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ON DECOMPOSITION OF POLYHEDRA
INTO A CARTESIAN PRODUCT OF

1-DIMENSIONAL AND 2-DIMENSIONAL FACTORS

BY

WITOLD ROS ICK I (GDAŃSK)

In 1938 K. Borsuk proved [1] that the decomposition of a polyhedron into
a Cartesian product of 1-dimensional factors is topologically unique (up to
a permutation of the factors). We prove a little more general

Theorem 1. If a connected polyhedron K (of arbitrary dimension) is
homeomorphic to a Cartesian product A1 × . . .×An, where Ai’s are prime
compacta of dimension at most 1, then there is no other topologically differ-
ent system of prime compacta Y1, . . . , Yk of dimension at most 2 such that
Y1 × . . .× Yk is homeomorphic to K.

A space X is said to be prime if it has more than one point and only X
and the singleton as Cartesian factors.

In Theorem 1 the dimension of Yi cannot be greater than 2 (see the
examples in [3]–[5]). The 3-dimensional factor of a 6-dimensional torus
(in [5]) is not a polyhedron, but the 4-dimensional factors of I5 (in [3] and [4])
are polyhedra non-homeomorphic to a cube. I do not know if Theorem 1 is
true when we assume that the sets Yi are polyhedra of dimension at most 3.

The decomposition of a polyhedron into a Cartesian product of 1- and
2-dimensional factors is not unique. See the examples in [7].

In [7] we have proved that the decomposition of a compact 3-dimensional
polyhedron into a Cartesian product is unique if no factor is an arc. In this
paper we present a generalization of that theorem. We prove the following

Theorem 2. If a compact connected polyhedron K has two decomposi-
tions into Cartesian products

K =
top

X ×A1 × . . .×Ak =
top

Y ×B1 × . . .×Bk,

where dim Ai = dim Bi = 1 for i = 1, . . . , k and dim X = dim Y = 2, and
all the factors are prime, then for each i = 1, . . . , k there is b(i) = 1, . . . , k
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such that Ai =
top

Bb(i), the correspondence i → b(i) being one-to-one, whereas

X =
top

Y if none of Ai’s is an arc.

By Kosiński’s theorem [2] each 2-dimensional Cartesian factor of a poly-
hedron is polyhedron. Let us recall ([5], [6]) the following

Definition. If P is a k-dimensional polyhedron, then we define induc-
tively the sets niP for i = 0, 1, . . . , k:

(i) n0P = P .
(ii) niP is the set of those points of ni−1P which have no neighborhood

in ni−1P homeomorphic to Rk−i+1 or Rk−i+1
+ .

We denote the set n1P by nP .

The proofs of Theorems 1 and 2 are based on investigation of the non-
Euclidean parts of Cartesian products of compact connected polyhedra.
They use methods similar to those used in [5]–[7]. We need two lemmas
to prove both the theorems. In Lemma 1, we investigate the structures of
the non-Euclidean parts niK = ni(X1× . . .×Xk) of products of polyhedra.
These polyhedra are unions of some Cartesian products. In Lemma 2, we
find that every homeomorphism F : X1× . . .×Xk → Y1× . . .× Yn of prod-
ucts of polyhedra maps components of the decomposition of niK appearing
in Lemma 1 onto components of the analogous decomposition of niL. This
result does not give the theorems at once but it is the main tool in the
proofs.

Lemma 1. If K = X1 × . . .×Xk, where Xi are polyhedra of dimension
at most 2 for i = 1, . . . , k, then

niK =
⋃
{ni1X1 × . . .× nik

Xk : ip = 0, 1, 2, i1 + . . . + ik = i}.

P r o o f. We can assume that the Xi are connected.
Observe that if xi ∈ nXi and dim Xi = 2, then either each neigh-

borhood of xi in Xi contains a subset homeomorphic to T × I (where
T =

top
cone{1, 2, 3} and I is an arc) or xi locally cuts Xi. If xi ∈ n2Xi,

then either each neighborhood of xi in nXi contains a triod (a set homeo-
morphic to T ) or xi is an isolated local cut point in Xi. If xi ∈ nXi and
dim Xi = 1, then each neighborhood of xi in Xi contains a triod.

