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1. Introduction. Throughout the paper K is a fixed algebraically
closed field. By an algebra we mean a finite-dimensional K-algebra, which
we shall assume, without loss of generality, to be basic and connected. For
an algebra A, we shall denote by mod(A) the category of finitely generated
right A-modules, and by mod(A) the stable category of mod(A). Recall that
the objects of mod(A) are the objects of mod(A) without projective direct
summands, and for any two objects X, Y in mod(A) the space of morphisms
from X to Y in mod(A) is Hom,(X,Y) = Homu(X,Y)/P(X,Y), where
P(X,Y) is the subspace of Hom 4 (X, Y') consisting of the A-homomorphisms
which factorize through projective A-modules. For every f € Homa(X,Y)
we shall denote by f its coset modulo P(X,Y). Two algebras A and B are
said to be stably equivalent if their stable module categories mod(A) and
mod(B) are equivalent.

Following [5, 11] we shall say that a module 7" in mod(A) is a tilting
(respectively, cotilting) module if it satisfies the following conditions:

(1) Ext? (T, —) = 0 (respectively, Ext?(—,T) = 0);

(2) Exty (T,T) = 0;

(3) the number of nonisomorphic indecomposable summands of T equals
the rank of the Grothendieck group Ky(A).

Two algebras A and B are said to be tilting-cotilting equivalent if there
exist a sequence of algebras A = Ay, A1,..., A, As1 = B and a sequence
of modules Tiw 0 < i < m, such that A;;; = Enda,(T%) and T is either a
tilting or a cotilting module.

Following Gabriel [9], a K-category R is called locally bounded if the
following conditions are satisfied:
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(a) different objects are not isomorphic;

(b) the algebra R(x,z) of endomorphisms of x is local for every object
z in R;

(¢) > yepdimpgR(z,y) < oo and ) pdimg R(y,x) < oo for every
object z in R.

Interesting examples of locally bounded K-categories are the repetitive
algebras introduced by Hughes and Waschbiisch in [12]. For an algebra A
denote by D = Homg (—, K) the standard duality on mod(A). Recall that

the repetitive algebra A of A is the selfinjective, locally finite-dimensional
matrix algebra without identity defined by

- 01
R Ai
A= Ei_ A;
E; A
L0 —
where matrices have only finitely many nonzero entries, A; = A, E; =

ADA4 for all integers i, all the remaining coefficients are zero, and the
multiplication is induced from the canonical bimodule structure of DA and
the zero morphism DA ®4 DA — 0.

One of the interesting problems concerning repetitive algebras is a clas-
sification of locally bounded K-categories which are stably equivalent to a
given repetitive algebra. The problem was studied by several authors (see
[1, 2, 14, 20, 21]). Wakamatsu proved in [21] that if A is tilting-cotilting
equivalent to B then Ais stably equivalent to B. Peng and Xiao proved in
[14] that if H is a hereditary algebra and A is a locally bounded K-category
which is stably equivalent to H , then there is an algebra B tilting-cotilting
equivalent to H such that B =~ A. We shall prove the following theorem on
locally bounded K-categories stably equivalent to the repetitive algebras of
tubular algebras in the sense of Ringel [18].

THEOREM. Let A be a tubular algebra. A locally bounded K -category
A is stably equivalent to A if and only if A is isomorphic to the repetitive
algebra B of a tubular algebra B which is tilting-cotilting equivalent to A.

Our proof of the above result rests heavily on the main results obtained
in [15, 16] for trivial extension algebras. In the case when A is a repetitive
algebra the above theorem has been proved in [2].
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We shall use freely results about Auslander—Reiten sequences which can
be found in [3].

2. Preliminaries

2.1. Following Ringel [18], the canonical tubular algebras of type

(2,2,2,2) are defined by the quiver

with the relations ay s+ 5182 +717v2 = O and ayag+kB1B2+6102 = 0, where
k is some fixed element from K \ {0,1}. The canonical tubular algebras of
type (p,q,r) = (3,3,3), (2,4,4) or (2,3,6) are given by the quiver

//\\

Q2
@ ———— > @ e °
2. X
Bl ﬁ2 Bq
¢ —0 ——=> 0 e o — > o
V2
@ —— @ s °

with ajan...op + B1B2... By +7172... 79 = 0.

2.2. For the repetitive algebra A the identity morphisms A; — A;_1,
E; — E;_1 induce an automorphism v of A which is called the Nakayama
automorphism. Moreover, the orbit space A/(v4) has the structure of a
finite-dimensional K-algebra which is isomorphic to the trivial extension
T(A) of A by its minimal injective cogenerator bimodule 4 DA 4. This is the
algebra whose additive structure coincides with that of the group A ® DA,
and whose multiplication is defined by the formula (a, f)(b, g) = (ab, ag+ fb)
for a,b € A, f,g € ADA4. Thus A is a Galois cover in the sense of [9] of
the selfinjective algebra T'(A) with the infinite cyclic group (r4) generated
by va4.

2.3. A locally bounded K-category R is said to be locally support-finite
[6] if for every indecomposable projective R-module P, the set of isomor-
phism classes of indecomposable projective R-modules P’ such that there ex-
ists an indecomposable finite-dimensional R-module M with Hompg (P, M) #
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0 # Homp(P’, M) is finite. Of particular interest is the fact that the repet-
itive algebra A of a tubular algebra A is locally support-finite (see [13]). A
locally bounded K-category is said to be triangular if its ordinary quiver
has no oriented cycles.

2.4. Following Gabriel (see [9]), for a locally bounded K-category R
and a torsion-free group G of K-automorphisms of R acting freely on the
objects of R, R/G is the quotient category whose objects are the G-orbits
of the objects of R. Moreover, there is a covering functor F' : R — R/G
which maps any object = of R to its G-orbit G - . F induces the push-
down functor F\ : mod(R) — mod(R/G), which preserves indecompos-
ables and Auslander—Reiten sequences, maps projective R-modules to pro-
jective R/G-modules and preserves projective resolutions. Furthermore, if
R is locally support-finite then F) is dense and induces a bijection between
the set (ind(R)/=)/G of the G-orbits of the isomorphism classes of finite-
dimensional indecomposable R-modules and the set ind(R/G) /2 of the iso-
morphism classes of finite-dimensional indecomposable R/G-modules [6].

2.5. Let 2p : mod(R) — mod(R) be Heller’s loop-space functor for a
selfinjective locally bounded K-category R. Then QRTIngR(S) is simple
for every simple R-module S, where 7 ! stands for the Auslander-Reiten
translate TrD on mod(R). Thus we obtain a permutation of the isomor-
phism classes of the simple R-modules. This permutation induces a K-
automorphism vi of R in an obvious way. We denote by (vz) the infinite
cyclic group of K-automorphisms of R generated by vg.

3. Preparatory results

3.1. Throughout this section we shall assume that R; and Ro are self-
injective locally bounded K-categories which are locally support-finite and
have no indecomposable projective modules of length 2. Moreover, there is
a fixed equivalence functor @ : mod(R;) — mod(Rs).

3.2. PROPOSITION. If M is an indecomposable nonprojective finite-di-
mensional Rq-module then &(tr,(M)) = Tr,(®(M)) and ®(2g,(M)) =
2, (P(M)).

Proof. A direct adaptation of the arguments from the proofs of Propo-

sition 2.4 and Theorem 4.4 of [4].

3.3. LEMMA. If T]gll (M) 2 Qéf(M) for every indecomposable nonpro-
jective finite-dimensional Ry-module M then (vr,) acts freely on the objects
Of RQ.

