VOL. 72	1997	NO. 1

ON DECOMPOSITION OF POLYHEDRA
 INTO A CARTESIAN PRODUCT OF
 1-DIMENSIONAL AND 2-DIMENSIONAL FACTORS

WITOLD ROSICKI (GDAŃSK)

In 1938 K. Borsuk proved [1] that the decomposition of a polyhedron into a Cartesian product of 1-dimensional factors is topologically unique (up to a permutation of the factors). We prove a little more general

Theorem 1. If a connected polyhedron K (of arbitrary dimension) is homeomorphic to a Cartesian product $A_{1} \times \ldots \times A_{n}$, where A_{i} 's are prime compacta of dimension at most 1 , then there is no other topologically different system of prime compacta Y_{1}, \ldots, Y_{k} of dimension at most 2 such that $Y_{1} \times \ldots \times Y_{k}$ is homeomorphic to K.

A space X is said to be prime if it has more than one point and only X and the singleton as Cartesian factors.

In Theorem 1 the dimension of Y_{i} cannot be greater than 2 (see the examples in [3]-[5]). The 3 -dimensional factor of a 6 -dimensional torus (in [5]) is not a polyhedron, but the 4 -dimensional factors of I^{5} (in [3] and [4]) are polyhedra non-homeomorphic to a cube. I do not know if Theorem 1 is true when we assume that the sets Y_{i} are polyhedra of dimension at most 3 .

The decomposition of a polyhedron into a Cartesian product of 1- and 2-dimensional factors is not unique. See the examples in [7].

In [7] we have proved that the decomposition of a compact 3-dimensional polyhedron into a Cartesian product is unique if no factor is an arc. In this paper we present a generalization of that theorem. We prove the following

Theorem 2. If a compact connected polyhedron K has two decompositions into Cartesian products

$$
K \underset{\text { top }}{=} X \times A_{1} \times \ldots \times A_{k} \underset{\text { top }}{=} Y \times B_{1} \times \ldots \times B_{k}
$$

where $\operatorname{dim} A_{i}=\operatorname{dim} B_{i}=1$ for $i=1, \ldots, k$ and $\operatorname{dim} X=\operatorname{dim} Y=2$, and all the factors are prime, then for each $i=1, \ldots, k$ there is $b(i)=1, \ldots, k$

[^0]such that $A_{i} \underset{\text { top }}{=} B_{b(i)}$, the correspondence $i \rightarrow b(i)$ being one-to-one, whereas $X \underset{\text { top }}{=} Y$ if none of A_{i} 's is an arc.

By Kosiński's theorem [2] each 2-dimensional Cartesian factor of a polyhedron is polyhedron. Let us recall ([5], [6]) the following

Definition. If P is a k-dimensional polyhedron, then we define inductively the sets $n_{i} P$ for $i=0,1, \ldots, k$:
(i) $n_{0} P=P$.
(ii) $n_{i} P$ is the set of those points of $n_{i-1} P$ which have no neighborhood in $n_{i-1} P$ homeomorphic to \mathbb{R}^{k-i+1} or \mathbb{R}_{+}^{k-i+1}.

We denote the set $n_{1} P$ by $n P$.
The proofs of Theorems 1 and 2 are based on investigation of the nonEuclidean parts of Cartesian products of compact connected polyhedra. They use methods similar to those used in [5]-[7]. We need two lemmas to prove both the theorems. In Lemma 1, we investigate the structures of the non-Euclidean parts $n_{i} K=n_{i}\left(X_{1} \times \ldots \times X_{k}\right)$ of products of polyhedra. These polyhedra are unions of some Cartesian products. In Lemma 2, we find that every homeomorphism $F: X_{1} \times \ldots \times X_{k} \rightarrow Y_{1} \times \ldots \times Y_{n}$ of products of polyhedra maps components of the decomposition of $n_{i} K$ appearing in Lemma 1 onto components of the analogous decomposition of $n_{i} L$. This result does not give the theorems at once but it is the main tool in the proofs.