We proceed by induction.
1. Let x ∈

⋃
{ni1X1 × . . . × nik

Xk : i = 0, 1, 2, i1 + . . . + ik = 1}, say
x ∈ nX1×X2× . . .×Xk. Let dim X1 = 2. Then either each neighborhood of
x in K contains a set U =

top
(T × I)× Idim K−2, which is not embeddable in

Rdim K , or every small neighborhood of x in K is cut by a set of dimension
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smaller than dim K − 1. If dim X1 = 1 then each neighborhood of x in K
contains a set U =

top
T × Idim K−1. So x ∈ nK.

The inverse inclusion is obvious.
2. Suppose that our formula is true for i ≤ m. Let x ∈

⋃
{ni1X1 × . . .×

nik
Xk: ip = 0, 1, 2, i1+. . .+ik = m+1}, say x ∈ n2X1×. . .×n2Xp×nXp+1×

. . .×nXp+r×Xp+r+1× . . .×Xk (2p+ r = m+1). Assume r 6= 0. Then we
have two possibilities. First, there exists l, 1 ≤ l ≤ r, such that Xp+l has
dimension 2 and xp+l locally cuts Xp+l. Then every small neighborhood
of x in nmK is cut by a set of dimension smaller than dim K − (m + 1).
Second, each neighborhood of x in nmK contains a subset homeomorphic to
{z1}× . . .×{zp}× T × Idim K−m−1, which is not embeddable in Rdim K−m.

If r = 0 then x ∈ n2X1× . . .×n2Xp−1×nXp×Xp+1× . . .×Xk ⊂ nmK
(because n2Xp ⊂ nXp). We again have two possibilities. Either xp is
an isolated local cut point or each neighborhood of x in nmK contains a
subset homeomorphic to {z1}× . . .×{zp−1}×T × Idim K−m−1, which is not
embeddable in Rdim K−m. Hence x ∈ nm+1K.

The inverse inclusion is obvious.

Lemma 2. Let K = X1× . . .×Xk and L = Y1× . . .×Yn where Xi, Yi are
prime polyhedra of dimension at most 2. If F : K → L is a homeomorphism
and ip = 0, 1, 2 for p = 1, . . . , k then F (ni1X1 × . . . × nik

Xk) = nj1Y1 ×
. . . × njnYn for a system (j1, . . . , jn) of numbers such that jp = 0, 1, 2 for
p = 1, . . . , n and i1 + . . . + ik = j1 + . . . + jn. (In the proofs of Theorems 1
and 2 we need the case n2Xi = ∅ for i > 1 only.)

P r o o f. The proof is similar to the proofs of Lemmas 3.2 of [5] and 2.1
of [6].

Let i1 + . . . + ik = m. If m = m0 is a maximal number such that
nmK 6= ∅, then the lemma holds. By induction, we can assume that the
lemma holds for ik + . . . + ik > m.

Since F is a homeomorphism, F (nmK − nm+1K) = nmL − nm+1L.
Each component of nmK − nm+1K is equal to V1 × . . . × Vk, where Vp ∈
π0(nipXp − nip+1Xp). (We denote the set of components of Z by π0Z.)
Then F (V1 × . . .× Vk) = V ′

1 × . . .× V ′
n, where V ′

p ∈ π0(njpYp − njp+1Yp).
Let dim V1 × . . .× Vk = r.
First we consider the case when V1 is a component of X1 − nX1 and

dim X1 = 2. Now, let U1 be also a component of X1 − nX1 such that
dim V1 ∩ U1 = 1. Then F (U1 × V2 × . . . × Vk) = V ′′

1 × . . . × V ′′
n , where

V ′′
p ∈ π0(njpYp−njp+1Yp) and dim F ((V1 ∩U1)×V2× . . .×Vk) = dim(V ′

1 ∩
V ′′

1 )× . . .×(V ′
k∩V ′′

k ) = r−1. Only one factor V ′
i1
∩V ′′

i1
has dimension smaller

than dim V ′
i1

and only one factor V ′
i2
∩V ′′

i2
has dimension smaller than dim V ′′

i2
.