Proof. We have to show that (25, 71;21 g, (S) % S for every simple Ro-
module S. Suppose to the contrary that there exists a simple Ro-module S
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with QRZTE; 2r,(S) =2 S. Then there exists a nonprojective indecompos-
able finite-dimensional R;-module M such that ¢(M) = S, and we infer by
Proposition 3.2 that Qergll 2r, (M) = M, which contradicts our assump-

~Y

tion, because this isomorphism implies 7'1511 (M) = Qﬁf(M ).

3.4. LEMMA. Let F; : mod(R;) — mod(Ry) and F» : mod(R2) —
mod(Rz) be exact equivalences satisfying the following conditions:

(a) If F? :mod(R;) — mod(R;), i = 1,2, are defined by F?(X) = F;(X)
for X € mod(R;), F7(f) = Fi(f) for f: X — Y in mod(R;), then F? are
well-defined functors which are equivalences.

(b) For every object X € mod(Ry), F{(X) = ¢~ F5®(X), where &~ is

a fized quasi-inverse of .

Then Ff and &~ 1F5® are isomorphic functors.

Proof. In the first step of the proof we show that for every short exact
sequence

0-UBX By o

in mod(R;) with all terms without projective direct summands there are
w  TIFSS(U) — 7 FSH(X) and p' - ¢ ESH(X) — ¢ 1E5P(V) such
that the following sequences are exact in mod(Ry):

0= F3 () 2 psx) R ms vy 5o,

0 S LFOU) % 6 FH(X) B o LESD(V) 5 0,

where w' = @ 1F5®(w) and p’ = &~ LFSP(p). The exactness of the first
sequence is obvious by the definition of F T, because F is exact.

In order to show the exactness of the second, we first show that w’ is
a monomorphism, where w’ is any representative of the coset ¢~ F5®(w).
Suppose to the contrary that w’ is not a monomorphism. Then w’ = w)w}
with w] : @71 F5®#(U) — im(w’) an epimorphism and w} : im(w’) —
@1 F5®(X) a monomorphism. Since w is a monomorphism, we infer by [17;
Lecture 3] that w # 0. Thus w’ = whw] # 0 and there are W € mod(R;)
and wy : U — W, wy : W — X such that &' F5sd(w;) = wl, i = 1,2,
because @1 F§® is an equivalence. Since w] is a proper epimorphism, we
have the following inequality for lengths: I(im(w’)) < [(®~1F5&(U)). But
Fy is an additive exact equivalence, hence F; preserves the lengths of R;-
modules. Therefore F} preserves the lengths of Rj-modules without projec-
tive direct summands and so does @~ F5®, because Ff(M) = ¢~ L1F5d(M)
for any M € mod(R;) by the assumption of our lemma. Consequently,
(W) = l(im(w)) < I(U). But w — wow, factorizes through a projective
Ri-module, say P. Thus there are ¢; : U — P and ¢2 : P — X such that
w — wowy = @2q1. Since w is a monomorphism, there is ¢; : X — P such
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that ¢1 = ¢fw. Then w — wow; = g2q1 = @2¢jw and w — g2qjw = waws.
Hence (idx — ¢2¢})w = wow;. But (idx — ¢2¢})w is a monomorphism, be-
cause idx — ¢2¢} is an isomorphism. Therefore we obtain a contradiction,
because the monomorphism (idx — g2¢] )w factorizes through the module W
of length smaller than U. Consequently, w’ is a monomorphism.

Dually one proves that p’ is an epimorphism, where p’ is any represen-
tative of the coset @1 F5®(p).

Since @1 F5® preserves the lengths of Rj-modules without projective
direct summands, showing that p’w’ = 0 is sufficient to show that the consid-
ered sequence is exact. Since pw = 0, we have pw = 0. Thus p’w’ = 0. Hence
there are a projective Rj-module P and morphisms q; : ' F*®(U) — P
and g3 : P — &7 1F5®(V) such that p'w’ = g2q;. Since w’ is a monomor-
phism and p’ is an epimorphism, there are morphisms ¢, : P — &' F5®(X)
and ¢} : @1F5P(X) — P such that p'w’ = q2q1 = p'¢hqjw’. Then putting
w” = (idx — ¢4q})w’ we obtain p'w” =0 and w” = w'.

In the second step of the proof we show that there is an isomorphism
[ Ff — &7 'F5® given by a family (f(X))xemod(r,) of isomorphisms in
mod(R;) such that for every morphism u : X — Y in mod(R;) the diagram

F(X)

Frx) 9 g1 Ese(x)
Fi(w) | 12 Fiew)
Fry) Y o1 msey)

commutes. We construct a family (f(X))xemoda(r,) such that for every
X € mod(Ry) there is an isomorphism fy in mod(R;) with fx = f(X) and
such that for every short exact sequence

0-UB3X5%Bv o0

in mod(R;) the diagram with exact rows

0 -  Fw) " o) " By S oo
\LfU ifx ifv

’
w

0 = SIEGU) Y eIESH(X) B eTLESE(V) — 0

commutes, where w’, p’ are as in the first step of the proof. This condition
is called the commutativity condition for fx.

Our construction will run inductively on the length of X in mod(R;). If
[(X) =1 then X is a simple R;-module. Fix an isomorphism fx = f(X) :
F{(X) — &7 1F5P(X). Let u : X — X be a nonzero morphism. Since
X is simple, v is an automorphism. Thus @~ F5®(u) = v, where v is an
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automorphism. But u is multiplication by k, € K* = K \ {0}. Since
F(idx) = m and g15711?2‘995(1(17X) = idg-1F50(x)
it follows that for u = idx - k,, we have
Fy(u) = idps(x) - ku and &' F5D(idx - ku) = idg-1p5a(x) - Ku-

Thus for any f(X) we have f(X)F{(u) =& 1F5d(u)f(X).

Now consider two isomorphic simple modules X, Y such that X # Y. For
every isomorphism class [X] of a simple R;-module X fix a representative,
say X. For every Y isomorphic to X fix an isomorphism uy : X — Y. Then
fix an 1somorphlsm fx : F{(X) = &7 F5®(X), and for every Y € [X] define
fy F5(Y)— o 1Fso(Y ) by the formula

fy = f(Y) = 7 F3P(uy) f(X)F} (uy ),
where fy is an arbitrary fixed representative of the coset f(Y). Ifu: Z - Y
is an isomorphism with Y, Z € [X] then for Z = X we have u = uy - k,, for
some k, € K*. Thus F$(u) = F¥(uy) - k, and 95*1F2395( ) = &1 F5(uy) -
k. Therefore f(Y) = ¢_1F28Q5(u7y)f(X)Fs( 1), which implies that
FOYV) = (@7 F3P(uy) k) f(X)(FF (uy ') - k') = DTS D () f(X)F (uy ).

Thus (V) F} (u) = & () f(X).

Now consider the case Y = X. Then u = ug -k, for some k, € K*.
Thus F(u) = F§(u,') - k;' and 7 F5d(u) = &~ 1F2§15( Y.kt There-
fore f(Z) = 1F2§Z5( ug) f(X)F} (uZ ), which implies

F(2)7! = Fi(ug) f(X) 7197 Fyd(uy')
= (Fy (uz) - k) f(X)TH@T E5D(uy') - Ky )
= F(w) ™ f(X) T 0T F3P(w).

Then

F(Z) = (@7 F50(w) ™ F(X) Y (u)
and

O D(u) f(Z) = f(X)™ F5 ().

