ON A THEOREM OF P. S. ALEKSANDROV
BY
ZBIGNIEW KARNO (BIAŁYSTOK)
Dedicated to the memory of my father, Zygmunt Karno

1. Background and statement of results. In [1] P. S. Aleksandrov has proved that if X is an n-dimensional compactum (where n is finite ≥ 1), then there exist a closed subset A of X and an essential mapping v from the quotient space X / A to the n-dimensional sphere S^{n}. Actually, he has proved the following theorem (see also [3]): If f is an essential mapping from an n-dimensional compactum X to an n-dimensional disk D^{n}, then the pinch mapping induced by f on the quotient spaces $X / f^{-1}\left(\partial D^{n}\right)$ and $D^{n} / \partial D^{n} \approx$ S^{n} is also essential. The proof is strictly algebraic. In this paper, using geometric methods, we extend the Aleksandrov result in the following way.
1.1. Theorem. If f is an essential mapping from a compactum X to an n-dimensional disk D^{n} and if $n \leq 2$ or $\operatorname{dim} X<2 n-2$, then the pinch mapping $f_{\bullet}: X / f^{-1}\left(\partial D^{n}\right) \rightarrow D^{n} / \partial D^{n}$ induced by f is also essential.

Recall that a mapping f of a space X into a sphere S is said to be essential if it is not homotopic to a constant mapping; equivalently, if every mapping $g: X \rightarrow S$ homotopic to f is surjective. A mapping f of a space X into a disk D is said to be essential (in the sense of AleksandrovHopf) if there is no mapping $g: X \rightarrow \partial D$ such that $g(x)=f(x)$ for each $x \in f^{-1}(\partial D)$; equivalently, if every mapping $g: X \rightarrow D$ homotopic to f rel $f^{-1}(\partial D)$ is surjective (see [1]). Note that (see [12]) f is essential if and only if every mapping $g: X \rightarrow D$ which is homotopic to f as a map of pairs $\left(X, f^{-1}(\partial D)\right) \rightarrow(D, \partial D)$ is surjective (essential).

Let f be a mapping of a compactum X into a disk D. Consider the natural quotient mapping $q: X \rightarrow X / f^{-1}(\partial D)$ and similarly $p: D \rightarrow$

[^0]$D / \partial D$. The mapping f induces a (continuous) mapping $f_{\bullet}: X / f^{-1}(\partial D) \rightarrow$ $D / \partial D$ such that $p \circ f=f_{\bullet} \circ q$ (see [4]). It may be defined by $f_{\bullet}(a)=$ $(p \circ f)\left(q^{-1}(a)\right)$ for $a \in X / f^{-1}(\partial D)$. We call f_{\bullet} the pinch mapping. Since $D / \partial D$ is homeomorphic to S^{n}, where $n=\operatorname{dim} D$, we will usually identify f_{\bullet} with the corresponding mapping into S^{n}.

Actually we prove that the essentiality of $f \times \mathrm{id}_{I}$, where I is the unit interval, implies the essentiality of the pinch mapping f_{\bullet}. Therefore Theorem 1.1 is a consequence of the following theorem.
1.2. Theorem. If f is an essential mapping from a compactum X to an n-dimensional disk D^{n} and if $n \leq 2$ or $\operatorname{dim} X<2 n-2$, then $f \times \mathrm{id}_{I}$: $X \times I \rightarrow D^{n} \times I$ is essential (moreover, $f \times \mathrm{id}_{I^{k}}: X \times I^{k} \rightarrow D^{n} \times I^{k}$ is also essential for all k).

This result is related to two theorems proved by W. Holsztyński [9], [10] and by K. Morita [16], [17] (see also [11]); these claim in the case of compacta that given an essential mapping $f: X \rightarrow I^{n}$ the product mapping $f \times \mathrm{id}_{I}: X \times I \rightarrow I^{n+1}$ is essential if $n \leq 2$ or $\operatorname{dim} X=n$ (for the case $n=1$ see also [8], [7], [2], [12], [13]). Both proofs use algebraic topology. Our proof is strictly geometric and it consists in proving the assertion first for compact polyhedra and afterwards in using the Freudenthal theorem to generalize it to arbitrary compacta.

Note that an essential mapping $f: I^{4} \rightarrow I^{3}$ with $f \times \mathrm{id}_{I}: I^{5} \rightarrow I^{4}$ inessential, constructed by W. Holsztyński in [10], has inessential pinch f_{\bullet}. So, Theorem 1.1 (and also Theorem 1.2) cannot be strengthened for compacta with $\operatorname{dim} X \geq 2 n-2$ and $n>2$.

The paper is organized as follows. In Section 2 we establish some connections between mappings into disks and spheres, and their cones. Furthermore, we deduce 1.1 from 1.2. In the same section we show that an essential mapping $f: I^{4} \rightarrow I^{3}$ with $f \times \mathrm{id}_{I}$ inessential has inessential pinch f_{\bullet}. In the next two sections we prove 1.2 for mappings of compact polyhedra into n-dimensional cubes, with $\operatorname{dim} X<2 n-2$ in Section 3, and with $n=2$ in Section 4. In Section 5 we complete the proof of 1.2 in the general case.

Throughout the paper, all spaces are metric and all mappings are continuous. Compactum means a compact metric space. By "dimension" we understand the covering dimension. By an n-dimensional sphere S we mean here any space homeomorphic to the unit n-dimensional sphere S^{n}, and by an n-dimensional disk D we mean any space homeomorphic to the unit n-dimensional cube $I^{n}\left(I=I^{1}\right.$ is the unit interval $\left.[0,1]\right)$, by ∂D we denote its geometric boundary, and by D° its geometric interior.
2. Cones of mappings into disks and spheres. Let X be a compactum. By the (unreduced) cone $C(X)$ we mean the quotient space
$(X \times I) /(X \times 1)$. Obviously, $C(X)$ is compact and metrizable (see [4]). We will denote by $[x, t] \in C(X)$ the image of $(x, t) \in X \times I$ under the natural quotient mapping $c_{X}: X \times I \rightarrow C(X)$. We will identify X with the closed subspace $\{[x, 0]: x \in X\}$ of $C(X)$. Let $f: X \rightarrow Y$ be a mapping between compacta. By the cone mapping $C(f): C(X) \rightarrow C(Y)$ induced by f we mean the (continuous) mapping defined by $C(f)([x, t])=[f(x), t]$ for $[x, t] \in C(X)$. It satisfies the equality $c_{Y} \circ\left(f \times \mathrm{id}_{I}\right)=C(f) \circ c_{X}$. Under the identifications mentioned above, $C(f)^{-1}(Y)=X$ and $C(f)_{\mid X}=f$. Note that the cone on an n-dimensional sphere S, and similarly the cone on an n-dimensional disk D, are $(n+1)$-dimensional disks.
2.1. Proposition. Let g be a mapping from a compactum X into a sphere S. Then g is essential if and only if $C(g)$ is essential.