Lemma 1. If $K=X_{1} \times \ldots \times X_{k}$, where X_{i} are polyhedra of dimension at most 2 for $i=1, \ldots, k$, then

$$
n_{i} K=\bigcup\left\{n_{i_{1}} X_{1} \times \ldots \times n_{i_{k}} X_{k}: i_{p}=0,1,2, i_{1}+\ldots+i_{k}=i\right\}
$$

Proof. We can assume that the X_{i} are connected.
Observe that if $x_{i} \in n X_{i}$ and $\operatorname{dim} X_{i}=2$, then either each neighborhood of x_{i} in X_{i} contains a subset homeomorphic to $T \times I$ (where $T \underset{\text { top }}{=}$ cone $\{1,2,3\}$ and I is an arc) or x_{i} locally cuts X_{i}. If $x_{i} \in n_{2} X_{i}$, then either each neighborhood of x_{i} in $n X_{i}$ contains a triod (a set homeomorphic to T) or x_{i} is an isolated local cut point in X_{i}. If $x_{i} \in n X_{i}$ and $\operatorname{dim} X_{i}=1$, then each neighborhood of x_{i} in X_{i} contains a triod.

We proceed by induction.

1. Let $x \in \bigcup\left\{n_{i_{1}} X_{1} \times \ldots \times n_{i_{k}} X_{k}: i=0,1,2, i_{1}+\ldots+i_{k}=1\right\}$, say $x \in n X_{1} \times X_{2} \times \ldots \times X_{k}$. Let $\operatorname{dim} X_{1}=2$. Then either each neighborhood of x in K contains a set $U \underset{\text { top }}{=}(T \times I) \times I^{\operatorname{dim} K-2}$, which is not embeddable in $\mathbb{R}^{\operatorname{dim} K}$, or every small neighborhood of x in K is cut by a set of dimension
smaller than $\operatorname{dim} K-1$. If $\operatorname{dim} X_{1}=1$ then each neighborhood of x in K contains a set $U \underset{\text { top }}{=} T \times I^{\operatorname{dim} K-1}$. So $x \in n K$.

The inverse inclusion is obvious.
2. Suppose that our formula is true for $i \leq m$. Let $x \in \bigcup\left\{n_{i_{1}} X_{1} \times \ldots \times\right.$ $\left.n_{i_{k}} X_{k}: i_{p}=0,1,2, i_{1}+\ldots+i_{k}=m+1\right\}$, say $x \in n_{2} X_{1} \times \ldots \times n_{2} X_{p} \times n X_{p+1} \times$ $\ldots \times n X_{p+r} \times X_{p+r+1} \times \ldots \times X_{k}(2 p+r=m+1)$. Assume $r \neq 0$. Then we have two possibilities. First, there exists $l, 1 \leq l \leq r$, such that X_{p+l} has dimension 2 and x_{p+l} locally cuts X_{p+l}. Then every small neighborhood of x in $n_{m} K$ is cut by a set of dimension smaller than $\operatorname{dim} K-(m+1)$. Second, each neighborhood of x in $n_{m} K$ contains a subset homeomorphic to $\left\{z_{1}\right\} \times \ldots \times\left\{z_{p}\right\} \times T \times I^{\operatorname{dim} K-m-1}$, which is not embeddable in $\mathbb{R}^{\operatorname{dim} K-m}$.

If $r=0$ then $x \in n_{2} X_{1} \times \ldots \times n_{2} X_{p-1} \times n X_{p} \times X_{p+1} \times \ldots \times X_{k} \subset n_{m} K$ (because $n_{2} X_{p} \subset n X_{p}$). We again have two possibilities. Either x_{p} is an isolated local cut point or each neighborhood of x in $n_{m} K$ contains a subset homeomorphic to $\left\{z_{1}\right\} \times \ldots \times\left\{z_{p-1}\right\} \times T \times I^{\operatorname{dim} K-m-1}$, which is not embeddable in $\mathbb{R}^{\operatorname{dim} K-m}$. Hence $x \in n_{m+1} K$.

The inverse inclusion is obvious.
Lemma 2. Let $K=X_{1} \times \ldots \times X_{k}$ and $L=Y_{1} \times \ldots \times Y_{n}$ where X_{i}, Y_{i} are prime polyhedra of dimension at most 2. If $F: K \rightarrow L$ is a homeomorphism and $i_{p}=0,1,2$ for $p=1, \ldots, k$ then $F\left(n_{i_{1}} X_{1} \times \ldots \times n_{i_{k}} X_{k}\right)=n_{j_{1}} Y_{1} \times$ $\ldots \times n_{j_{n}} Y_{n}$ for a system $\left(j_{1}, \ldots, j_{n}\right)$ of numbers such that $j_{p}=0,1,2$ for $p=1, \ldots, n$ and $i_{1}+\ldots+i_{k}=j_{1}+\ldots+j_{n}$. (In the proofs of Theorems 1 and 2 we need the case $n_{2} X_{i}=\emptyset$ for $i>1$ only.)