Finally, consider the case Z # X # Y. Then uy -k, = uz for some k,, €
K*. Moreover, we infer by the above considerations that f(Z)F}(uz) =
L F30(uz) f(X) and [(V)F} (wuz) = &~ FB(uuz) f(X). Bt Fj (uuz)
= F{(u)Fi(ugz) and & 'F5P(uuy) = O F5d(u)P  F5d(uy). Then we
get

FOE; (W) f(2)7 f(Z)F (uz) = 97 F3P(w) ™ F3P(uz) f(X)
and f(Y)F§(u)f(Z)™! = &1 F§d(u). Consequently,
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FOYV)F (w) = 97 F3d(u) f(Z),

and for simple Ry-modules X the family (f(X)) is constructed.

Assume now that a family (f(X)) is constructed for every X € mod(R;)
with {(X) < n. Consider Y € mod(R;) with I(Y) = n+ 1. Let S be a
simple submodule of Y. For the nonsplittable short exact sequence

0=-53YBy/s—o,

where w is the inclusion monomorphism and p is the canonical epimorphism,
we have the short exact sequences

0— F5(9) Y mryy 28 pry/s) - o,
0 S LESB(S) S 61 ESB(Y) B dUESB(Y/S) = 0

as in the first step of our proof. Let fg be an isomorphism such that
fs = f(S). Let fy;s be an isomorphism such that fy,g = f(Y/S). Let
P be the projective cover of F7(Y/S). Then there is an epimorphism
m : P — F{(Y/S). Furthermore, fy,sm : P — & 'F5H(Y/S) is an
epimorphism too, because fy,s is an isomorphism. Thus there are mor-
phisms 7 : P — F{(Y) and 7y : P — @7 1F§P(Y) such that Fy(p)m =
7 and p'my = fy gm. The morphisms 71, are epimorphisms, because
top(F3(Y)) = top(F}(Y/8)) and top(@~ F38(Y)) = top(@~ F3&(Y/S)).
Moreover, there is a submodule L of P such that there is an epimorphism
k: L — F{(S)and Fy(w)k = m1|r. Observe that p'ma(t) = 0 for every t € L,
because p'm2(t) = fy/sm(t) = fy/sFi(p)mi(t) = fyysFi(p)Fi(w)k(t) = 0.
Thus im(ms|z) C im(w’). Then mo|= w’ fsk - k for some k € K*. Changing
w’ if necessary, we may assume that mo|,= w’ fsk, because if p’w’ = 0 then
pw -k~ =0.

We define an isomorphism fy : F¥(Y) — ¢ 1F;®(Y) in the following
way. For y € F¥(Y) we can find ¢t € P such that m(¢) = y. Then we put
fy(y) = ma(t). Since ker(m) C L and ker(me) C L, we have ker(m) =
ker(my) = ker(k) because m2|= w'fsk and 71 |,= Fi(w)k. Therefore fy
is a well-defined R;-homomorphism. Since ker(m;) = ker(ms), fy is an
isomorphism. It is easy to see that the diagram

0 = FpS) W my)  "® myrs) o0
\l/fs ify ify/s
0 = OES) U e lEse(Y) B o 'Ee(Y/S) - 0

commutes.

Suppose now that we have a short exact sequence 0 — U 5 Y v o
If im(w) is contained in im(a) then there are Ry-morphisms ¢ : S — U and
r:Y/S — V such that the diagram
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w

0 - S 3 v B v/s - o0
¥ | U

0 - U S v &% v S o0

commutes. Moreover, we deduce from the first step of the proof that there
are short exact sequences

0= FU) 2 pry) Q) ps vy o,
0 S LESBU) % $IESD(Y) B 6T LESB(V) - 0.

By the inductive assumption for some 7/ : @1 F5P(Y/S) — 7 F5P(V)
such that 7' = =1 F5P(r) we have 1’ fy,s = fy Fi(r). Then v/ fy;sFi(p) =
JvFi(r)Fi(p). Since Fy(r)Fy(p) = F1(b), we have fy F1(b) =1’ fy,sF1(p) =
r'p’ fy, because it was shown above that fy,sFi(p) = p'fy. Observe that
b can be chosen in such a way that r'p’ = V. Indeed, since b = rp, we
have b/ = @~ 1F5P(b) = ¢~ Fs®(rp) = r'p’. Suppose that b’ — r'p’ # 0.
Then ¥ — r'p’ factorizes through a projective R;-module Q. Since b’ is
an epimorphism by the first step of our proof and b’ — r'p’ = ¢oq1 with
q PTIFSO(Y) = Q, go: Q — PTLFSD(V), there is ¢ : Q — &LFSP(Y)
such that gaqn = b'¢ghqr. Therefore r'p’ = b — b/¢ghqr. Thus put b’ =
V(idg-1psa(v) —¢2q1). Then b’ = b and b” is an epimorphism. Moreover, if
we put a”’ = (id@*lFQS@(Y) —q5q1) ! then @’ = @/ and @” is a monomorphism
with b”a” = 0. Since b = r'p’, we get fy F1(b) =" fy.

We deduce from the last commutative diagram by the snake lemma that
there is a commutative diagram with exact rows

0 - S 5 U S US - o0
H ia \J/U
0 - S 3 v & v/s - o

By the inductive assumption v’ fy;/s = fy/sFi(v) for some v'. Thus
V' fussFi(c) = fyysFi(v)Fi(c).

Therefore v' fi/sFi(c) = fy/sFi(p)Fi(a) and fy;sFi(p)Fi(a) = p' fy Fi(a),
since we proved that fy,sF1(p) = p’ fy. Now observe that for a suitable ¢’
we have fy,gF1(c) = ¢ fu by the inductive assumption. But we may assume
that v'¢’ = p’a”. Indeed, suppose to the contrary that p’a” — v’¢’ # 0 but
p'a’ —v'¢ = 0. Thus this difference factorizes through a projective R;-
module, say Q1. Then there are 21 : @7 1F5H(U) — Qq and 23 : Q1 —
@ 1F5®(Y/S) such that p'a” — v'¢’ = 252;. Since p’ is an epimorphism
by the first step of our proof, there is 25 : Q1 — @~ 1FSP(Y) such that
p'zh = z5. Then replacing a” by o} = a’ — z52z; we obtain p'a] = v'c.
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Moreover, observe that a} is well-defined, because it is a monomorphism by
the first step of the proof and b”a} = r'p’a} = r'v'¢’ = 0 since r'v" = 0.

Hence we may assume that p’a” —v’¢’ = 0. Therefore we obtain v'¢’ fiy =

p'd” fy. Furthermore,
p'd fu =v'"d fu = ’U/fU/SFl(C) = fY/SFl (v)Fi(c)

= fy/sFi(p)Fi(a) = p' fy Fi(a).
Thus p/(a” fu—fy Fi(a)) = 0. Thend = (a” fy—fy Fi(a)) : U= F5d(Y)
and im(d) Cker(p’) = im(w’). Thus dF; (i) = 0, because dF; (i) = a” fu F (i)
— fyFi(a)F1(i) = d"i' fs — fy Fi(w). But a”¢ = w'. Indeed, if a”7" — v’
# 0 then it is a monomorphism by simplicity of ®~*F5®(S). On the other
hand, we know that a”’i’ — w’ = 0. Therefore we find that a monomorphism
factorizes through a projective module, which is impossible by [17; Lecture
3]. Then a//i/fs - fyFl(w) = wlfs — fyF1 (w) =0.