Proof. Follows from [6, Lemma 4.7] and [6, Theorem 4.11].
2.2. TheOrem. If f is a mapping from a compactum X into a disk D, then $f \times \operatorname{id}_{I}: X \times I \rightarrow D \times I$ is essential if and only if $C(f)$ is essential.

Proof. Suppose $C(f)$ is not essential. Since $c_{D} \circ\left(f \times \mathrm{id}_{I}\right)=C(f) \circ c_{X}$, it follows that $C(f) \circ c_{X}$, and therefore $c_{D} \circ\left(f \times \mathrm{id}_{I}\right)$, is not essential either. Then there exists $g: X \times I \rightarrow \partial C(D)$ such that

$$
\begin{equation*}
c_{D} \circ\left(f \times \operatorname{id}_{I}\right)_{\mid Y}=g_{\mid Y}: Y \rightarrow \partial C(D) \tag{0}
\end{equation*}
$$

where $Y=\left(c_{D} \circ\left(f \times \mathrm{id}_{I}\right)\right)^{-1}(\partial C(D))$. Observe that $\partial(D \times I)$ and $\partial C(D)$ are spheres of the same dimension, $\partial(D \times I) /(D \times 1)=\partial C(D)$ and $D \times 1$ is a tame disk in $\partial(D \times I)$. It follows that there exists a homeomorphism $h: \partial C(D) \rightarrow \partial(D \times I)$ such that $\left(h \circ c_{D}\right)_{\mid \partial(D \times I)} \simeq \operatorname{id}_{\partial(D \times I)}$. Since $(f \times$ $\left.\mathrm{id}_{I}\right)^{-1}(\partial(D \times I))=Y$, we conclude from (0) that $\left(f \times \mathrm{id}_{I}\right)_{\mid Y} \simeq h \circ g_{\mid Y}$ as mappings $Y \rightarrow \partial(D \times I)$. Applying the homotopy extension theorem, we get a mapping $f^{*}: X \times I \rightarrow \partial(D \times I)$ such that $f_{\mid Y}^{*}=\left(f \times \mathrm{id}_{I}\right)_{\mid Y}$, which contradicts the essentiality of $f \times \mathrm{id}_{I}$.

The reverse implication is quite obvious; $f \times \mathrm{id}_{I}$ is equivalent to $C(f)_{\mid c_{X}(X \times[0, t])}: c_{X}(X \times[0, t]) \rightarrow c_{D}(D \times[0, t])$, where $0<t<1$.
2.3. Theorem. Let f be a mapping from a compactum X into a disk D. If $f \times \operatorname{id}_{I}: X \times I \rightarrow D \times I$ is essential, then the pinch mapping $f_{\bullet}: X / f^{-1}(\partial D) \rightarrow D / \partial D$ is also essential.

Proof. According to 2.2 , the cone mapping $C(f)$ is essential. By [6, Lemma 4.7], $g=C(f)_{\mid Y}: Y \rightarrow \partial C(D)$ is essential, where $Y=$ $(C(f))^{-1}(\partial C(D))=X \cup C\left(f^{-1}(\partial D)\right)$.

Consider the natural quotient mappings $p: \partial C(D) \rightarrow \partial C(D) / C(\partial D)$ and $q: Y \rightarrow Y / C\left(f^{-1}(\partial D)\right)$. We have the identifications $\partial C(D)=D \cup$ $C(\partial D), \partial C(D) / C(\partial D)=D / \partial D$ and $Y / C\left(f^{-1}(\partial D)\right)=X / f^{-1}(\partial D)$. It follows that $f_{\bullet} \circ q=p \circ g$. Since $\partial C(D)$ is a sphere and $C(\partial D)$ is a tame
disk in $\partial C(D)$ such that $\operatorname{dim} \partial C(D)=\operatorname{dim} C(\partial D)$, we infer that there is a homeomorphism $h: \partial C(D) / C(\partial D) \rightarrow \partial C(D)$ such that $h \circ p \simeq \operatorname{id}_{\partial C(D)}$. Thus $h \circ f_{\bullet} \circ q \simeq g$. Since g is essential, so is $h \circ f_{\bullet} \circ q$. Hence $h \circ f_{\bullet}$ is essential. Since h is a homeomorphism, we conclude that f_{\bullet} is essential.

Proof of Theorem 1.1. Combine 2.3 and 1.2.
From 1.1, 1.2, 2.1 and 2.2, we get the following observation.
2.4. Corollary. If f is an essential mapping from a compactum X to I^{n} and if $n \leq 2$ or $\operatorname{dim} X<2 n-2$, then
(a) $C(f): C(X) \rightarrow C\left(I^{n}\right) \approx I^{n+1}$ is essential,
(b) $C\left(f_{\bullet}\right): C\left(X / f^{-1}\left(\partial I^{n}\right)\right) \rightarrow C\left(I^{n} / \partial I^{n}\right) \approx I^{n+1}$ is essential.
2.5. Example. In [10, Example 3.8] W. Holsztyński gave an example of an essential mapping $f: I^{4} \rightarrow I^{3}$ with $f^{-1}\left(\partial I^{3}\right)=\partial I^{4}$ such that $f \times$ $\mathrm{id}_{I}: I^{5} \rightarrow I^{4}$ is not essential (see also [9, Proposition 1.1]). According to Theorem 2.2, the cone mapping $C(f): C\left(I^{4}\right) \rightarrow C\left(I^{3}\right)$ is not essential either.