Proof. The proof is similar to the proofs of Lemmas 3.2 of [5] and 2.1 of [6].

Let $i_{1}+\ldots+i_{k}=m$. If $m=m_{0}$ is a maximal number such that $n_{m} K \neq \emptyset$, then the lemma holds. By induction, we can assume that the lemma holds for $i_{k}+\ldots+i_{k}>m$.

Since F is a homeomorphism, $F\left(n_{m} K-n_{m+1} K\right)=n_{m} L-n_{m+1} L$. Each component of $n_{m} K-n_{m+1} K$ is equal to $V_{1} \times \ldots \times V_{k}$, where $V_{p} \in$ $\pi_{0}\left(n_{i_{p}} X_{p}-n_{i_{p}+1} X_{p}\right)$. (We denote the set of components of Z by $\pi_{0} Z$.) Then $F\left(V_{1} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times \ldots \times V_{n}^{\prime}$, where $V_{p}^{\prime} \in \pi_{0}\left(n_{j_{p}} Y_{p}-n_{j_{p}+1} Y_{p}\right)$.

Let $\operatorname{dim} V_{1} \times \ldots \times V_{k}=r$.
First we consider the case when V_{1} is a component of $X_{1}-n X_{1}$ and $\operatorname{dim} X_{1}=2$. Now, let U_{1} be also a component of $X_{1}-n X_{1}$ such that $\operatorname{dim} \bar{V}_{1} \cap \bar{U}_{1}=1$. Then $F\left(U_{1} \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime \prime} \times \ldots \times V_{n}^{\prime \prime}$, where $V_{p}^{\prime \prime} \in \pi_{0}\left(n_{j_{p}} Y_{p}-n_{j_{p+1}} Y_{p}\right)$ and $\operatorname{dim} F\left(\left(\bar{V}_{1} \cap \bar{U}_{1}\right) \times \bar{V}_{2} \times \ldots \times \bar{V}_{k}\right)=\operatorname{dim}\left(\bar{V}_{1}^{\prime} \cap\right.$ $\left.\bar{V}_{1}^{\prime \prime}\right) \times \ldots \times\left(\bar{V}_{k}^{\prime} \cap \bar{V}_{k}^{\prime \prime}\right)=r-1$. Only one factor $\bar{V}_{i_{1}}^{\prime} \cap \bar{V}_{i_{1}}^{\prime \prime}$ has dimension smaller than $\operatorname{dim} V_{i_{1}}^{\prime}$ and only one factor $\bar{V}_{i_{2}}^{\prime} \cap \bar{V}_{i_{2}}^{\prime \prime}$ has dimension smaller than $\operatorname{dim} V_{i_{2}}^{\prime \prime}$. If $\operatorname{dim} V_{i_{1}}^{\prime}=\operatorname{dim} V_{i_{1}}^{\prime \prime}$ then $i_{1}=i_{2}$. In the opposite case $\operatorname{dim} V_{i_{1}}^{\prime \prime}<\operatorname{dim} V_{i_{1}}^{\prime}$ and
$\operatorname{dim} V_{i_{2}}^{\prime}<\operatorname{dim} V_{i_{2}}^{\prime \prime}$. Then $V_{i_{1}}^{\prime \prime} \cap \bar{V}_{i_{1}}^{\prime} \neq \emptyset$ and $V_{i_{2}}^{\prime} \cap \bar{V}_{i_{2}}^{\prime \prime} \neq \emptyset$. Let $V_{1} \times \ldots \times V_{k}=\mathbf{V}$ and $U_{1} \times V_{2} \times \ldots \times V_{k}=\mathbf{U}$. Choose $\mathbf{x}^{\prime} \in F(\mathbf{V})$ and $\mathbf{y}^{\prime} \in F(\mathbf{U})$ such that their coordinates satisfy $y_{i_{1}}^{\prime} \in V_{i_{1}}^{\prime \prime} \cap \bar{V}_{i}^{\prime}$ and $x_{i_{2}}^{\prime} \in V_{i_{2}}^{\prime} \cap \bar{V}_{i_{2}}^{\prime \prime}$. Then there exists an open arc $\left(\mathbf{x}^{\prime} \mathbf{y}^{\prime}\right) \subset V_{1}^{\prime} \times \ldots \times V_{i_{1}}^{\prime} \times \ldots \times V_{i_{2}}^{\prime \prime} \times \ldots \times V_{n}^{\prime} \subset L$ disjoint from $n_{m+1} L$. But if $\mathbf{x} \in \mathbf{V}$ and $\mathbf{y} \in \mathbf{U}$ then each open $\operatorname{arc}(\mathbf{x} \mathbf{y}) \subset K$ has a non-empty intersection with $n_{m+1} K$. So $F^{-1}\left(\left(\mathbf{x}^{\prime} \mathbf{y}^{\prime}\right)\right) \cap n_{m+1} K \neq \emptyset$, which is impossible. So, $i_{1}=i_{2}$ and $V_{p}^{\prime}=V_{p}^{\prime \prime}$ for $p \neq i_{1}$.