Now we can consider the decompositions of K-spaces F} (Y) = im(F;(w))
@Y and @1F5P(Y) = im(w') ®Y”. Since fy is an Rj-isomorphism, fy is
a K-linear isomorphism. Since w'fs = fy Fi(w) and p'fy = fy;sF1(p), fy
restricted to Y is a K-linear isomorphism of Y’ to Y. But if z € im(F(a))
NY’ then fy(z) € Y”. Furthermore, we can consider the decomposition of
the K-space Ff(U) = im(F;(w)) ® U’. Then by the inductive assumption
for the decomposition @1 F5®(U) = im(i’) @ U” the restriction of fy to

U’ is a K-linear isomorphism between U’ and U”. Since a”i' = w’, we get

a’ fu(z) € Y, where z € im(Fy(w))NY’. Thus im(a” fy — fy Fi(a)) C Y,
and so a” fy — fy Fi(a) = 0.

Now consider the case when im(a) does not contain im(w). First assume
that U is simple. Then we have the following commutative diagram with
exact rows and columns:

0

!

U

ai

Y/S — 0
P

V/S — 0

!
0

<_

o
1
»n— W

5 e
SR e R RS
1=

1=

o
1

By the inductive assumption,

ayfu = fyysFi(ar) = fy/sFi(p)Fi(a) = p' fy Fi(a),
where aj = @~ 'F5®(a,) satisfies the required condition by the inductive
assumption. We may assume that pjb’ = bp’, where a’,b" are so chosen
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that the considered column of our diagram is exact after @~ F5® has been
applied. Indeed, we know that pib" — bjp’ = 0. Then if pjb’ — b\ p’ # 0 then
there are a projective Ri;-module @ and morphisms ¢; : ' F5®(Y) — Q
and g : Q — @LFSP(Y) such that pjb' —bp’ = p|b'q2q1, because p), b’ are
epimorphisms by the first step of the proof. Denote by ¢ the automorphism
idg-1pz0(yv) — g2q1- Then putting b = b't we get pib" = bip. If we put
a” =t~ 'a’ then va” = 0 and the sequence

0 S LESGU) % T ESG(Y) s 6T IESB(V) = 0

is exact again. Moreover, p'a” = a). Indeed, if p'a” — a} # 0 then it factor-

izes through a projective R;j-module, since p'a” —a} = 0. But U is simple
and hence the considered difference is a monomorphism which cannot fac-
torize through a projective module by [17; Lecture 3]. Thus p'a” = da}.
Therefore p'a”’ fu = p'fy Fi(a). Then p'(a” fu — fyFi(a)) = 0 and for
d = d" fu — fyFi(a) we have im(d) C ker(p’) = im(w’). If we consider the
decompositions of the K-spaces F(Y) = im(Fi(w))®Y’ and @1 F5(Y) =
im(w’) @ Y” then fy, being a K-linear isomorphism, when restricted to Y’
is a K-linear isomorphism between Y’ and Y”. Moreover, Fi(p), being a
K-linear morphism, when restricted to Y’ is a K-linear isomorphism be-
tween Y’ and F(Y/S). Furthermore, p’, being a K-linear morphism, when
restricted to Y is a K-linear isomorphism between Y” and @1 F5P(Y/S).
Then im(a”) C Y by the equality p’a” = o). Thus im(a” fyy) C Y. Since
im(Fi(a)) C Y’, we have im(fy Fi(a)) C Y”, because we already proved
that p'fy = fy;sFi(p). Therefore im(a” fu — fy Fi(a)) C Y", and so it is
zero. Consequently, a” fy = fy Fi(a).

Now we infer by the inductive assumption that p} fv = fy/sFi(p1). Then
pifvFi(b) = fv/sFi(p1)F1(b) = fvysFi(b1)Fi(p) = b} fy/sFi(p), where
py and b} are well-defined morphisms in the inductive step. Furthermore,
bifysFi(p) = bip'fy. Since bip’ = pib”, we have pj fv F1(b) = pib” fy.
Then p) (fy F1(b)—b" fy)= 0. Then im(fy F1(b)—b" fy ) C ker(p}) = im(w}).

Consider the decompositions of K-linear spaces F}(Y) = im(F;(w))®Y”,
P 1Eso(Y) = im(w') @ Y”. Since o’ fy = fyFi(a), we have p'a” fy =
P fyFi(a) = fy/sFi(p)Fi(a) = fyysFi(a1). Therefore p'a” fy is a mono-
morphism, and so im(a” fyy) C Y”. Then we consider the decompositions
of K-linear spaces Y/ = im(Fj(a)) @ Y{ and V" = im(a” fu) ® Y{". Clear-
ly F5(V) = im(Fy(w)) @ Y{ and @1 F5P(V) = im(w') @ Y] as K-spaces,
because pib”a" fy = bip'a” fu = bla) fu = 0. Since w'fs = fy Fi(w) and
a" fu = fyFi(a), the K-linear morphism fy restricted to im(Fj(w)) yields
an isomorphism between im(Fj(w)) and im(w’). Moreover, the K-linear
morphism fy restricted to Y] yields an isomorphism between Y; and Y}’
Moreover, F;(b) and b are K-linear isomorphisms between im(F;(w)) @ Y{
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and FP(V), im(w') @ Y{" and ®~'F5®(V), respectively. They have the
property that F1(b)ly;: Y{ — V', b"[y: Y{" — V" are isomorphisms, where
F (V) = im(Fi(wy)) @ V' and &7 F5®(V) = im(w}) ® V" are decompo-
sitions of K-spaces. Therefore fi Fy(b)(z) € V" for every z € Y/, because
p1fv = fvysFi(p1) by the inductive assumption and Fi(p1) is a K-linear
isomorphism between V' and F;(V/S). Furthermore, b” fy (z) € V" for ev-
ery z € Y{. Then im((fvF1(b) — b"fy)|y;) = 0, because we have already
proved that im(fy Fy(b) — b’ fy) C im(w}). But if z € im(F;(w)) then
" fy (2) = 0" fy Fi(w)(21), z1 € FT(S5), and
b//fYFl(w)(Zl) = b//w/fs(zl) = U’ifs(zl) = fvFi(w1)(21)
= fvF1(b)Fi(w)(z1) = fvF1(b)(2).

Consequently, fy Fy(b) = 0" fy. If U is not simple then take a simple sub-
module T of U. Since we proved the required condition for simple T', we may
repeat the arguments from the case im(a) D im(w) for U, with T instead of
S. Thus we have finished the proof of the commutativity condition for fy .

Now we show that the required squares are commutative. First consider
the case when F7(u) : FY(Y) — F{(Z) is an isomorphism. Then clearly so
isu:Y — Z. Let S be a simple direct summand in the socle of Y. We have
the short exact sequence

053y By/s—o.

Denote by S; the simple submodule uw(S) of Z. Then the following diagram
is commutative:

0 - S 2 v & v/is -5 o0
\l/ul \J/u \J/uz

0 - S > 2z 5 z/81 — 0,
where u; = ww, v is inclusion, ¢ is the canonical epimorphism and us is
some isomorphism. By the inductive assumption, v} fs = fs, F1(u;) and
uy fyss = fz7s, F1(uz). We show that ' fy = fzFi(u) for v’ = OLFSD(u).
As above, we can show that there are v/ and ¢’ such that the following
diagrams are commutative:

0 = Fr(s) W psy) BB psyrs) o 0
Fl(U1) \L Fl(u) \l/ Fl('u,g) \l/
Fl(’l))

0 — F}T) Frz) M9 pszimy - 0

0 — IEP(S) U oEB(Y) B TlEsd(Y/S) — 0
u \L u’ \L / ul i

0 = ST L o 'E5e(Z) L o Ese(Z/T) — 0
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Now consider the decompositions of K-spaces Ff(Y) = im(F;(w)) &Y,
Fe(Z) = im(F(0) @ 2, d F5(Y) = im(w') & Y, - F5P(Z) = im(v')
® Z". Take y € im(Fy(w)). Then o' fy (y) = o' fy Fi(w)(y1), y1 € F7(S).
Furthermore,

u' fy Fi(w)(yr) = v/’ fs(y1) = v'uy fs(yr) = v frFi(ui)(y1)
= fzFi(v)Fi(u1)(y1) = fzF1(u)Fi(w)(y1) = fzF1(u)(y).