We now prove that the pinch mapping $f_{\bullet}: I^{4} / \partial I^{4} \rightarrow I^{3} / \partial I^{3}$ is not essential. Consider the natural quotient mappings $p: C\left(I^{3}\right) \rightarrow C\left(I^{3}\right) / C\left(\partial I^{3}\right)$ and $q: C\left(I^{4}\right) \rightarrow C\left(I^{4}\right) / C\left(\partial I^{4}\right)$. There exists a mapping $f_{*}: C\left(I^{4}\right) / C\left(\partial I^{4}\right) \rightarrow$ $C\left(I^{3}\right) / C\left(\partial I^{3}\right)$ such that $f_{*} \circ q=p \circ C(f)$. Since $I^{4} \approx C\left(I^{3}\right) \approx C\left(I^{3}\right) / C\left(\partial I^{3}\right)$ and $I^{5} \approx C\left(I^{4}\right) \approx C\left(I^{4}\right) / C\left(\partial I^{4}\right)$, it follows that there exist homeomorphisms $h: C\left(I^{3}\right) / C\left(\partial I^{3}\right) \rightarrow C\left(I^{3}\right)$ and $g: C\left(I^{4}\right) / C\left(\partial I^{4}\right) \rightarrow C\left(I^{4}\right)$ such that $h \circ p$ and $\mathrm{id}_{C\left(I^{3}\right)}$ are homotopic as mappings of the pair $\left(C\left(I^{3}\right), \partial C\left(I^{3}\right)\right)$, and $q \circ g$ and $\operatorname{id}_{C\left(I^{4}\right) / C\left(\partial I^{4}\right)}$ are homotopic as mappings of the pair $\left(C\left(I^{4}\right) / C\left(\partial I^{4}\right), \partial\left(C\left(I^{4}\right) / C\left(\partial I^{4}\right)\right)\right)$. Since $C(f)$ is not essential, from the homotopy extension theorem applied to appropriate mappings, we infer that $h \circ p \circ C(f)$ is not essential. Since h is a homeomorphism, $p \circ C(f)$ is not essential. Thus $f_{*} \circ q$ is not essential. Since g is a homeomorphism, $f_{*} \circ q \circ g$ is not essential. Applying the homotopy extension theorem again, we conclude that f_{*} is not essential. Observe that $I^{3} / \partial I^{3}=\partial\left(C\left(I^{3}\right) / C\left(\partial I^{3}\right)\right)$, $I^{4} / \partial I^{4}=\partial\left(C\left(I^{4}\right) / C\left(\partial I^{4}\right)\right)$, and furthermore $f_{\bullet}=\left(f_{*}\right)_{\mid \partial\left(C\left(I^{3}\right) / C\left(\partial I^{3}\right)\right)}$. Since $C\left(I^{3}\right) / C\left(\partial I^{3}\right)$ is contractible, from [6, Theorem 4.11] we conclude that f_{\bullet} is not essential. Moreover, since f_{\bullet} is not essential, from 2.1 we infer that $C\left(f_{\bullet}\right): C\left(I^{4} / \partial I^{4}\right) \rightarrow C\left(I^{3} / \partial I^{3}\right)$ is not essential.
3. Mappings of polyhedra into high dimensional cubes. In this section and subsequently we will denote by q_{X} the projection of $X \times I$ to X and by q_{I} the projection of $X \times I$ to I. By $p_{I^{n}}$ and p_{I} we will denote the analogous projections from $I^{n} \times I$ to I^{n} and I, respectively. Note that if $f: X \rightarrow I^{n}$, then $f \times \operatorname{id}_{I}=\left(p_{I^{n}} \circ\left(f \times \mathrm{id}_{I}\right), p_{I} \circ\left(f \times \operatorname{id}_{I}\right)\right)=\left(f \circ q_{X}, q_{I}\right)$.

We prove here a polyhedral version of Theorem 1.2 under the assumption $\operatorname{dim} X<2 n-2$ (see also [11, Lemma 2.2] for the analogous fact but with
a complicated proof). In this case we have $n>2$ and $\operatorname{dim} X \geq n$; the last inequality follows from the essentiality assumption. The case $n \leq 2$ will be discussed in the remaining sections.
3.1. Theorem. If f is an essential mapping from a compact polyhedron X to I^{n} and if $\operatorname{dim} X<2 n-2$, then $f \times \mathrm{id}_{I}$ is essential.

As a preliminary to the proof of this theorem, we state an auxiliary lemma. It will also be needed in the next section.
3.2. Lemma. Let f be a mapping from a compact polyhedron X into I^{n}. Suppose $f \times \mathrm{id}_{I}$ is not essential. Then there exists a $P L$-mapping $G: X \times I \rightarrow \partial I^{n+1}$ such that
(a) $X \times i \subset G^{-1}\left(I^{n} \times i\right)$ for $i=0,1$, and
(b) $f^{-1}\left(\partial I^{n}\right) \times I \subset G^{-1}\left(\left(\partial I^{n}\right) \times I\right)$.

Moreover, for $i=0,1$ the mapping $g_{i}: X \rightarrow I^{n}$ defined by the formula $g_{i}(x)=\left(p_{I^{n}} \circ G\right)(x, i), x \in X$, is PL and has the following properties:
(c) $f^{-1}\left(\partial I^{n}\right) \subset g_{i}^{-1}\left(\partial I^{n}\right)$, and g_{i} and f are homotopic as mappings $\left(X, f^{-1}\left(\partial I^{n}\right)\right) \rightarrow\left(I^{n}, \partial I^{n}\right)$,
(d) if f is essential, then g_{i} is also essential.

Proof. Since $f \times \operatorname{id}_{I}$ is not essential, there exists $F_{0}: X \times I \rightarrow \partial I^{n+1}$ such that

$$
\begin{equation*}
\left(f \times \operatorname{id}_{I}\right)(x, t)=F_{0}(x, t) \quad \text { for }(x, t) \in\left(f \times \mathrm{id}_{I}\right)^{-1}\left(\partial I^{n+1}\right) \tag{1}
\end{equation*}
$$

Let $u: I^{n} \rightarrow I^{n}$ be any mapping such that

$$
\begin{equation*}
u_{\mid \partial I^{n}}=\left(\mathrm{id}_{I^{n}}\right)_{\mid \partial I^{n}} \quad \text { and } \quad \partial I^{n} \subset \operatorname{Int} u^{-1}\left(\partial I^{n}\right) \tag{2}
\end{equation*}
$$

Define $F: X \times I \rightarrow \partial I^{n+1}$ by $F(x, t)=\left(u \circ p_{I^{n}} \circ F_{0}(x, t), t\right)$ for $(x, t) \in X \times I$.
It is easy to check, using (1) and (2), that

$$
\begin{align*}
& X \times i \subset F^{-1}\left(I^{n} \times i\right) \quad \text { for } i=0,1 \tag{3}\\
& f^{-1}\left(\partial I^{n}\right) \times I \subset \operatorname{Int} F^{-1}\left(\left(\partial I^{n}\right) \times I\right) \tag{4}
\end{align*}
$$

and for $i=0,1$, the mapping $f_{i}: X \rightarrow I^{n}$ defined by $f_{i}(x)=\left(p_{I^{n}} \circ F\right)(x, i)$, $x \in X$, satisfies

$$
\begin{equation*}
f^{-1}\left(\partial I^{n}\right) \subset \operatorname{Int} f_{i}^{-1}\left(\partial I^{n}\right) \quad \text { and } \quad f_{i}(x)=f(x) \quad \text { for } x \in f^{-1}\left(\partial I^{n}\right) \tag{15}
\end{equation*}
$$

From (4) and (5) it follows that there is a polyhedron $P \subset X$ such that

$$
\begin{align*}
P & \times I \subset F^{-1}\left(\left(\partial I^{n}\right) \times I\right) \tag{6}\\
f^{-1}\left(\partial I^{n}\right) & \subset P \subset f_{i}^{-1}\left(\partial I^{n}\right) \quad \text { for } i=0,1 . \tag{7}
\end{align*}
$$

Let K be any triangulation of $X \times I$ such that $P \times I$ and $X \times i$ are the underlying polyhedra of some subcomplexes of K. Similarly, let L be any triangulation of ∂I^{n+1} with an analogous property with respect to $\left(\partial I^{n}\right) \times I$
and $I^{n} \times i$. Consider any simplicial approximation $G: X \times I \rightarrow \partial I^{n+1}$ to $F: K \rightarrow L$. We show that G, and g_{i} defined as in the assertion of Lemma 3.2, meet the requirements.