If dim V ′
i1

= dim V ′′
i1

then i1 = i2. In the opposite case dim V ′′
i1

< dim V ′
i1

and
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dim V ′
i2

< dim V ′′
i2

. Then V ′′
i1
∩V ′

i1
6= ∅ and V ′

i2
∩V ′′

i2
6= ∅. Let V1×. . .×Vk = V

and U1 × V2 × . . . × Vk = U. Choose x′ ∈ F (V) and y′ ∈ F (U) such that
their coordinates satisfy y′i1 ∈ V ′′

i1
∩ V ′

i and x′i2 ∈ V ′
i2
∩ V ′′

i2
. Then there

exists an open arc (x′y′) ⊂ V ′
1 × . . .× V ′

i1
× . . .× V ′′

i2
× . . .× V ′

n ⊂ L disjoint
from nm+1L. But if x ∈ V and y ∈ U then each open arc (xy) ⊂ K has a
non-empty intersection with nm+1K. So F−1((x′y′)) ∩ nm+1K 6= ∅, which
is impossible. So, i1 = i2 and V ′

p = V ′′
p for p 6= i1.

If W1 ∈ π0(X1 − nX1) and also dim V1 ∩ W 1 = 1 then F (W1 × V2 ×
. . . × Vk) = V ∗

1 × . . . × V ∗
n , where V ∗

p ∈ π0(njpYp − njp+1Yp), V ∗
p = V ′

p for
p 6= i2 and dim V ′

i2
∩ V ∗

i2
= 1. By induction F (nX1 × ni2X2 × . . . × nik

Xk)
is a Cartesian product of the sets nspYp, where only one sp is one greater
than jp. The sets V1 ∩ U1 and V1 ∩W 1 are contained in nX1. Therefore,
F (V)∩F (U) = V ′

1 × . . .× (V ′
i1
∩ V ′′

i1
)× . . .× V ′

n ⊂ ns1Y1 × . . .× nsn
Yn. So,

si1 = ji1 + 1. Since V1 ∩W 1 ⊂ nX1, we also have si2 = ji2 + 1. Therefore,
i1 = i2.

If there exists a sequence of Ui ∈ π0(X1 − nX1) for i = 1, . . . , q such
that dim U i ∩ U i+1 = 1 for i = 1, . . . , q − 1 and Uq = V1 then the products
F (V1× . . .×Vk) = V ′

1 × . . .×V ′
n and F (U1×V2× . . .×Vk) = V ′′

1 × . . .×V ′′
n

still have only the i1-factor different and the remaining ones are the same.
If such a sequence does not exist, the points of U1 ∩V1 are isolated local

cut points of K1.
Let Z be the set of points of nmK at which nmK is locally cut by a set

of dimension r − 2. If Z ′ is the analogous subset of nmL, then F (Z) = Z ′.
If x ∈ V1 × . . .× Vk and y ∈ U1 × V2 × . . .× Vk then the interior of an arc
xy ⊂ nmK has a non-empty intersection with Z. Similarly, if there exist
two indices i and j such that V ′

i 6= V ′′
i and V ′

j 6= V ′′
j , then there exists an

arc F (x)F (y) in nmL with interior disjoint from Z ′.
So, if D is a component of a subset of the locally 2-dimensional part of X1

such that V1 ⊂ D, then F (D × V2 × . . . × Vk) = V ′
1 × . . . ×D′ × . . . × V ′

n,
where the i1-factor D′ is an appropriate subset of Yi1 .

Similarly, we can show that if J is a component of the 1-dimensional part
of X1 such that J∩D 6= ∅, then F (J×V2×. . .×Vk) = V ′

1×. . .×J ′×. . .×V ′
n,

where the i1-factor J ′ is an appropriate subset of Yi1 .
The same considerations are true for the homeomorphism F−1 : L → K.
So, F (X1 × V2 × . . .× Vk) = V ′

1 × . . .× Yi1 × . . .× V ′
n.