Ify € ¥' then ' fy (y) = ' fy Fi (p) ~(31), where yy € F{(Y/S) and Fi (p)
is the linear inverse of Fy(p) restricted to Y’. Then v fy Fi(p)~'(y1) =
u'(p') ! fy/s(y1), where (p/)~! is the linear inverse of p’ restricted to Y.
But o/ (p’)~! = (¢/)'ul, where (¢')~! is the linear inverse of ¢’ restricted
to Z". Thus

W' () fyys(n) = (@) ubfyys(un) = (@) FzrFi(ug) Fi(p) (y)
= (@) fzyrFu@)Fu(uw)(y) = (¢)7'd fzFi(u)(y)
= fzF1(u)(y).

Consequently, v/ fy = fzFi(u), and so @~ Fs®(u)f(Y) = f(Z)F§(u).

Now suppose that there is 0 # « : Y — Z which is not an isomorphism
and [(Z) < I(Y). Since we have a decomposition u = aga; with an epimor-
phism a; : Y — im(u) and a monomorphism ay : im(u) — Z, it is enough
to assume that v is either an epimorphism or a monomorphism. But if u is
an epimorphism then there is a short exact sequence

0-V3Y 37250

with V' = ker(u). Then by the commutativity condition for fy there is u’
such that v’ fy = fzFi(u). Thus @~ F5®(u)f(Y) = f(Z)F{(u). The same
arguments can be applied for a monomorphism u. Consequently, our lemma
is proved by induction.

3.5. LEMMA. Let F; : mod(R;) — mod(R;) and F» : mod(R3)
— mod(Rz) be exact equivalences satisfying the conditions (a) and (b) of
Lemma 3.4. Then there is a quasi-inverse 451_1 of @ such that F{(X) =
O EsB(X) for every object X € mod(Ry).

Proof. First we construct a functor A : mod(R;) — mod(R;) such that
F{(X) = AP~ F§(X) for every X € mod(R;). We know from Lemma 3.4
that FP = ¢~ F5¢. Fix an isomorphism f : F¥ — &~ L1F5®. For every X €
mod(R;) either there is Y € mod(R;) such that X = &' F5®(Y) or X does
not lie in the image of @ 1 Fs5®. If X = ¢~ 1F5P(Y) then we put A(X) =
F§(Y). If X is not contained in the image of #~! F§® then we put A(X) =
X. If h : X; — X, is a morphism in mod(R;) and X; = & L1F5&(Y;),
i = 1,2, then we put A(h) = t, where t = f(Xo) '® 1 F5P(h)f(X1). If
h: X; — X5 is a morphism in mod(R;) and X; does not lie in the image
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of @1 F5® and Xy = ¢ F5®(Ys) then A(h) = f(X2) th. If h: X7 — X,
X1 = &7 1FS®(Y7) and X, is not contained in the image of @~ 'F5® then
A(h) = hf(Xy). If b : X1 — X5 is a morphism in mod(R;) and X3, Xo do
not lie in the image of ®~1F§® then we put A(h) = h.

A simple verification shows that A is a well-defined functor. Moreover,
A is dense since F} is dense. Furthermore, A is fully faithful since F} and
@ 1F5®b are. Thus A is an equivalence. Consequently, AP~! = @fl is a
quasi-inverse of @. Indeed, &;'d(X) = &~ '¢(X) for every X € mod(R;)
by the definition of A. Hence ®]'®(X) = X. If ¢ : Linod(r,) — @' is
an isomorphism of functors then fix an isomorphism a(X) : ¢71¢(X) —
&' P(X) for every X € mod(R;) and define ¢, : Liod(Ry) — o7'® by
$1(X) = a(X)p(X) for every X € mod(R;). Thus for every morphism
u: X — Z we have to check whether the diagram

x 8 erigx)
v 121 e
z "B g-igz)
commutes. Clearly it is sufficient to prove that the diagram
_ a(X) _
PP(X) = PP(X)

o) | 121 2w

a(Z _
o1o(z) 4 orie(z)

commutes. If 71P(X) = ¢ 1F5(Y) and ¢71¢(Z) = ¢~ F5H(W) then
for a(X) = f(X)™! and a(Z) = f(Z)~! the above diagram commutes.
If p71¢(X) = &7'F5H(Y) and &7 1P(Z) is not contained in the image
of @~ 1F5® then for a(X) = f(X)™! and a(Z) = lg-14(z) the diagram
commutes. If #7'¢(X) is not contained in the image of @~1F5&d and
P 1D(Z) = &7 F5H(W) then for a(X) = lg-1g(x) and a(Z) = f(Z)!
the above diagram commutes. If neither #~1¢(X) nor = 1®(Z) lies in the
image of ®~'F5® then for a(X) = lg—1g(x) and a(Z) = 1g-14(z) the re-
quired commutativity holds. Thus for the isomorphism o : $~1¢ — @l_lé
chosen above ¢; is an isomorphism of functors. Similarly we show that there
is an isomorphism 1 : 1yod(Rr,) — 45451_1. This finishes our proof.

3.6. PROPOSITION. Let Fy : mod(R;) — mod(Ry) and F3 : mod(Rsy) —
mod(Rz) be exact equivalences satisfying the following conditions:

(a) If F? :mod(R;) — mod(R;), i = 1,2, is defined by F?(X) = F;(X),
X € mod(R;), F7(f) = Fi(f), f : X =Y a morphism in mod(R;), then

F? is an equivalence.
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(b) For every object X € mod(Ry), F{(X) = ¢ 1 F5®(X), where &~ is
a quasi-inverse of P.

Then there is an equivalence ' : mod(R1) — mod(Rs) such that &'Fy =
F5d'.

Proof. By Lemma 3.5 there is a quasi-inverse #;' of @ such that
F{(X) = &7 F5d(X) for every X € mod(R;). We deduce from Lemma 3.4
that F¥ and & ' F§® are isomorphic functors. Then there is an isomorphism
f:Ff — & 'F5d. We define & : mod(R;) — mod(Rz) by the formula
¢ = (F5)"1®F5. Tt is easy to verify that #~! is a quasi-inverse of &'.
Then f : F¥ — &~ 1F5@’ yields the equality of functors and the proposition
follows.

3.7. PROPOSITION. If vg, and vg, act freely on the objects of Ry and
Ry, respectively, then Ry/(vr,) and Rs/(vr,) are stably equivalent.

Proof. Observe that, under our assumptions, the action of (vg,) on
R; induces the Nakayama functor N, : mod(R;) — mod(R;) given by
the formula Nr, = D Hompg, (—, R;) (see [8; 2.1]). Furthermore, N, is an
exact equivalence such that N3 : mod(R;) — mod(R;) is an equivalence.
Then N3 = 2327R, by [8; 2.5]. Thus we deduce from Proposition 3.2 that

for every object X € mod(R;) we have N3 (X) = @flj\/}%z@(X) for some
quasi-inverse @, ! of . Therefore, by Proposition 3.6, &N 5, = Npg,®. Thus
PNE (X) = N, P(X) for every X € mod(R;). But the push-down functor
F\; : mod(R;) — mod(R;/(vg,)) is induced by Ng,. Hence F),; maps
every Np,-orbit of an R;-module M onto one R;/(vg,)-module F) ;(M).
Consequently, @ maps the Ng,-orbits of nonprojective R;-modules onto
Nr,-orbits of nonprojective Ry-modules, because N3 (X) = N $(X)
for every X € mod(R;). Furthermore, & maps the N, &, -orbits of morphisms
in mod(R;) onto the N -orbits of morphisms in mod(Rz), because by the
definition of Ny, a morphism f : X — Y in mod(R;) factorizes through a
projective R;-module iff Fy ;(f) : Fx:(X) — F\.(Y) factorizes through a
projective R;/(vg,)-module.