If $W_{1} \in \pi_{0}\left(X_{1}-n X_{1}\right)$ and also $\operatorname{dim} \bar{V}_{1} \cap \bar{W}_{1}=1$ then $F\left(W_{1} \times V_{2} \times\right.$ $\left.\ldots \times V_{k}\right)=V_{1}^{*} \times \ldots \times V_{n}^{*}$, where $V_{p}^{*} \in \pi_{0}\left(n_{j_{p}} Y_{p}-n_{j_{p+1}} Y_{p}\right), V_{p}^{*}=V_{p}^{\prime}$ for $p \neq i_{2}$ and $\operatorname{dim} \bar{V}_{i_{2}}^{\prime} \cap \bar{V}_{i_{2}}^{*}=1$. By induction $F\left(n X_{1} \times n_{i_{2}} X_{2} \times \ldots \times n_{i_{k}} X_{k}\right)$ is a Cartesian product of the sets $n_{s_{p}} Y_{p}$, where only one s_{p} is one greater than j_{p}. The sets $\bar{V}_{1} \cap \bar{U}_{1}$ and $\bar{V}_{1} \cap \bar{W}_{1}$ are contained in $n X_{1}$. Therefore, $F(\overline{\mathbf{V}}) \cap F(\overline{\mathbf{U}})=\bar{V}_{1}^{\prime} \times \ldots \times\left(\bar{V}_{i_{1}}^{\prime} \cap \bar{V}_{i_{1}}^{\prime \prime}\right) \times \ldots \times \bar{V}_{n}^{\prime} \subset n_{s_{1}} Y_{1} \times \ldots \times n_{s_{n}} Y_{n}$. So, $s_{i_{1}}=j_{i_{1}}+1$. Since $\bar{V}_{1} \cap \bar{W}_{1} \subset n X_{1}$, we also have $s_{i_{2}}=j_{i_{2}}+1$. Therefore, $i_{1}=i_{2}$.

If there exists a sequence of $U_{i} \in \pi_{0}\left(X_{1}-n X_{1}\right)$ for $i=1, \ldots, q$ such that $\operatorname{dim} \bar{U}_{i} \cap \bar{U}_{i+1}=1$ for $i=1, \ldots, q-1$ and $U_{q}=V_{1}$ then the products $F\left(V_{1} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times \ldots \times V_{n}^{\prime}$ and $F\left(U_{1} \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime \prime} \times \ldots \times V_{n}^{\prime \prime}$ still have only the i_{1}-factor different and the remaining ones are the same.

If such a sequence does not exist, the points of $\bar{U}_{1} \cap \bar{V}_{1}$ are isolated local cut points of K_{1}.

Let Z be the set of points of $n_{m} K$ at which $n_{m} K$ is locally cut by a set of dimension $r-2$. If Z^{\prime} is the analogous subset of $n_{m} L$, then $F(Z)=Z^{\prime}$. If $\mathbf{x} \in V_{1} \times \ldots \times V_{k}$ and $\mathbf{y} \in U_{1} \times V_{2} \times \ldots \times V_{k}$ then the interior of an arc $\mathbf{x} \mathbf{y} \subset n_{m} K$ has a non-empty intersection with Z. Similarly, if there exist two indices i and j such that $V_{i}^{\prime} \neq V_{i}^{\prime \prime}$ and $V_{j}^{\prime} \neq V_{j}^{\prime \prime}$, then there exists an arc $F(\mathbf{x}) F(\mathbf{y})$ in $n_{m} L$ with interior disjoint from Z^{\prime}.

