α

ψ4

[
−2α

ψ

(
D̃iD̃j −

1

3
γ̃ij∆̃

)
ψ +

6α

ψ2

(
D̃iψD̃jψ −

1

3
γ̃ijD̃kψD̃

kψ
)

−
(
D̃iD̃j −

1

3
γ̃ij∆̃

)
α− 2

ψ

(
D̃iψD̃jα+ D̃jψD̃iα−

2

3
γ̃ijD̃

kψD̃kα
)]

+ 2α2
(
KÃij − 2ÃilÃ

l
j

)
+ 2α

(
βm, iÃmj + βm,jÃmi −

2

3
βm,mÃij

)
− 16π

α2

ψ4

(
Sij −

1

3
γijS

l
l

)
− ∂

∂n

(
βm,iγ̃mj + βm,j γ̃mi −

2

3
βm,mγ̃ij

)
+ 2

∂α

∂n
Ãij

≡τij .

(2.13)

Thus, (4)hij in the near zone is determined from

∆flat(4)hij = (4)τij , (2.14)

while (5)hij in the near zone is derived from

(5)hij(t) =
1

4π

∂

∂t

∫
(4)τij(t,y)d3y. (2.15)

This integral is evaluated so that we obtain [6,8]

(5)hij(t) = −4

5

d3

dt3

(
Iij −

1

3
δijIkk

)
, (2.16)

where Iij =
∫
ρxixjd3x.

Up to the 2.5PN order, the hydrodynamic equations become

∂Si
∂t

+
∂(Siv

j)

∂xj
= −

(
1 + 2U +

5

4
U2 + 6(4)ψ +X

)
P,i

+ ρ∗

[
U,i

{
1 + ε+

P

ρ
+

3

2
v2 − U +

5

8
v4 + 4v2U

+
(3

2
v2 − U

)(
ε+

P

ρ

)
+ 3(3)βjv

j
}

−X,i

(
1 + ε+

P

ρ
+
v2

2

)
+ 2v2(4)ψ,i − (6)α,i − (7)α,i

+ vj
{
(3)βj,i

(
1 + ε+

P

ρ
+
v2

2
+ 3U

)
+ (5)βj,i + (6)βj,i

}
+ (3)βj(3)βj,i

+
1

2
vjvk((4)hjk,i + (5)hjk,i) +O(c−8)

]
, (2.17)

∂H

∂t
+
∂(Hvj)

∂xj
= − P

[
vj,j +

∂

∂t

(1

2
v2 + 3U

)
+

∂

∂xj

{(1

2
v2 + 3U

)
vj
}

+O(c−5)
]
, (2.18)

where Si = αψ6(ρ+ ρε+ P )u0ui, S
0 = αψ6(ρ+ ρε+ P )(u0)2 and H = αψ6ρεu0.
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3. Strategy to obtain 2PN tensor potential. We describe methods to solve the

equation for the 2PN tensor potential (4)hij . Although Eq.(2.14) is formally solved as

(4)hij(t,x) = − 1

4π

∫
(4)τij(t,y)

|x− y|
d3y, (3.1)

it seems difficult to estimate this integral in practice since (4)τij → O(r−3) for r →∞ and

the integral is taken all over the space. Thus it is desirable to replace this equation by

some tractable forms in numerical evaluation. In the following, we show two approaches:

In section 3.1, we change Eq. (3.1) into the form in which the integration is performed

only over the matter distribution like the Newtonian potential. In section 3.2, we propose

a method to solve Eq. (2.14) as a boundary value problem.