Now we can define a functor ¥ : mod(R1/(vr,)) — mod(R2/(vr,)) as
follows. For every indecomposable M in mod(R;/(vg,)) there is an indecom-

posable Rj-module M which is nonprojective and satisfies F) 1(M) = M.

Then we put (M) = Fyo®(M). If M = My & ... & M, € mod(Ry/(vg,))
with M; indecomposable, j =1,...,n, then we put (M) =¥ (M) ® ... P
U(M,). If f: M — N is a morphism in mod(R;/(vr,)) then there is a

morphism z: M — N in mod(R1) such that f = F)1(f). Then there is

h = &(f) and we put ¥(f) = Fy2(h). Since & maps the Nz, -orbits of inde-

composable nonprojective Rj-modules onto Ng,-orbits of indecomposable
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nonprojective Rp-modules and the N -orbits of morphisms in mod(R;)
onto the N3 -orbits of morphlsms in mod(Rg) the above definition does

not depend on the choice of M and f

Observe that ¥ : mod(R1/(vr,)) — mod(R2/(vr,)) is a functor. Indeed,
¥(idy) = idg(ary since for Fy 1 (M) = M we have F) 1(id;;) = idp. Then
45(1(17]\7}) = idqs(]r;[) since @ is a functor. Thus FAQ(id(p(ﬁ)) = idF)\,gé(M)'
If ff: M — N and f; : N — L are morphisms in mod(R:/(vg,)) then
Fxa(f2f1) = fafi with fofi = fofi. Thus @(fof1) = ¢(fof1) = h = hahy
with @(f;) = hi, i = 1,2. Therefore

U (f2f1) = Faa(hohi) = Fy2(ho)Fa2(h1) = ¥ (f2)¥(f1).
Since R; and Ry are locally support-finite, ¥ is dense. N
Observe that if 0 # f: M — N in mod(R1/(vg,)) then f # 0 for every
fsuch that F A,l(f) = f. Hence @(f) # 0 since @ is an equivalence. Thus

®(f) = h # 0 and clearly F) 2(h) # 0. Therefore ¥(f) # 0, which shows
that W is faithful. If0 # ¢ : W(M) — @(N) for some M, N € mod(R1/(vg,))
then there are M, N € mod(R;) with Fy 2@(M) W(M) and Fy28(N) =
@(N). But there is ¢ : (M) — &(N) such that t = F Fya(t) t). Since @ is

an equivalence, there is 0 # f: M — N such that (Zi(i) = ¢. If we put

f= FAJ(}’V) then ¥(f) = t. Consequently, ¥ is full and the proposition
follows.

3.8. PROPOSITION. If Ry and Ry are triangular selfinjective locally

support-finite K -categories with free actions of (vgr,) and (vg,), respec-
tively, and Ry/(vr,) = Ra/(vgr,) then Ry = Ry.

Proof. Fix some representatives { P, };c; of the isomorphism classes of
indecomposable projective R;-modules and some representatives {Q;};es
of the isomorphism classes of the indecomposable projective Rs-modules.
Then Ry = Endg, (D;c; P2)” and Ry = Endg, (P;c; Q). Let Fi. :
mod(R;) — mod(R;/(vr,)), t = 1,2, be the push-down functors induced by
the actions of (vg,) on R;. Fixsome iy € I. Let LF) 1(FP;,) = Fx2(Qj,) for a
fixed jo € J, where L : mod(R1/(vr,)) — mod(Rz2/(vr,)) is the equivalence
induced by a fixed isomorphism from R;/(vg,) onto Rs/(vr,). Let Ri 1 be
the subcategory of Ry formed by P;, and the P;, P;» such that the following
conditions are satisfied:

0

(a) there is a nonzero morphism f; : P; — P;, of the form f; = f*f,
where f! : P, — rad(P;,) satisfies m;, f; # 0 for the canonical epimorphism
i, : rad(P;,) — top(rad(P;,)), and f* : rad(P,,) — P;, is the identity
monomorphism;
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/
i’

(b) there is a nonzero morphism h; : P,; — P, of the form A}
where hl, : P;, — rad(P; ) satisfies m; h}, # 0 for the canonical epimorphism
7y rad(Py) — top(rad(Py)), and hl, : rad(Py) — P is the identity

monomorphism.

If P,P" are objects of Ry then Hompg, (P, P’) is the subspace of
Hompg, (P, P’) generated by the isomorphisms between P and P’ and the
morphisms of the form ¢ = t;ty, where t; = h; for some ¢ and ¢y is an
automorphism of P;,, or to = f; for some ¢ and ¢; is an automorphism of
P;,, or else t; = h; for some i’ and to = f; for some i. Since R; is locally
support-finite, R ; is finite.

Let Ry be the subcategory of Ry formed by @, and the Q;, @; such
that the following conditions are satisfied:

(a) there is a nonzero morphism r; : @; — Qj, of the form r; = r*r’,
where 77 : Q; — rad(Qj,) satisfies x;,7; # 0 for the canonical epimorphism
Kj, : rad(Qj,) — top(rad(Qj,)), and r* : rad(Qj,) — Qj, is the identity
monomorphism;

(b) there is a nonzero morphism s;/ : Q;, — @, of the form s7s’,, where
st Qj, — rad(Qj) satisfies rjs’, # 0 for the canonical epimorphism
ki : rad(Qj) — top(rad(Qy-)), and s7, : rad(Q;) — Q; is the identity
monomorphism.

If Q,Q" are objects of Ry then Hompg,, (Q,Q') is the subspace of
Hompg, (Q, Q') generated by the isomorphisms between @) and @’ and the
morphisms of the form w = wyws, where wy = s for some j" and w, is an
automorphism of @);,, or we = r; for some j and w; is an automorphism of
Qj,, or else wy = s for some j" and we = r; for some j. Since Ry is locally
support-finite, Ry ; is finite.

Observe that if P, € Ri1 and Homg, ,(P;,, P;,) # 0 then there is a
unique @Q;, € Ro; with Hompg, | (Q;,,Qj,) # 0 and LF) 1(F;,) = Fx2(Q;,)-
Indeed, if there are Q;,Q;, € Rz with Homg, (Qj,Qj,) # 0 and
LF\1(P;,) = Fx2(Qj,), | = 1,2, then there is z € Z such that Viy Q) =
Qj,. Furthermore, there are 0 # 7, : Q;, — Qj,, = 1,2, such that r;, fac-
torize through rad(Q;,) by the definition of Ry ;. Hence top(Q);,) are direct
summands in top(rad(Qj,)). Then for z > 0 we get a sequence Q1,..., Q"
of indecomposable projective Ra-modules such that soc(Q),) = top(Q’,_1),
m = 2,...,z, top(Qj,) = soc(Q}), top(Q%) = soc(Qj,). But top(Qj,) €
supp(Q}), R2 is not triangular, which contradicts our assumption. Simi-
larly we obtain a contradiction if z < 0. Thus z =0 and Q;, = Qj,.