So, if D is a component of a subset of the locally 2-dimensional part of X_{1} such that $V_{1} \subset D$, then $F\left(D \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times \ldots \times D^{\prime} \times \ldots \times V_{n}^{\prime}$, where the i_{1}-factor D^{\prime} is an appropriate subset of $Y_{i_{1}}$.

Similarly, we can show that if J is a component of the 1-dimensional part of X_{1} such that $\bar{J} \cap \bar{D} \neq \emptyset$, then $F\left(J \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times \ldots \times J^{\prime} \times \ldots \times V_{n}^{\prime}$, where the i_{1}-factor J^{\prime} is an appropriate subset of $Y_{i_{1}}$.

The same considerations are true for the homeomorphism $F^{-1}: L \rightarrow K$.
So, $F\left(X_{1} \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times \ldots \times Y_{i_{1}} \times \ldots \times V_{n}^{\prime}$.
If $\operatorname{dim} V_{1}=1$ then either $\operatorname{dim} X_{1}=1$ and $F\left(X_{1} \times V_{2} \times \ldots \times V_{k}\right)=$ $V_{1}^{\prime} \times \ldots \times Y_{i_{1}} \times \ldots \times V_{n}^{\prime}$, or $V_{1} \subset n X_{1}$ and $F\left(n X_{1} \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times$ $\ldots \times n Y_{i_{1}} \times \ldots \times V_{n}^{\prime}$. If $\operatorname{dim} V_{1}=0$ then for $\operatorname{dim} X_{1}=2$ we have $V_{1} \subset n_{2} X_{1}$ and $F\left(n_{2} X_{1} \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times \ldots \times n_{2} Y_{i_{1}} \times \ldots \times V_{n}^{\prime}$, while for $\operatorname{dim} X_{1}=1$ we have $V_{1} \subset n X_{1}$ and then $F\left(n X_{1} \times V_{2} \times \ldots \times V_{k}\right)=V_{1}^{\prime} \times \ldots \times n Y_{i_{1}} \times \ldots \times V_{n}^{\prime}$. The proof uses the same methods as before but is simpler.

Proof of Theorem 1 . Let $K=A_{1} \times \ldots \times A_{n}$ and $L=Y_{1} \times \ldots \times Y_{k}$. The polyhedra K and L are homeomorphic.

If $n K=\emptyset$ then by Lemma $1, n A_{i}=\emptyset$ for all $i=1, \ldots, n$, so A_{i} are arcs or simple closed curves (say I and S^{1}). Hence, $\pi_{1}(K)=\mathbb{Z}^{r}$, where r is the number of S^{1} 's in the product. The group $\pi_{1}(L) \approx \pi_{1}(K)$ is abelian, as are all $\pi\left(Y_{i}\right)$, because $\pi_{1}(L)=\bigoplus_{i=1}^{k} \pi_{1}\left(Y_{i}\right)$. Two-dimensional factors Y_{i} are polyhedra by Kosiński's theorem [2] and $n Y_{i}=\emptyset$ by Lemma 1 for all $i=1, \ldots, k$, so they are compact 2 -manifolds with boundary. There are only five such manifolds with abelian fundamental groups: $I^{2}, S^{1} \times I, S^{1} \times S^{1}, S^{2}$ and the projective plane. It is easy to see that S^{2} and the projective plane cannot be factors and the remaining manifolds are not prime.

First, we assume that only one factor Y_{1} has dimension 2.
Now, we proceed by induction with respect to the number of 1-dimensional factors.

If $n=2$ the problem is trivial. (If $n \leq 3$, then the problem is easy and it is solved in [7].)

Assume that the problem is solved for $m \leq n$.
If $F: L \rightarrow K$ is a homeomorphism, then $F(n L)=n K$, and if $n Y_{k} \neq \emptyset$, then $F\left(Y_{1} \times \ldots \times Y_{k-1} \times n Y_{k}\right)=A_{1} \times \ldots \times A_{n-1} \times n A_{n}$ (up to a permutation) by Lemma 2. The sets $Y_{1} \times \ldots \times Y_{k-1}$ and $A_{1} \times \ldots \times A_{n-1}$ are homeomorphic because $n Y_{k}$ and $n A_{n}$ are finite. The problem is solved by induction.

If $n Y_{i}=\emptyset$ for all $i=2, \ldots, k$, the problem can be solved by the technique from [5]-[7] and the proof is left to the reader.