Clearly, G is PL and so is g_{i} for $i=0,1$. From (3) we have $F(X \times i)$ $\subset I^{n} \times i$. Since G is a simplicial approximation to F, we conclude that $G(X \times i) \subset I^{n} \times i$ and

$$
\begin{equation*}
g_{i} \text { is a simplicial approximation to } f_{i}, \tag{8}
\end{equation*}
$$

by [18, p. 127]. Thus, in particular, (a) is satisfied. From (6) we have $F(P \times$ I)
$\subset\left(\partial I^{n}\right) \times I$. In the same manner we can see that $G(P \times I) \subset\left(\partial I^{n}\right) \times I$. Therefore $G\left(f^{-1}\left(\partial I^{n}\right) \times I\right) \subset\left(\partial I^{n}\right) \times I$, by (7). Thus (b) is satisfied. From what has already been shown, we can also see that $G(P \times i) \subset\left(\partial I^{n}\right) \times i$. It follows that $P \subset g_{i}^{-1}\left(\partial I^{n}\right)$. Therefore $f^{-1}\left(\partial I^{n}\right) \subset g_{i}^{-1}\left(\partial I^{n}\right)$, by (7). Moreover, from (7) and (8) it follows that g_{i} and f_{i} are homotopic as mappings $(X, P) \rightarrow\left(I^{n}, \partial I^{n}\right)$ (see [18, p. 128]). But f_{i} and f are homotopic rel $f^{-1}\left(\partial I^{n}\right)$, by (5). From (7), we conclude that g_{i} and f are homotopic as mappings $\left(X, f^{-1}\left(\partial I^{n}\right)\right) \rightarrow\left(I^{n}, \partial I^{n}\right)$. Thus (c), and hence (d), is satisfied. This completes the proof.

Proof of Theorem 3.1. Set $k=\operatorname{dim} X$. Suppose that f is essential and, on the contrary, $f \times \mathrm{id}_{I}$ is not. By Lemma 3.2, there exists a PLmapping $G: X \times I \rightarrow \partial I^{n+1}$ such that

$$
\begin{gather*}
X \times i \subset G^{-1}\left(I^{n} \times i\right) \quad \text { for } i=0,1 \tag{1}\\
f^{-1}\left(\partial I^{n}\right) \times I \subset G^{-1}\left(\left(\partial I^{n}\right) \times I\right) \tag{2}
\end{gather*}
$$

and for the PL-mapping $g: X \rightarrow I^{n}$ defined by $g(x)=\left(p_{I^{n}} \circ G\right)(x, 0)$, $x \in X$, we have
(3) $\quad f^{-1}\left(\partial I^{n}\right) \subset g^{-1}\left(\partial I^{n}\right)$, and g and f are homotopic as mappings $\left(X, f^{-1}\left(\partial I^{n}\right)\right) \rightarrow\left(I^{n}, \partial I^{n}\right)$.
Consider a triangulation K of $X \times I$ and a triangulation L of ∂I^{n+1} such that $G: K \rightarrow L$ is simplicial. For $i=0,1$, choose an n-dimensional simplex A_{i} in L contained in $I^{n} \times i$. Now pick a point a_{0} in the geometric interior of A_{0}. It follows that $G^{-1}\left(a_{0}\right)$ is a subpolyhedron of $X \times I$ and $\operatorname{dim} G^{-1}\left(a_{0}\right) \leq k+1-n$. Since $a_{0} \in I^{n} \times 0$ and $a_{0} \notin\left(\partial I^{n}\right) \times I$, from (1) and (2) we have $G^{-1}\left(a_{0}\right) \cap\left((X \times 1) \cup\left(f^{-1}\left(\partial I^{n}\right) \times I\right)\right)=\emptyset$.

Set $P_{0}=q_{X}\left(G^{-1}\left(a_{0}\right)\right)$. Since q_{X} is PL, we infer that P_{0} is a subpolyhedron of X such that

$$
\begin{gather*}
\operatorname{dim} P_{0} \leq k+1-n \tag{4}\\
P_{0} \cap f^{-1}\left(\partial I^{n}\right)=\emptyset \tag{5}\\
G^{-1}\left(a_{0}\right) \subset P_{0} \times[0,1) \tag{6}
\end{gather*}
$$

Observe that $A_{1} \cap G\left(P_{0} \times I\right)=G\left(G^{-1}\left(A_{1}\right) \cap\left(P_{0} \times I\right)\right)$, hence by (4) we have $\operatorname{dim}\left(A_{1} \cap G\left(P_{0} \times I\right)\right) \leq k+2-n<n$, because according to the assumption $k<2 n-2$. Therefore there exists a point a_{1} in the geometric interior of A_{1} such that $a_{1} \notin G\left(P_{0} \times I\right)$. Set $P_{1}=q_{X}\left(G^{-1}\left(a_{1}\right)\right)$. Obviously,

$$
\begin{equation*}
P_{0} \cap P_{1}=\emptyset \tag{7}
\end{equation*}
$$

Since $a_{1} \in I^{n} \times 1$, from (1) we have $G^{-1}\left(a_{1}\right) \cap(X \times 0)=\emptyset$. Thus

$$
\begin{equation*}
G^{-1}\left(a_{1}\right) \subset P_{1} \times(0,1] . \tag{8}
\end{equation*}
$$

By (5) and (7) there exists a mapping $u: X \rightarrow I$ such that

$$
\begin{equation*}
u\left(P_{0}\right) \subset\{1\} \text { and } u\left(P_{1} \cup f^{-1}\left(\partial I^{n}\right)\right) \subset\{0\} . \tag{9}
\end{equation*}
$$

From (6) and (8) it follows that

$$
\begin{equation*}
\{(x, u(x)): x \in X\} \cap\left(G^{-1}\left(a_{0}\right) \cup G^{-1}\left(a_{1}\right)\right)=\emptyset . \tag{10}
\end{equation*}
$$

Set $a=p_{I^{n}}\left(a_{0}\right)$. Let $p: \partial I^{n+1} \rightarrow I^{n}$ be any mapping such that

$$
\begin{equation*}
p^{-1}(a)=\left\{a_{0}, a_{1}\right\} \quad \text { and } \quad p(x, t)=x \quad \text { for }(x, t) \in\left(I^{n} \times 0\right) \cup\left(\partial I^{n} \times I\right) \tag{11}
\end{equation*}
$$

The task is now to construct a homotopy $H: X \times I \rightarrow I^{n}$, which connects g rel $f^{-1}\left(\partial I^{n}\right)$ with a mapping that is not surjective. Such a homotopy can be defined by $H(x, t)=(p \circ G)(x, u(x) t)$ for $x \in X$ and $t \in I$. It has all the required properties. By (2), (9) and (11), H is a homotopy rel $f^{-1}\left(\partial I^{n}\right)$. By (11), $H(x, 0)=g(x)$ for $x \in X$. By (10) and (11), the mapping $h: X \rightarrow I^{n}$ defined by $h(x)=H(x, 1)$ for $x \in X$ is not surjective because $a \notin h(X)$.