Dually one proves that if P, € Ry and Homg, , (P, Py) # 0 then
there is a unique Qj; € Rp 1 with Homg, , (Qj,,Q;7) # 0 and LF) 1(Py) =
Fy2(Qj)-
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Now we define a functor Fy : Ri1 — Ro, putting Fi(P;,) = Qj,,
Fi(Py) = Qj,, F1(Py) = Qy for the objects of Ry 1. If P,P" € Ry then
Hompg, , (P, P') either consists of isomorphisms (if P = P’) or is generated
by the above t. If P = P’ then Homg, , (P, P) = K -idp = K-idp, ,(p) as K-
spaces. Then K -idp, ,(p) = K-idrF, ,(p) & K -1dFp, (p) as K-spaces. Hence
for every f € Homg, , (P, P) there is exactly one r € Homg, , (F1(P), F1(P))
such that LFy 1(f) = Fx2(r). Thus we put Fy(f) =r. If P # P’ then we
construct Fy for the morphisms of the form ¢ = ¢/, where t' : P — rad(P’)
satisfies mt’ # 0 for the canonical epimorphism 7 : rad(P’) — top(rad(P’))
and t” : rad(P’) — P’ is inclusion. For such a ¢, there is a unique r :
F(P) = F(P') in Homg, , (F1(P), F1(P')) such that LEFy () = Fx2(r).
Indeed, if 71,79 satisfy LF) 1(t) = F) 2(r1) = Fx2(r2) then there are 71,74 :
Fi(P) — rad(F1(P')) such that #'rj,n'r, # 0 for the canonical projec-
tion 7’ : rad(Fy(P’)) — top(rad(Fy(P’))). Furthermore, for the inclusion
r" :rad(Fy(P')) — F1(P') we have r1 = "'} and ro = r"r}. But if r} # ),
then Fyo(r]) # Fx2(rh), because Ry is triangular and F) o is induced by
the action of (vg,). Thus Fy2(r1) # Fi2(re) for m # ro. Consequently,
r1 = ro if F\o(r1) = Fi2(re). Then we put Fi(t) = r. If t = tita is a
composition of either an isomorphism and a morphism of the above form or
two morphisms of the above form then we put Fy (t) = Fy(t1)Fi(t2). Finally,
we extend F linearly to a K-functor. It is clear by the above considerations
that we have obtained a functor Fy : Ry 1 — Ry which is dense and fully
faithful. Thus F}; yields an equivalence of categories.

Assume now that we defined a subcategory R;, in R; such that for
every pair P, P" of objects from Ry, either P = P’ and Homg, , (P, P’)
consists only of automorphisms, or P # P’ and Hompg, , (P, P') is generated
by the morphisms of the form t = ¢, ...¢st; such that:

(i) t; : P, — Py for some objects Py, ..., Psyq of Ry, where P, = P,
Psy1 =P
(i) t; =¢/t;,l=1,...,s,and t] : P, — rad(P41) satisfies m;41¢] # 0 for
the canonical epimorphism 741 : rad(Pj41) — top(rad(P41));
(iii) ¢ : rad(Pj41) — Ppy1 is inclusion for I =1,...,s.

Moreover, assume that we have defined a subcategory R, ,, of Ry satis-
fying the above conditions for morphisms, and a functor F;, : Ry, — Rz,
which is a K-linear equivalence and maps the generators of Hompg, , (P, P’)
to the generators of Hompg, , (F(P), F,(P")).

Define a subcategory R; 41 of Ry in the following way. The objects
of Ry n41 are those of Ry, and additionally the objects P of R; such that
either there is a nonzero morphism t : P — P’ with P’ in Ry, and t =
t"t', where t' : P — rad(P’) satisfies n't’ # 0 for the canonical projection
7’ : rad(P’) — top(rad(P’)) and t” : rad(P’) — P’ is inclusion, or there is
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a nonzero morphism h : P’ — P with P’ € Ry, and h = h”h’, where
R : P' — rad(P) satisfies mh’ # 0 for the canonical epimorphism 7 :
rad(P) — top(rad(P)) and h” : rad(P) — P is inclusion. For every P, P”
from Ry ;,41, Hompg, (P, P") is generated by the isomorphisms between P
and P” and the compositions h = hg...h; which satisfy conditions (i)—(iii)
above.

In the same way we define a subcategory Rs 11 of R2. Then repeating
the arguments used for Ry ; and Ry ; we find that for every P € Ry ,, 41 such
that there is a nonzero morphism ¢ : P — P’ with P’ € R, ,, there is a unique
@ € Ry 41 such that there is a nonzero morphism r : Q — F,,(P’) in Rg 5,41
and LF) 1 (P) = F 2(Q). Furthermore, for every P € R ,,11 such that there
is a nonzero morphism i : P* — P in Ry 41 with P’ € Ry ,, there is a unique
@ € Ry 41 such that there is a nonzero morphism r : F,,(P’') — Q in Ry ;41
and LF) 1(P) = F)2(Q). Moreover, we also have the same uniqueness for
generating morphisms ¢ : P — P’ and h : P’ — P with P’ € R;, and
P € Riny1\ Ry

Thus we define F, 1 : Rip+1 — Rap41 in the following way. For
every P € Ry,41 \ Ri, we put F,iq(P) = @, where @ is as above.
For every P’ € Ry, we put F,1(P') = F,(P’). For P,P' € Ry +1
with P € Ry 41 \ R1, and P’ € Ry, if t : P — P’ is a generator of
Hompg, ., (P, P') then we put F,1(t) = 7, where r is the uniquely de-
termined generator of Homg, ,  (Fni1(P), Fuy1(P')). If h @ PP — P is
a generator of Hompg, ., (P', P) then we put F,i(h) = r, where 7 is
the uniquely determined generator of Homg, ., (Fnii(P'), Fnyi(P)). If
t: P — P’ is a generator of Homg, ., (P, P') with P, P’ € Ry, then we put
Fot1(t) = F,(t). If t : P — P” is an isomorphism with P, P” € Ry 41\ R1
then we put F,,41(t) = r, where LF) 1(t) = F 2(r). Finally, we extend F,, 41
to a K-linear functor Fj, 1 : Ry p+1 — R n41 which is dense and fully faith-
ful. Thus F,,+1 yields an equivalence of categories.

Consequently, we construct inductively a functor F': Ry — Ro which is
dense and fully faithful since R; and Rs are connected and locally support-
finite. The proposition follows.

4. The repetitive algebras of canonical tubular algebras

4.1. For a locally bounded K-category R, we shall not distinguish be-
tween an indecomposable R-module, its isomorphism class and the vertex of
I'r corresponding to it. Moreover, we denote by I'; the stable quiver of I'g
obtained from I'r by removing the Tr-orbits of all projective modules, all
injective modules and the arrows attached to them. Following [7], a compo-
nent T of I'r (respectively, of I},) is said to be a tube if T contains a cyclic
path and its geometrical realization |T| is homeomorphic to S* x Rar , where
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S is the unit circle and Ry is the set of nonnegative real numbers. A stable
tube of rank n > 1 is a translation quiver of the form ZA ., /(7™). The stable
tubes of rank one are said to be homogeneous. A family T = (1;);er of tubes
in I'p (respectively, in I'};) is said to be standard if the full subcategory of
mod(R) (respectively, of mod(R)) is equivalent to the mesh-category K (7)
of 7. Finally, we say that a family of tubes 7 = (7});es in I'gr (respectively,
in I'}) separates a family of components X from a family of components
Yif forany X € X, Y € Y and i € I, every morphism from X to Y in
mod(R) (respectively, in mod(R)) can be factorized through a module Z in
the additive category add(7;) and there is no nonzero morphism from Y to
X in mod(R) (respectively, in mod(R)).