Now assume that more than one factor Y_{i} has dimension 2.
Let $r=\max \left\{i \in \mathbb{N}: n_{i} K \neq \emptyset\right\}$. By Lemma 1 only r factors of the product $A_{1} \times \ldots \times A_{n}$ have $n A_{i}$ non-empty. Assume $n A_{j}=\emptyset$ for $j \geq r$. Then $n_{r} K=n A_{1} \times \ldots \times n A_{r} \times A_{r+1} \times \ldots \times A_{n}$. Since $n_{r} K \underset{\text { top }}{=} n_{r} L$, the set $n_{r} L$ is homeomorphic to $Z \times A_{r+1} \times \ldots \times A_{n}$, where Z is finite.

By Lemma 1, $n_{r} L=n_{i_{1}} Y_{1} \times \ldots \times n_{i_{k}} Y_{k}$, where $i_{p}=0,1,2$. The union from Lemma 1 has only one component in this case because if $n_{i_{p}+1} Y_{p} \neq \emptyset$ for one p, then $n_{r+1} L \neq \emptyset$. Each component of $n_{r} K$ is a Cartesian product of arcs and simple closed curves, so no prime Cartesian factor of a component of $n_{r} L$ is a 2 -manifold with boundary. Hence $n Y_{i} \neq \emptyset$ if $\operatorname{dim} Y_{i}=2$, for $i=1, \ldots, m$.

If we assume $\operatorname{dim} Y_{1}=2$, then only the first factor of $Y_{1} \times n_{i_{2}} Y_{2} \times \ldots \times$ $n_{i_{k}} Y_{k}$ has dimension 2, and this product is homeomorphic to a Cartesian product of 1-dimensional polyhedra, by Lemma 2. So Y_{1} is not prime as in the first part of the proof.

The proof of Theorem 1 is complete.
Proof of Theorem 2. Set $K=X \times A_{1} \times \ldots \times A_{k}$ and $L=$ $Y \times B_{1} \times \ldots \times B_{k}$.

In the first part of the proof we show that A_{1}, \ldots, A_{k} are homeomorphic to B_{1}, \ldots, B_{k} up to a permutation.

First, we consider the case when one of the $n A_{i}$ is not empty, say $n A_{k}$ $\neq \emptyset$. If $F: K \rightarrow L$ is a homeomorphism, then $F(n K)=n L$. By Lemmas 1 and 2, either $F\left(X \times A_{1} \times \ldots \times n A_{k}\right)=n Y \times B_{1} \times \ldots \times B_{k}$ or $F\left(X \times A_{1} \times \ldots \times\right.$ $\left.n A_{k}\right)=Y \times B_{1} \times \ldots \times n B_{i} \times \ldots \times B_{k}$. The first possibility does not occur by Theorem 1 because X does not have a decomposition into 1-dimensional factors.

We have proved in $[7]$ that the assertion holds for $k=1$. Assume that this part of Theorem 2 is true for $k-1$ factors of dimension 1 .

Since $n A_{k}$ and $n B_{i}$ are finite, $X \times A_{1} \times \ldots \times A_{k-1}$ and $Y \times B_{1} \times \ldots \times$ $B_{i-1} \times B_{i+1} \times \ldots \times B_{k}$ are homeomorphic. Therefore, A_{1}, \ldots, A_{k-1} and $B_{1}, \ldots, B_{i-1}, B_{i+1}, \ldots, B_{k}$ are homeomorphic, by induction.

If there exists $j \neq k$ such that $n A_{j} \neq \emptyset$, we again use induction to show that all the sets A_{i} and B_{i} are homeomorphic (up to a permutation).

Assume $n A_{1}=\ldots=n A_{k-1}=\emptyset$. Since $F(n K)=n L$ and $F(K-n K)=$ $L-n L$ we conclude that $n A_{k}$ and $n B_{i}$, and $A_{k}-n A_{k}$ and $B_{i}-n B_{i}$, are homeomorphic. Components of $A_{k}-n A_{k}$ are arcs. A point $x \in n A_{k}$ is an end point of such an arc iff the corresponding point $x^{\prime} \in n B_{i}$ is an end point of an arc which is a component of $B_{i}-n B_{i}$. So A_{k} and B_{i} are also homeomorphic.

If $n A_{i}=\emptyset$ for all $i=1, \ldots, k$, then each A_{i} is homeomorphic to an arcs or a circle, and similarly for each B_{i}. It is easy to show that the numbers of circles are the same in both cases.