Consequently, we conclude from (3) that f and h are homotopic as mappings $\left(X, f^{-1}\left(\partial I^{n}\right)\right) \rightarrow\left(I^{n}, \partial I^{n}\right)$. Since h is not surjective, f is not essential, a contradiction.
3.3. Theorem. If f is an essential mapping from a compact polyhedron X to I^{n} and if $\operatorname{dim} X<2 n-2$, then $f \times \operatorname{id}_{I^{k}}: X \times I^{k} \rightarrow I^{n+k}$ is also essential for all k.

Proof. By 3.1, $f \times \operatorname{id}_{I}: X \times I \rightarrow I^{n+1}$ is essential. Assuming the assertion to hold for $k \geq 1$, we will prove it for $k+1$. We have $\operatorname{dim}\left(X \times I^{k}\right)=$ $k+\operatorname{dim} X<2(n+k)-2$. Since $f \times \operatorname{id}_{I^{k}}$ is essential, from 3.1 we conclude that $\left(f \times \operatorname{id}_{I^{k}}\right) \times \operatorname{id}_{I}=f \times \operatorname{id}_{I^{k+1}}$ is essential, which completes the proof.
4. Mappings of polyhedra into the square. In this section we prove a polyhedral version of Theorem 1.2 under the assumption $n=2$; first in the case $\operatorname{dim} X=2$, and afterwards for arbitrary polyhedra.
4.1. Theorem. If f is an essential mapping from a 2 -dimensional compact polyhedron X to I^{2}, then $f \times \operatorname{id}_{I}$ is essential.

For the proof we need the concept of T-modifications of mappings. Let X be a 2 -dimensional compact polyhedron and let $f: X \rightarrow I^{2}$. By a T-modification of f we mean any composition $f_{*}=f \circ \varphi: X_{*} \rightarrow I^{2}$, where X_{*} and $\varphi: X_{*} \rightarrow X$ have the following properties: there are two collections of pairwise disjoint sets $\left\{D_{1}, \ldots, D_{k}\right\}$ and $\left\{T_{1}, \ldots, T_{k}\right\}$ such that
(a) D_{i} is a 2-dimensional disk in $X-f^{-1}\left(\partial I^{2}\right)$ with D_{i}° open in X,
(b) T_{i} is a once-punctured 2-dimensional torus in $X_{*}-(f \circ \varphi)^{-1}\left(\partial I^{2}\right)$ with T_{i}° open in X_{*}, and
(c) φ maps homeomorphically $X_{*}-\bigcup_{i} T_{i}^{\circ}$ onto $X-\bigcup_{i} D_{i}^{\circ}$ so that $\varphi\left(\partial T_{i}\right)=\partial D_{i}$ and $\varphi\left(T_{i}^{\circ}\right) \subset D_{i}^{\circ}$.

Here T_{i}° and ∂T_{i} denote the geometric interior and the geometric boundary of T_{i}, respectively.
4.2. Lemma. If f is an essential mapping from a 2 -dimensional compact polyhedron X to I^{2}, then every T-modification f_{*} of f is essential.

Proof. On the contrary, suppose that $f_{*}=f \circ \varphi: X_{*} \rightarrow I^{2}$ is an inessential T-modification of f, where X_{*} and $\varphi: X_{*} \rightarrow X$ have the above mentioned properties (a)-(c). There is a mapping $g: X_{*} \rightarrow \partial I^{2}$ such that $f_{* \mid f_{*}^{-1}\left(\partial I^{2}\right)}=g_{\mid f_{*}^{-1}\left(\partial I^{2}\right)}$. In particular, we have $g\left(T_{i}\right) \subset \partial I^{2}$, for $i=1, \ldots, k$. We wish to examine the mappings $g_{\mid \partial T_{i}}: \partial T_{i} \rightarrow \partial I^{2}$.

We first make the following:
Claim. If g is a mapping of a once-punctured 2-dimensional torus T into a circle S^{1}, then the restriction mapping $g_{\mid \partial T}: \partial T \rightarrow S^{1}$ is not essential.

Proof. Fix a base point $*$ in ∂T. Let $\iota: \partial T \rightarrow T$ denote the inclusion mapping. It induces the homomorphism $\iota_{\#}: \pi_{1}(\partial T, *) \rightarrow \pi_{1}(T, *)$ of the fundamental groups. Let c be a generator of $\pi_{1}(\partial T, *)=\mathbb{Z}$ and let a and b be generators of the free group $\pi_{1}(T, *)=\mathbb{Z} * \mathbb{Z}$. We may assume that $[a, b]=\iota_{\#}(c)$, where $[a, b]=a^{-1} b^{-1} a b$ is the commutator of a and b in $\pi_{1}(T, *)$. The mapping g induces a homomorphism $g_{\#}: \pi_{1}(T, *) \rightarrow \pi_{1}\left(S^{1}\right)$. Since $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ is abelian, we have $[a, b] \in \operatorname{ker} g_{\#}$. Thus $\iota_{\#}\left(\pi_{1}(\partial T, *)\right) \subset$ ker $g_{\#}$. Since $\left(g_{\mid \partial T}\right)_{\#}=g_{\#} \circ \iota_{\#}$, it follows that $\left(g_{\mid \partial T}\right)_{\#}: \pi_{1}(\partial T, *) \rightarrow \pi_{1}\left(S^{1}\right)$ is a trivial homomorphism, and, in consequence, $g_{\mid \partial T}$ is not essential.

We now turn to the proof of Lemma 4.2. According to the above claim, no mapping $g_{\mid \partial T_{i}}: \partial T_{i} \rightarrow \partial I^{2}$ is essential. From (c) it follows that $(g \circ$ $\psi)_{\mid \partial D_{i}}: \partial D_{i} \rightarrow \partial I^{2}$ is not essential, where $\psi=\varphi^{-1}: X-\bigcup_{i} D_{i}^{\circ} \rightarrow X_{*}-$ $\bigcup_{i} T_{i}^{\circ}$. Hence there is an extension $g^{*}: X \rightarrow \partial I^{2}$ of $g \circ \psi: X-\bigcup_{i} D_{i}^{\circ} \rightarrow \partial I^{2}$. From (b), we have $T_{i} \cap f_{*}^{-1}\left(\partial I^{2}\right)=\emptyset$. Therefore ψ sends homeomorphically $f^{-1}\left(\partial I^{2}\right)$ onto $f_{*}^{-1}\left(\partial I^{2}\right)$, by (c) and (a). Hence $f_{\mid f-1}\left(\partial I^{2}\right)=(g \circ \psi)_{\mid f^{-1}\left(\partial I^{2}\right)}=$ $g_{\mid f-1}^{*}\left(\partial I^{2}\right)$. This contradicts the essentiality of f.
4.3. Lemma. Let f be a mapping from a 2-dimensional compact polyhedron X to I^{2}. If every T-modification f_{*} of f is essential, then $f \times \mathrm{id}_{I}$ is essential.