Direct integration method. The explicit form of (4)τij is

(4)τij = − 2∂̂ij(X + 2(4)ψ) + U∂̂ijU − 3U,iU,j + δijU,kU,k − 16π
(
ρvivj − 1

3
δijρv

2
)

−
(
(3)β̇i,j + (3)β̇j,i −

2

3
δij(3)β̇k,k

)
, (3.2)

where ∂̂ij ≡ ∂2

∂xi∂xj − 1
3δij∆flat. Since (3)β̇i is written as

(3)β̇i = ṗi − (X + 2(4)ψ),i −
{∫ (

ρv2 + 3P − ρU/2
)

|x− y|
d3y
}
,i
, (3.3)

the source term, (4)τij , is split into five parts (4)τij = (4)τ
(S)
ij + (4)τ

(U)
ij + (4)τ

(C)
ij + (4)τ

(ρ)
ij +

(4)τ
(V )
ij , where we introduce

(4)τ
(S)
ij =− 16π

(
ρvivj − 1

3
δijρv

2
)
,

(4)τ
(U)
ij =UU,ij −

1

3
δijU∆flatU − 3U,iU,j + δijU,kU,k,

(4)τ
(C)
ij =4

∂

∂xj

∫
(ρvi)·

|x− y|
d3y + 4

∂

∂xi

∫
(ρvj)·

|x− y|
d3y − 8

3
δij

∂

∂xk

∫
(ρvk)·

|x− y|
d3y,

(4)τ
(ρ)
ij =∂̂ij

∫
ρ̈|x− y|d3y,

(4)τ
(V )
ij =2∂̂ij

∫ (
ρv2 + 3P − ρU/2

)
|x− y|

d3y.

(3.4)

Thus it becomes clear that (4)hij and (5)hij are expressed in terms of only matter vari-

ables, without metric, through (4)τij and thus they do not depend on slicing conditions.

Then we define (4)h
(∗)
ij = ∆−1flat(4)τ

(∗)
ij where the symbol ‘∗’ denotes S, U , C, ρ and V .

First, since (4)τ
(S)
ij is a compact source, we immediately obtain

(4)h
(S)
ij = 4

∫ (
ρvivj − 1

3δijρv
2
)

|x− y|
d3y. (3.5)
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Second, we consider the following equation

∆flatG(x,y1,y2) =
1

|x− y1||x− y2|
. (3.6)

It is possible to write (4)h
(U)
ij as integrals over the matter using the function G. Eq. (3.6)

has solutions [9], ln(r1 +r2±r12), where r1 = |x−y1|, r2 = |x−y2|, r12 = |y1−y2|. Note

that ln(r1+r2−r12) is not regular on the interval between y1 and y2, while ln(r1+r2+r12)

is regular on the matter. Thus we use ln(r1 + r2 + r12) as a Green function. Using this

function, UU,ij and U,iU,j are rewritten as

UU,ij =∆flat

∫
d3y1d

3y2ρ(y1)ρ(y2)
∂2

∂yi1∂y
j
1

ln(r1 + r2 + r12),

U,iU,j =∆flat

∫
d3y1d

3y2ρ(y1)ρ(y2)
∂2

∂yi1∂y
j
2

ln(r1 + r2 + r12).

(3.7)

Thus we can express (4)h
(U)
ij using the integral over the matter as

(4)h
(U)
ij =

∫
d3y1d

3y2ρ(y1)ρ(y2)[( ∂2

∂yi1∂y
j
1

− 1

3
δij41

)
−3
( ∂2

∂yi1∂y
j
2

− 1

3
δij412

)]
ln(r1+r2+r12), (3.8)

where we introduce 41 = ∂2

∂yk1∂y
k
1

and 412 = ∂2

∂yk1∂y
k
2

. Using relations ∆flat|x − y| =

2/|x− y| and ∆flat|x− y|3 = 12|x− y|, (4)h
(C)
ij , (4)h

(ρ)
ij and (4)h

(V )
ij are solved as

(4)h
(C)
ij = 2

∂

∂xi

∫
(ρvj)·|x−y|d3y+ 2

∂

∂xj

∫
(ρvi)·|x−y|d3y+

4

3
δij

∫
ρ̈|x−y|d3y, (3.9)

(4)h
(ρ)
ij =

1

12

∂2

∂xi∂xj

∫
ρ̈|x−y|3d3y− 1

3
δij

∫
ρ̈|x−y|d3y,

(3.10)

(4)h
(V )
ij =

∂2

∂xi∂xj

∫ (
ρv2+3P− ρU

2

)
|x−y|d3y− 2

3
δij

∫ (
ρv2 + 3P − ρU/2

)
|x− y|

d3y. (3.11)

In this way, we obtain (4)hij = (4)h
(S)
ij + (4)h

(U)
ij + (4)h

(C)
ij + (4)h

(ρ)
ij + (4)h

(V )
ij .