In the second part of the proof we prove that if no Cartesian factor of K is an arc, then X and Y are homeomorphic.

Let $A_{i} \neq[0,1]$ for all $i=1, \ldots, k$ and $A_{1}=\ldots=A_{m}=S^{1}$. Then (up to a permutation of the B_{i}) the sets $K=X \times S^{1} \times \ldots \times S^{1} \times n A_{m+1} \times \ldots \times n A_{k}$ and $L=Y \times S^{1} \times \ldots \times S^{1} \times n B_{m+1} \times \ldots \times n B_{k}$ are homeomorphic.

The 1-polyhedra A_{m+1}, \ldots, A_{k} are neither arcs nor simple closed curves so none of $n A_{m+1}, \ldots, n A_{k}$ is empty.

Let $F: K \rightarrow L$ be a homeomorphism. By Lemma $1, n_{k-m} K$ is the union of $X \times S^{1} \times \ldots \times S^{1} \times n A_{m+1} \times \ldots \times n A_{k}$ and the sets $n X \times S^{1} \times$ $\ldots \times S^{1} \times n_{i_{1}} A_{m+1} \times \ldots \times n_{i_{k-m}} A_{k}$, where one of i_{1}, \ldots, i_{k-m} is 0 and the remaining indices are 1 , and the sets $n_{2} X \times S^{1} \times \ldots \times S^{1} \times n_{i_{1}} A_{m+1} \times \ldots \times$ $n_{i_{k-m}} A_{k}$, where two of i_{1}, \ldots, i_{k-m} are 0 and the remaining indices are 1 . Similarly, $n_{k-m} L$ is the union of $Y \times S^{1} \times \ldots \times S^{1} \times n B_{m+1} \times \ldots \times n B_{k}$ and the sets $n Y \times S^{1} \times \ldots \times S^{1} \times n_{i_{1}} B_{m+1} \times \ldots \times n_{i_{k-m}} B_{k}$, where one of i_{1}, \ldots, i_{k-m} is 0 while the remaining indices are 1 , and the sets $n_{2} Y \times S^{1} \times$ $\ldots \times S^{1} \times n_{i_{1}} B_{m+1} \times \ldots \times n_{i_{k-m}} B_{k}$, where two of i_{1}, \ldots, i_{k-m} are 0 and the remaining indices are 1. We have $F\left(n_{k-m} K\right)=n_{k-m} L$. By Lemma 2, $F\left(X \times S^{1} \times \ldots \times S^{1} \times n A_{m+1} \times \ldots \times n A_{k}\right)$ is one of the above sets whose union is the set $n_{k-m} L$.

Now $F\left(X \times S^{1} \times \ldots \times S^{1} \times n A_{m+1} \times \ldots \times n A_{k}\right)=Y \times S^{1} \times \ldots \times S^{1} \times$ $n B_{m+1} \times \ldots \times n B_{k}$ by Theorem 1, because X and Y are not products of 1-polyhedra.

Since $n A_{m+1} \times \ldots \times n A_{k}$ and $n B_{m+1} \times \ldots \times n B_{k}$ are finite sets, $X \times S^{1} \times$ $\ldots \times S^{1}$ and $Y \times S^{1} \times \ldots \times S^{1}$ are homeomorphic. Similarly to Proposition 4.2 of [5], we conclude that X and Y are homeomorphic.

REFERENCES

[1] K. Borsuk, Sur la décomposition des polyèdres en produits, Fund. Math. 31 (1938), 137-148.
[2] A. Kosiński, On 2-dimensional topological divisors of polytopes, Bull. Acad. Polon. Sci. 2 (1957), 325-328.
[3] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961), 221228.
[4] V. Poenaru, Les décompositions de l'hypercube en produit topologique, Bull. Soc. Math. France 88 (1960), 113-129.
[5] W. Rosicki, On a problem of S. Ulam concerning Cartesian squares of 2-dimensional polyhedra, Fund. Math. 127 (1986), 101-125.
[6] -, On Cartesian powers of 2-polyhedra, Colloq. Math. 59 (1990), 141-149.
[7] -, On decomposition of 3-polyhedra into a Cartesian product, Fund. Math. 136 (1990), 53-63.

Institute of Mathematics
Gdańsk University
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: wrosicki@ksinet.univ.gda.pl

[^0]: 1991 Mathematics Subject Classification: Primary 57Q05.
 Supported by Gdańsk University, grant BW-5100-5-0053-5.