Proof. On the contrary, suppose that $f \times \mathrm{id}_{I}$ is not essential. By 3.2, there exists a PL-mapping $G: X \times I \rightarrow \partial I^{3}$ such that

$$
\begin{gather*}
X \times i \subset G^{-1}\left(I^{2} \times i\right) \quad \text { for } i=0,1 \tag{1}\\
f^{-1}\left(\partial I^{2}\right) \times I \subset G^{-1}\left(\left(\partial I^{2}\right) \times I\right) \tag{2}
\end{gather*}
$$

and for the PL-mapping $g: X \rightarrow I^{2}$ defined by $g(x)=\left(p_{I^{2}} \circ G\right)(x, 0), x \in X$, we have

$$
\begin{align*}
& f^{-1}\left(\partial I^{2}\right) \subset g^{-1}\left(\partial I^{2}\right), \text { and } g \text { and } f \text { are homotopic as mappings } \tag{3}\\
& \left(X, f^{-1}\left(\partial I^{2}\right)\right) \rightarrow\left(I^{2}, \partial I^{2}\right) .
\end{align*}
$$

Let K be a fixed triangulation of X such that $g^{-1}\left(\partial I^{2}\right)$ is the underlying polyhedron of some subcomplex of K. Set $P=\left(\left|K^{(1)}\right| \times I\right) \cup(X \times\{0,1\})$ and $P_{0}=\left(\left|K^{(0)}\right| \times I\right) \cup\left(\left|K^{(1)}\right| \times\{0,1\}\right)$, where $K^{(j)}$ denotes the j-dimensional skeleton of K. Consider a triangulation M of $X \times I$ and a triangulation L of ∂I^{3} so that $G: M \rightarrow L$ is simplicial, $\left|K^{(1)}\right| \times I$ and $X \times\{0,1\}$ are the underlying polyhedra of some subcomplexes of M, and similarly $\left(\partial I^{2}\right) \times I$ and $I^{2} \times\{0,1\}$ are the underlying polyhedra of some subcomplexes of L.

For $i=0,1$, choose a 2-dimensional simplex A_{i} in L contained in $I^{2} \times i$. We may assume that A_{i} is disjoint from $\partial I^{2} \times i$ and the geometric interiors of the disks $p_{I^{2}}\left(A_{0}\right)$ and $p_{I^{2}}\left(A_{1}\right)$ intersect. Now pick points a in I^{2} and a_{i} in the geometric interior of $A_{i}, i=0,1$, such that $a=p_{I^{2}}\left(a_{0}\right)=p_{I^{2}}\left(a_{1}\right)$. Since G is simplicial, $Y=\left(p_{I^{2}} \circ G\right)^{-1}(a)$ is a subpolyhedron of $X \times I$ and $\operatorname{dim} Y \leq 1$. From the construction, it follows that
(4) the set $P \cap Y$ is finite and disjoint from P_{0}, and
(5) for any $A \in K, A \subset X-g^{-1}\left(\partial I^{2}\right)$ if $(A \times I) \cap Y \neq \emptyset$.

Moreover, for every 2-dimensional simplex $A \in K,(A \times I) \cap Y$ is either empty or a 1-dimensional manifold properly embedded in $A \times I$. In particular,
(6) for every 2-dimensional simplex $A \in K$, every component of $(A \times I) \cap Y$ intersecting $\partial(A \times I)$ is a PL-arc properly embedded in $A \times I$.
Without loss of the properties (1)-(6) we may assume that
(7) the projection $q_{X}: X \times I \rightarrow X$ is an embedding on the set $P \cap Y$.

For otherwise one can replace G by $G \circ h^{-1}$, where h is a PL-homeomorphism of $X \times I$ to itself which is the identity on $P_{0} \cup\left(g^{-1}\left(\partial I^{2}\right) \times I\right)$ and sending $A \times I$ to itself for any $A \in K$, so that q_{X} is an embedding on $h(P \cap Y)$.

Let Y_{0} be the union of all components of Y intersecting $X \times 0$. From (1) we have

$$
\begin{equation*}
(X \times 1) \cap Y_{0}=\emptyset \tag{8}
\end{equation*}
$$

Observe that the set $E=\left(\left|K^{(1)}\right| \times I\right) \cap Y_{0} \subset P \cap Y$ is finite. By (4) and (6), $q_{X}(E)$ is disjoint from $\left|K^{(0)}\right|, q_{X}\left(Y-Y_{0}\right)$ and $q_{X}\left((X \times 0) \cap Y_{0}\right)$, because for any $e \in E$ every interval of the form $\left(q_{X}(e)\right) \times I$ intersects Y_{0} exactly in e.

By (4) and (7), there exists a simplicial subdivision K_{1} of K such that all $q_{X}(e)$, where $e \in E$, are vertices of K_{1}, and all closed stars st $\left(q_{X}(e), K_{1}\right)$ are pairwise disjoint and do not intersect $\left|K^{(0)}\right|, q_{X}\left(Y-Y_{0}\right)$ and $q_{X}\left((X \times 0) \cap Y_{0}\right)$.

Let $u: X \rightarrow I$ be a linear extension on all simplices in K_{1} of the vertex $\operatorname{map} u: K_{1}^{(0)} \rightarrow I$ defined by $u(v)=1$ if $v \in q_{X}(E)$, and $u(v)=0$ if $v \notin q_{X}(E)$. For any $Z \subset X$ denote by $Z_{u}=\{(z, u(z)) \in X \times I: z \in Z\}$ the graph of $u_{\mid Z}$.

We wish to define the desired X_{*} as X_{u} which will be modified in the following way: first in X_{u} a finite collection of pairs of disjoint disks will be removed, and in the place of every pair a pipe will be inserted, i.e., a set homeomorphic to $S^{1} \times I$, so that $X_{*} \cap Y=\emptyset$.