If dim V1 = 1 then either dim X1 = 1 and F (X1 × V2 × . . . × Vk) =
V ′

1 × . . .× Yi1 × . . .× V ′
n, or V1 ⊂ nX1 and F (nX1 × V2 × . . .× Vk) = V ′

1 ×
. . .×nYi1 × . . .×V ′

n. If dim V1 = 0 then for dim X1 = 2 we have V1 ⊂ n2X1

and F (n2X1×V2×. . .×Vk) = V ′
1×. . .×n2Yi1×. . .×V ′

n, while for dim X1 = 1
we have V1 ⊂ nX1 and then F (nX1×V2×. . .×Vk) = V ′

1×. . .×nYi1×. . .×V ′
n.

The proof uses the same methods as before but is simpler.
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P r o o f o f T h e o r e m 1. Let K = A1× . . .×An and L = Y1× . . .×Yk.
The polyhedra K and L are homeomorphic.

If nK = ∅ then by Lemma 1, nAi = ∅ for all i = 1, . . . , n, so Ai are
arcs or simple closed curves (say I and S1). Hence, π1(K) = Zr, where r
is the number of S1’s in the product. The group π1(L) ≈ π1(K) is abelian,
as are all π(Yi), because π1(L) =

⊕k
i=1 π1(Yi). Two-dimensional factors Yi

are polyhedra by Kosiński’s theorem [2] and nYi = ∅ by Lemma 1 for all
i = 1, . . . , k, so they are compact 2-manifolds with boundary. There are only
five such manifolds with abelian fundamental groups: I2, S1×I, S1×S1, S2

and the projective plane. It is easy to see that S2 and the projective plane
cannot be factors and the remaining manifolds are not prime.

First, we assume that only one factor Y1 has dimension 2.
Now, we proceed by induction with respect to the number of 1-dimen-

sional factors.
If n = 2 the problem is trivial. (If n ≤ 3, then the problem is easy and

it is solved in [7].)
Assume that the problem is solved for m ≤ n.
If F : L → K is a homeomorphism, then F (nL) = nK, and if nYk 6= ∅,

then F (Y1×. . .×Yk−1×nYk) = A1×. . .×An−1×nAn (up to a permutation)
by Lemma 2. The sets Y1×. . .×Yk−1 and A1×. . .×An−1 are homeomorphic
because nYk and nAn are finite. The problem is solved by induction.

If nYi = ∅ for all i = 2, . . . , k, the problem can be solved by the technique
from [5]–[7] and the proof is left to the reader.

Now assume that more than one factor Yi has dimension 2.
Let r = max{i ∈ N : niK 6= ∅}. By Lemma 1 only r factors of the

product A1 × . . . × An have nAi non-empty. Assume nAj = ∅ for j ≥ r.
Then nrK = nA1 × . . . × nAr × Ar+1 × . . . × An. Since nrK =

top
nrL, the

set nrL is homeomorphic to Z ×Ar+1 × . . .×An, where Z is finite.
By Lemma 1, nrL = ni1Y1 × . . . × nik

Yk, where ip = 0, 1, 2. The union
from Lemma 1 has only one component in this case because if nip+1Yp 6= ∅
for one p, then nr+1L 6= ∅. Each component of nrK is a Cartesian product of
arcs and simple closed curves, so no prime Cartesian factor of a component
of nrL is a 2-manifold with boundary. Hence nYi 6= ∅ if dim Yi = 2, for
i = 1, . . . ,m.

If we assume dim Y1 = 2, then only the first factor of Y1 × ni2Y2 × . . .×
nik

Yk has dimension 2, and this product is homeomorphic to a Cartesian
product of 1-dimensional polyhedra, by Lemma 2. So Y1 is not prime as in
the first part of the proof.

The proof of Theorem 1 is complete.

P r o o f o f T h e o r e m 2. Set K = X × A1 × . . . × Ak and L =
Y ×B1 × . . .×Bk.
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In the first part of the proof we show that A1, . . . , Ak are homeomorphic
to B1, . . . , Bk up to a permutation.