Treatment as a boundary value problem. The above expression for (4)hij is quite inter-

esting because it only consists of integrals over the matter. However, in actual numerical

simulations, it will take a very long time to perform the direct integration. Therefore, we

also propose other strategies where Eq. (2.14) is solved as the boundary value problem.

Here, we would like to emphasize that the boundary condition should be imposed at

r(= |x|)� |y1|, |y2|, but r does not have to be greater than λ, where λ is a typical wave

length of gravitational waves. We only need to impose r > R (a typical size of matter

distribution). This means that we do not need a large amount of grid numbers compared

with the case of fully general relativistic simulations, in which we require r > λ� R.

First of all, we consider the equation

∆flat

(
(4)h

(S)
ij + (4)h

(U)
ij

)
= (4)τ

(S)
ij + (4)τ

(U)
ij . (3.12)
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Since its source term behaves as O(r−6) at r →∞, this equation can be accurately solved

under the boundary condition at r > R as

(4)h
(S)
ij + (4)h

(U)
ij =

2

r

(
Ïij −

1

3
δij Ïkk

)
+

2

3r2

(
nk Ïijk −

1

3
δijn

k Ïllk + 2nk(Ṡikj + Ṡjki)−
4

3
δijn

kṠlkl

)
+O(r−3), (3.13)

where Iijk =
∫
ρxixjxkd3x and Sijk =

∫
ρ(vixj − vjxi)xkd3x.

(4)h
(C)
ij , (4)h

(ρ)
ij and (4)h

(V )
ij can be rewritten as

(4)h
(C)
ij = 2

∫
(ρvj)·

xi − yi

|x− y|
d3y + 2

∫
(ρvi)·

xj − yj

|x− y|
d3y − 4

3
δij

∫
(ρvk)·

xk − yk

|x− y|
d3y,(3.14)

(4)h
(ρ)
ij =

1

4

∂2

∂xi∂xj

∫
ρvkvl

(xk − yk)(xl − yl)
|x− y|

d3y +
1

3
δij

∫
(ρvk)·

xk − yk

|x− y|
d3y

+
1

2

{
∂

∂xi

∫
P ′

(xj − yj)
|x− y|

d3y +
∂

∂xj

∫
P ′

(xi − yi)
|x− y|

d3y

}
− 1

8

{
2

∫
ρ
U,j(x

i − yi) + U,i(x
j − yj)

|x− y|
d3y

+ xk
∂

∂xi

∫
ρ
U,k(xj − yj)
|x− y|

d3y + xk
∂

∂xj

∫
ρ
U,k(xi − yi)
|x− y|

d3y

}
,(3.15)

(4)h
(V )
ij =

1

2

[ ∂

∂xi

∫ (
ρv2 + 3P − ρU

2

)xj − yj
|x− y|

d3y

+
∂

∂xj

∫ (
ρv2 + 3P − ρU

2

)xi − yi
|x− y|

d3y
]

− 2

3
δij

∫ (
ρv2 + 3P − ρU/2

)
|x− y|

d3y, (3.16)

where P ′ = P + ρv2/4 + ρU,ly
l/4. From the above relations, (4)h

(C)
ij , (4)h

(ρ)
ij and (4)h

(V )
ij

become

(4)h
(C)
ij = 2(xi(3)Ṗ

j + xj(3)Ṗ
i −Qij) +

4

3
δij

(Qkk
2
− xk(3)Ṗ k

)
, (3.17)

(4)h
(ρ)
ij =

1

4

∂2

∂xi∂xj

(
V

(ρv)
kl xkxl − 2V

(ρv)
k xk + V (ρv)