Observe that $\left|K^{(1)}\right|_{u}$ is disjoint from Y and X_{u} is disjoint from $Y-Y_{0}$. Hence $X_{u} \cap Y=\bigcup\left\{A_{u}^{\circ} \cap Y_{0}: A \in K-K^{(1)}\right\}$. Consider $A \in K-K^{(1)}$ and let $D_{A}=\{(x, t) \in A \times I: t \geq u(x)\}$ be the shadow over A_{u}. Clearly, D_{A} is a 3 -dimensional PL-disk, and A_{u} is a 2 -dimensional disk in ∂D_{A}. By (6) and (8), one can choose K_{1} so fine that every component of $D_{A} \cap Y_{0}$ is a PL-arc properly embedded in D_{A} with end points in A_{u}°. Take a sufficiently small regular neighborhood of such an arc, which is disjoint from $Y-Y_{0}$ and homeomorphic to $D \times I$, where D is a 2-dimensional disk. Now we replace each pair of disks corresponding to $D \times\{0,1\}$ in X_{u} by the pipe $(\partial D) \times I$, and we get the desired X_{*} disjoint from Y. In a natural way, we can define $\varphi: X_{*} \rightarrow X$ which agrees with q_{X} on $\left|K^{(1)}\right|_{u}$ and $g^{-1}\left(\partial I^{2}\right)$, and has the property that $\varphi(z) \in A^{\circ}$ if $q_{X}(z) \in A^{\circ}$.

We claim that the T-modification g_{*} of g defined by

$$
\begin{equation*}
g_{*}=g \circ \varphi: X_{*} \rightarrow I^{2} \text { is not essential. } \tag{9}
\end{equation*}
$$

Indeed, we have $g_{*}^{-1}\left(\partial I^{2}\right)=\varphi^{-1}\left(g^{-1}\left(\partial I^{2}\right)\right)=\left(q_{X \mid X_{*}}\right)^{-1}\left(g^{-1}\left(\partial I^{2}\right)\right)=$ $g^{-1}\left(\partial I^{2}\right) \times 0$ and both g_{*} and $g \circ\left(q_{X \mid X_{*}}\right)$ are homotopic rel $g_{*}^{-1}\left(\partial I^{2}\right)$, because there is a homotopy along vertical intervals connecting φ and $q_{X \mid X_{*}}$. The mapping $g \circ\left(q_{X \mid X_{*}}\right)$ is also homotopic to $p_{I^{2}} \circ G \circ \iota$ rel $g_{*}^{-1}\left(\partial I^{2}\right)$, where $\iota: X_{*} \rightarrow X \times I$ is given by $\iota(x, t)=(x, 0)$. On the other hand, $p_{I^{2}} \circ G \circ \iota$ is homotopic to $\left(p_{I^{2}} \circ G\right)_{\mid X_{*}}$ rel $g_{*}^{-1}\left(\partial I^{2}\right)$, because ι is homotopic to an embedding of X_{*} into $X \times I$ under a homotopy leaving $g_{*}^{-1}\left(\partial I^{2}\right)$ inside $\left(p_{I^{2}} \circ G\right)^{-1}\left(\partial I^{2}\right)=G^{-1}\left(\left(\partial I^{2}\right) \times I\right)$. By the construction, the last mapping is not surjective, and (9) is proved.

Define a T-modification of f by $f_{*}=f \circ \varphi$. From (3) and from the construction of φ, it follows that g_{*} and f_{*} are homotopic as mappings $\left(X, f_{*}^{-1}\left(\partial I^{2}\right)\right) \rightarrow\left(I^{2}, \partial I^{2}\right)$. By (9), we conclude that f_{*} is not essential.

Proof of Theorem 4.1. Combine 4.2 and 4.3.
4.4. Theorem. If f is an essential mapping from a compact polyhedron X to I^{2}, then $f \times \mathrm{id}_{I^{k}}: X \times I^{k} \rightarrow I^{k+2}$ is essential for all k.

Proof. Let Y be the 2-dimensional skeleton in any triangulation of X. We first prove that $f_{\mid Y}: Y \rightarrow I^{2}$ is essential.

On the contrary, suppose that $f_{\mid Y}$ is not essential. Then there exists $g: Y \cup f^{-1}\left(\partial I^{2}\right) \rightarrow \partial I^{2}$ such that $g_{\mid f^{-1}\left(\partial I^{2}\right)}=f_{\mid f-1\left(\partial I^{2}\right)}$. Since $\partial I^{2} \approx S^{1}$ is an Eilenberg-MacLane space $K(\mathbb{Z}, 1)$, we infer that there is a continuous extension $g^{*}: X \rightarrow \partial I^{2}$ of g. Hence $g_{\mid f^{-1}\left(\partial I^{2}\right)}^{*}=f_{\mid f-1\left(\partial I^{2}\right)}$, which contradicts the essentiality of f.

Since $\left(f_{\mid Y}\right) \times \mathrm{id}_{I^{k}}=\left(f \times \mathrm{id}_{I^{k}}\right)_{\mid\left(Y \times I^{k}\right)}$, it suffices to show that $\left(f_{\mid Y}\right) \times \mathrm{id}_{I^{k}}$: $Y \times I^{k} \rightarrow I^{k+2}$ is essential. From the essentiality of $f_{\mid Y}: Y \rightarrow I^{2}$ and from 4.1, it follows that $\left(f_{\mid Y}\right) \times \mathrm{id}_{I}: Y \times I \rightarrow I^{3}$ is essential. Since $Y \times I$ satisfies the dimensional condition in 3.3 , we conclude that $\left(\left(f_{\mid Y}\right) \times \mathrm{id}_{I}\right) \times \mathrm{id}_{I^{k-1}}=$ $\left(f_{\mid Y}\right) \times \mathrm{id}_{I^{k}}$ is essential.
5. Essential mappings of compacta into cubes. We prove here Theorem 1.2 for arbitrary compacta. In the case $n=1$ we have the following well known fact [8], [7], [2], [12], [13].
5.1. Proposition. If for $i=1, \ldots, n, f_{i}$ is an essential mapping from a compactum X_{i} to the unit interval I, then the product mapping

$$
f_{1} \times \ldots \times f_{n}: X_{1} \times \ldots \times X_{n} \rightarrow I^{n}
$$

is essential; in particular, $f_{i} \times \operatorname{id}_{I^{k}}: X_{i} \times I^{k} \rightarrow I^{k+1}$ is essential for all k.
Proof of Theorem 1.2. According to the Freudenthal theorem (see, e.g., [5, Theorem 1.13.2]), X is the inverse limit of an inverse sequence $\left\{X_{i}, \pi_{i, j}\right\}$ consisting of compact polyhedra X_{i} with

$$
\begin{equation*}
\operatorname{dim} X_{i} \leq \operatorname{dim} X \tag{1}
\end{equation*}
$$

First we are going to use inverse limits to construct a compactum X^{*} which contains mutually disjoint copies of all X_{i} as closed subsets, and a copy of X as a closed subset approximated sufficiently closely by X_{i} (cf. [14], [11]).