4.2. Let A be a canonical tubular algebra of type T = (n1,...,n¢) =
(2,2,2,2), (3,3,3), (2,4,4) or (2,3,6). To describe the structure of LM(E)
we need the following types of tubular families. A family 7 = (T,) ep, (k)
P1(K) = K U {oo}, of tubes in I'; is said to be a tubular Py (K)-family of
type T if the following conditions are satisfied:

(1) The stable part 7° of T is a disjoint union of stable tubes 73, u €
P, (K), such that t of these tubes have ranks ny,...,n;, and the remaining
ones are homogeneous.

(2) One of the following conditions holds:

(a) All tubes T}, u € P1(K), are stable.

(b) The tubes T}, u € K, are stable and T, admits a projective-
injective vertex.

(c) There are i, ..., € P1(K) such that the tubes T, with p #
M1, ..., are stable and for each 1 <4 < ¢, the tube 7},, admits
n; — 1 projective-injective vertices.

4.3. PROPOSITION. Let A be a canonical tubular algebra of type T. Then
(&) I'; = ,eq Tq where, for each q € Q, Ty is a tubular Py (K)-family

Ta(w), p € P1(K).
(b) For every g € Q, Ty separates | |,_; Tq from ||, Ty
(c) For each ¢ € Q\ Z, Ty is a standard family of stable tubes.

(d) For each q € Z, T, contains finitely many projective A-modules.
Proof. This result was obtained in [10].

4.4. In [10] the following increasing map o : Q — Q was defined:
. mAl4+ "1 ifo<2or<s,
o <m + > _ 25 — 3r

2_
s m—|—2—i—3r S f1<r<s<2r

r—s
We have the following lemma.
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LEMMA. Let A be a canonical tubular algebra of type T. Then

(a) For every indecomposable nonprojective A-module M in Ty the mod-
ule §2;(M) belongs to Ty(q)-

(b) For every q € Z, Tg41/2 contains simple A-modules.

() If 0# f: X =Y for two indecomposable nonprojective A-modules
XY with X € Tg,, Y €Ty, then go — q1 < 1%.

Proof. (a) is a consequence of [10; 4.9]. (b) is a consequence of Propo-
sition 4.3 and (a). In order to check (c) observe that if 0 # f: X — YV
then there is a nonzero morphism h : TgthA(Y) — X with fh = 0 by
[4; Proposition 4.1]. Thus (c) follows from (a).

4.5. If R is a locally bounded K-category which is stably equivalent to
the repetitive algebra A of a canonical tubular algebra A then the stable
Auslander—Reiten quiver I'; of R is isomorphic to I';. Thus I'; = L] €0 e
and we have the following.

LEMMA. For every r € Q there are only finitely many isomorphism
classes of simple R-modules in qu[r,r+3]m@ T,

Proof. Suppose to the contrary that there are infinitely many noni-
somorphic simple R-modules in | | g€[ro,r0+3]NQ ’7' for some rg € Q. Fix an

equivalence @ : mod(A) — mod(R). It is easily seen that there is some so €
Q such that for every indecomposable nonprojective X &€ |_| € [50,50+3]NQ T,
we have @(X) € | ¢ ro4300 Tq- Moreover, if Si,..., S, are all pair-

wise nonisomorphic simple A-modules such that the top of every X €
qu[sO 30+3]ﬁQT belongs to add(Sh,...,S,) then there is an epimorphism
f:X — S with § 25, for some i = 1,...,n. Clearly f # 0 by [17;
Lecture 3], and so 0 # &(f) : (X) — ®(S). Therefore for every simple
R-module T' contained in |—|q€[’f‘o ro-+3] mQT there is an injection of 7" into
some of the &(S5;),...,2(S,). Moreover, for every such T' there is an injec-
tion into @(S1) @ ... ?(S,,), which contradicts the finite-dimensionality of
&(S1) @ ... dP(S,,). Consequently, the lemma follows.

4.6. COROLLARY. For every r € Q there are only finitely many isomor-
phism classes of R-modules of the form P/soc(P) in || c(, 300 Tq- where
P ranges over pairwise nonisomorphic indecomposable projective R- modules

Proof. Obvious by Lemma 4.5, because P/soc(P) = 7, Qg (top(P)).

4.7. PROPOSITION. Let A be a canonical tubular algebra. If R is a locally
bounded K -category which is stably equivalent to the repetitive algebra A of
A, then R is locally support-finite and selfinjective. Moreover, (vgr) acts
freely on R.
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Proof. A more general version of this proposition is proved in [19;
Proposition 1]. But under our special assumptions we can give a simple
proof which we present for the convenience of the reader.

We shall show that there is a natural number d such that for any in-
decomposable R-module M there are at most d pairwise nonisomorphic
indecomposable projective R-modules Py, ..., P; with Hompg(P;, M) # 0,
i=1,...,d. Let d denote the number of nonisomorphic indecomposable pro-
jective R-modules P such that P/soc(P) € | e[, 43100 74 1f M is an inde-
composable nonprojective R-module then M € 7;’ - For every indecompos-
able projective P with Hompg(P, M) # 0 we have Hompg(P/soc(P), M) # 0.
If we consider 0 # f : P/soc(P) — M then f = fofy with fi : P/soc(P) —
im(f) an epimorphism and f> : im(f) — M a monomorphism. Thus f; #
0 # f> and we infer by Lemma 4.4(c) that P/soc(P) € |_|q€[q0737q0]ma7;'.
Since d is finite by Corollary 4.6, it satisfies the above condition. The group
(vr) acts freely on R by Lemma 3.2 since Tgl(M) 2 _QAT2(M) for every

indecomposable nonprojective A-module M by Lemma 4.4. Consequently,
the proposition follows, because the selfinjectivity of R is clear.

5. Proof of the theorem
5.1. We start this section with the following simple fact.

LEMMA. Let A be a canonical tubular algebra. If A is a locally bounded
K -category which is stably equivalent to the repetitive algebra A then A is
triangular.

Proof. It is sufficient to show that there is no oriented cycle of noniso-
morphisms in I’y between projective vertices. Suppose to the contrary that

there is a cycle of nonzero nonisomorphisms P; f% Py E f:>1 P, f% P
between indecomposable projective A-modules. Then by 4.5, Corollary 4.6
and Proposition 4.3, all Py,...,P; are contained in the same component
Cof I'y and f;, ¢ = 1,...,t, do not factorize through a module from
add(I'4 \ C). But we deduce from Propositions 4.7 and 3.7 that 2/(%4)
is stably equivalent to A/(v4). Thus there is a cycle of nonzero nonisomor-
phisms Q1 = Q2 3 ... 5% @y in a component C; of I'y/,) between pro-
jective A/(v,)-modules such that r;, i = 1,...,¢, do not factorize through a
module from add(I'4/(,,) \ C1). Furthermore, we know from [15; Theorem]
that A/(v4) = T(B) for a tubular algebra B. But in I'p(py there is no such
cycle, hence A is triangular.

5.2. Proof of Theorem. The “only if” part is due to Wakamatsu
[21]. Since a tubular algebra is tilting-cotilting equivalent to a canonical
tubular algebra, we may assume that A is canonical. Assume that A is
a locally bounded K-category which is stably equivalent to the repetitive
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algebra A. Then A is selfinjective locally support-finite by Proposition 4.7.
Moreover, A is triangular by Lemma 5.1. Thus we infer by Proposition 3.7
that A/(va) = T(A) is stably equivalent to A/(v4). Then we deduce from
[15; Theorem]| that there is a tubular algebra B which is tilting-cotilting
equivalent to A such that A/(v4) = T(B) = B/(vp). Since B is triangular,
we conclude by Proposition 3.8 that A = B and the theorem follows.
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