)
+

1

3
δij

(
xk(3)Ṗk −

Qkk
2

)
+

1

2

{ ∂

∂xi

(
V (P )xj − V (P )

j

)
+

∂

∂xj

(
V (P )xi − V (P )

i

)}
− 1

8

{
2
(
xiV

(ρU)
j + xiV

(ρU)
i − V (ρU)

ij − V (ρU)
ji

)
+ xk

∂

∂xi

(
xjV

(ρU)
k − V (ρU)

lj

)
+ xk

∂

∂xj

(
xiV

(ρU)
l − V (ρU)

li

)}
,

(3.18)

(4)h
(V )
ij =

1

2

(
Q

(I)
,j x

i +Q
(I)
,i x

j −Q(I)
i,j −Q

(I)
j,i

)
+

1

3
Q(I)δij , (3.19)
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where
∆flat(3)Pi = −4πρvi,

∆flatQij = −4π
{
xj(ρvi)· + xi(ρvj)·

}
,

∆flatQ
(I) = −4π

(
ρv2 + 3P − 1

2
ρU
)
,

∆flatQ
(I)
i = −4π

(
ρv2 + 3P − 1

2
ρU
)
xi,

∆flatV
(ρv)
ij = −4πρvivj ,

∆flatV
(ρv)
i = −4πρvivjxj ,

∆flatV
(ρv) = −4πρ(vjxj)2,

∆flatV
(P ) = −4πP ′,

∆flatV
(P )
i = −4πP ′xi,

∆flatV
(ρU)
i = −4πρU,i,

∆flatV
(ρU)
ij = −4πρU,ix

j .

(3.20)

Therefore, (4)h
(C)
ij , (4)h

(ρ)
ij and (4)h

(V )
ij can be derived from the above potentials which

satisfy the Poisson equations with compact sources.

We note that, instead of the above procedure, we may solve the Poisson equation for

(4)hij carefully imposing the boundary condition for r � R as

(4)hij =
1

r

{1

4
I
(2)
ij +

3

4
nk
(
niI

(2)
kj + njI

(2)
ki

)
− 5

8
ninjI

(2)
kk +

3

8
ninjnknlI

(2)
kl +

1

8
δijI

(2)
kk −

5

8
δijn

knlI
(2)
kl

}
+

1

r2

[{
− 5

12
nkI

(2)
ijk −

1

24
(niI

(2)
jkk + njI

(2)
ikk) +

5

8
nknl(niI

(2)
jkl + njI

(2)
ikl )

− 7

8
ninjnkI

(2)
kll +

5

8
ninjnknlnmI

(2)
klm +

11

24
δijn

kI
(2)
kll −

5

8
δijn

knlnmI
(2)
klm

}
+
{2

3
nk(Ṡikj + Ṡjki)−

4

3
(niṠjkk + njṠikk)

+ 2nknl(niṠjkl + njṠikl) + 2ninjnkṠkll +
2

3
δijn

kṠkll

}]
+O(r−3). (3.21)

It should be noted that (4)hij obtained in this way becomes meaningless at the far zone

because Eq. (2.14), from which (4)hij is derived, is valid only in the near zone.

4. Summary. We have formulated the hydrodynamic equation accurate up to 2.5PN

order. We carefully consider methods to obtain various metric quantities, especially the

2PN tensor potential (4)hij for the sake of an actual numerical simulation. It is possible

to solve the Poisson equations for (4)hij by using standard numerical methods. Thus, the

formalism developed here will be useful also in numerical calculations.

Moreover, we would like to emphasize that, from the 2PN order, the tensor part of the

3-metric, γ̃ij , cannot be neglected even if we ignore gravitational waves. Recently, Wilson

and Mathews [10] presented numerical equilibrium configurations of binary neutron stars
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using a semi-relativistic approximation, in which they assume the spatially conformal flat

metric as the spatial 3-metric, i.e., γ̃ij = δij . Thus, in their method, a 2PN term, hij ,

was completely ignored. This means that their results unavoidably have an error of the

2PN order which will become ∼ (M/R)2 ∼ 1− 10%. Thus if we want to obtain a general

relativistic eqiulibrium configuration of binary neutron stars with a better accuracy (say

less than 1%), we should take into account the tensor part of the 3-metric.
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