First, we consider the case when one of the nAi is not empty, say nAk

6= ∅. If F : K → L is a homeomorphism, then F (nK) = nL. By Lemmas 1
and 2, either F (X×A1×. . .×nAk) = nY ×B1×. . .×Bk or F (X×A1×. . .×
nAk) = Y ×B1 × . . .× nBi × . . .×Bk. The first possibility does not occur
by Theorem 1 because X does not have a decomposition into 1-dimensional
factors.

We have proved in [7] that the assertion holds for k = 1. Assume that
this part of Theorem 2 is true for k − 1 factors of dimension 1.

Since nAk and nBi are finite, X ×A1 × . . .×Ak−1 and Y ×B1 × . . .×
Bi−1 × Bi+1 × . . . × Bk are homeomorphic. Therefore, A1, . . . , Ak−1 and
B1, . . . , Bi−1, Bi+1, . . . , Bk are homeomorphic, by induction.

If there exists j 6= k such that nAj 6= ∅, we again use induction to show
that all the sets Ai and Bi are homeomorphic (up to a permutation).

Assume nA1 = . . . = nAk−1 = ∅. Since F (nK) = nL and F (K−nK) =
L−nL we conclude that nAk and nBi, and Ak−nAk and Bi−nBi, are home-
omorphic. Components of Ak − nAk are arcs. A point x ∈ nAk is an end
point of such an arc iff the corresponding point x′ ∈ nBi is an end point of an
arc which is a component of Bi−nBi. So Ak and Bi are also homeomorphic.

If nAi = ∅ for all i = 1, . . . , k, then each Ai is homeomorphic to an arcs
or a circle, and similarly for each Bi. It is easy to show that the numbers
of circles are the same in both cases.

In the second part of the proof we prove that if no Cartesian factor of
K is an arc, then X and Y are homeomorphic.

Let Ai 6= [0, 1] for all i = 1, . . . , k and A1 = . . . = Am = S1. Then (up to
a permutation of the Bi) the sets K = X×S1× . . .×S1×nAm+1× . . .×nAk

and L = Y × S1 × . . .× S1 × nBm+1 × . . .× nBk are homeomorphic.
The 1-polyhedra Am+1, . . . , Ak are neither arcs nor simple closed curves

so none of nAm+1, . . . , nAk is empty.
Let F : K → L be a homeomorphism. By Lemma 1, nk−mK is the

union of X × S1 × . . . × S1 × nAm+1 × . . . × nAk and the sets nX × S1 ×
. . .× S1 × ni1Am+1 × . . .× nik−m

Ak, where one of i1, . . . , ik−m is 0 and the
remaining indices are 1, and the sets n2X×S1× . . .×S1×ni1Am+1× . . .×
nik−m

Ak, where two of i1, . . . , ik−m are 0 and the remaining indices are 1.
Similarly, nk−mL is the union of Y × S1 × . . . × S1 × nBm+1 × . . . × nBk

and the sets nY × S1 × . . .× S1 × ni1Bm+1 × . . .× nik−m
Bk, where one of

i1, . . . , ik−m is 0 while the remaining indices are 1, and the sets n2Y ×S1×
. . . × S1 × ni1Bm+1 × . . . × nik−m

Bk, where two of i1, . . . , ik−m are 0 and
the remaining indices are 1. We have F (nk−mK) = nk−mL. By Lemma 2,
F (X × S1 × . . .× S1 × nAm+1 × . . .× nAk) is one of the above sets whose
union is the set nk−mL.
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Now F (X × S1 × . . .× S1 × nAm+1 × . . .× nAk) = Y × S1 × . . .× S1 ×
nBm+1 × . . . × nBk by Theorem 1, because X and Y are not products of
1-polyhedra.

Since nAm+1× . . .×nAk and nBm+1× . . .×nBk are finite sets, X×S1×
. . .×S1 and Y ×S1× . . .×S1 are homeomorphic. Similarly to Proposition
4.2 of [5], we conclude that X and Y are homeomorphic.
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