Set $X_{i}^{*}=X_{1} \sqcup \ldots \sqcup X_{i}$. Define the bonding mappings $\tau_{i, j}: X_{j}^{*} \rightarrow X_{i}^{*}$ by $\tau_{i, i}=\operatorname{id}_{X_{i}^{*}}$ and $\tau_{i, j}=\tau_{i, i+1} \circ \tau_{i+1, i+2} \circ \ldots \circ \tau_{j-1, j}$ for $j>i$, whereas $\tau_{i, i+1}(x)=x$ if $x \in X_{i}^{*}$, and $\tau_{i, i+1}(x)=\pi_{i, i+1}(x)$ if $x \in X_{i+1}$. Define $X^{*}=\lim _{\rightleftarrows}\left\{X_{i}^{*}, \tau_{i, j}\right\}$.

We may assume that $D^{n}=I^{n}$. Now set $A=f^{-1}\left(\partial I^{n}\right)$. Since A is a closed subset of $X, A_{i}=\pi_{i}(A)$ is also closed, where $\pi_{i}: X \rightarrow X_{i}$ is the projection. Therefore $A=\lim \left\{A_{i}, \pi_{i, j \mid A_{j}}\right\}$ (see, e.g., [4, p. 138]). Let $A_{i}^{*}=A_{1} \sqcup \ldots \sqcup A_{i}$. Clearly, $\widehat{A_{i}^{*}}$ is a closed subset of X_{i}^{*}. Therefore $A^{*}=\lim _{\rightleftarrows}\left\{A_{i}^{*}, \tau_{i, j \mid A_{j}^{*}}\right\}$ is a closed subset of X^{*}.

Since ∂I^{n} is an absolute neighborhood retract, there exist an open neighborhood V of A in A^{*} and an extension $f_{0}: V \rightarrow \partial I^{n}$ of $f_{\mid A}: A \rightarrow \partial I^{n}$. Then $A_{i} \subset V$ for almost all i. Without loss of generality we may assume that $A^{*} \subset V$. Using the same argument for the mapping $g_{0}: X \cup A^{*} \rightarrow I^{n}$ defined by $g_{0}(x)=f(x)$ if $x \in X$ and $g_{0}(x)=f_{0}(x)$ if $x \in A^{*}$, we get an open neighborhood U of $X \cup A^{*}$ in X^{*} and an extension $g: U \rightarrow I^{n}$ of g_{0}. As before, we may assume that $X^{*} \subset U$. Observe that $g_{\mid X}=f$. Set $f_{i}=g_{\mid X_{i}}: X_{i} \rightarrow I^{n}$. We have $f_{i}\left(\pi_{i}(A)\right)=f_{i}\left(A_{i}\right)=f_{0}\left(A_{i}\right) \subset \partial I^{n}$. Hence

$$
\begin{equation*}
\pi_{i}(A) \subset f_{i}^{-1}\left(\partial I^{n}\right) \tag{2}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
f_{i} \text { is essential for almost all } i . \tag{3}
\end{equation*}
$$

According to [15, p. 71], there exists an $\varepsilon>0$ such that for any mapping $f^{\prime}:\left(X, f^{-1}\left(\partial I^{n}\right)\right) \rightarrow\left(I^{n}, \partial I^{n}\right)$ which is ε-near to f, f and f^{\prime} are homotopic as mappings of pairs. Since for every $\delta>0$ there exists i such that π_{i} is a δ-push, from the uniform continuity of g it follows that there is a j such that for every $i \geq j, \operatorname{dist}\left(g_{\mid X},\left(g \circ \pi_{i}\right)_{\mid X}\right)<\varepsilon$, and therefore $\operatorname{dist}\left(f, f_{i} \circ \pi_{i}\right)<\varepsilon$. By (2), we have $f_{i} \circ \pi_{i}:\left(X, f^{-1}\left(\partial I^{n}\right)\right) \rightarrow\left(I^{n}, \partial I^{n}\right)$. Thus f and $f_{i} \circ \pi_{i}$ are homotopic as mappings of pairs. Since f is essential, we conclude that $f_{i} \circ \pi_{i}$, and in consequence f_{i}, is essential.

By the assumption and by (1), $n \leq 2$ or $\operatorname{dim} X_{i}<2 n-2$. Therefore

$$
\begin{equation*}
f_{i} \times \operatorname{id}_{I^{k}} \text { is essential for almost all } i, \tag{4}
\end{equation*}
$$

by (3), 4.1 and by Theorems 3.3 and 4.4.
Suppose, on the contrary, that $f \times \operatorname{id}_{I^{k}}: X \times I^{k} \rightarrow I^{n+k}$ is not essential. We have $f \times \operatorname{id}_{I^{k}}=\left(g_{\mid X}\right) \times \operatorname{id}_{I^{k}}=\left(g \times \operatorname{id}_{I^{k}}\right)_{\mid X \times I^{k}}$. By [12, Theorem I.1.10], there exists a neighborhood $U \subset X^{*} \times I^{k}$ of $X \times I^{k}$ such that $\left(g \times \operatorname{id}_{I^{k}}\right)_{\mid U}$ is not essential. Since $X \times I^{k}$ is a compact subset of $X^{*} \times I^{k}$ approximated sufficiently closely by $X_{i} \times I^{k}$, it follows that there exists an index j such that for each $i \geq j, X_{i} \times I^{k} \subset U$. Hence for each $i \geq j$, $\left(g \times \operatorname{id}_{I^{k}}\right)_{\mid X_{i} \times I^{k}}=\left(g_{\mid X_{i}}\right) \times \operatorname{id}_{I^{k}}=f_{i} \times \operatorname{id}_{I^{k}}$ is not essential, contrary to (4).

Acknowledgments. The author wants to thank Professor J. Krasinkiewicz for many stimulating remarks. He is also grateful to Professor R. Engelking for some suggestions. Thanks are also due to the referees for a number of remarks that helped to improve an earlier version of the paper.

REFERENCES

[1] P. Alexandroff [P. S. Aleksandrov], Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238.
[2] D. P. Bellamy and J. A. Kennedy, Factorwise rigidity of products of pseudo-arcs, Topology Appl. 24 (1986), 197-205.
[3] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200-242.
[4] R. Engelking, General Topology, Monografie Mat. 60, PWN-Polish Scientific Publishers, 1977.
[5] -, Dimension Theory, PWN-Polish Scientific Publishers, North-Holland, 1978.
[6] J. Grispolakis and E. D. Tymchatyn, On confluent mappings and essential mappings - a survey, Rocky Mountain J. Math. 11 (1981), 131-153.
[7] N. Hadjiivanov, On products of continua, C. R. Acad. Bulg. Sci. 31 (1978), 12411244 (in Russian).
[8] W. Holsztynnski, Universality of mappings onto the products of snake-like spaces. Relation with dimension, Bull. Acad. Polon. Sci. 16 (1968), 161-167.
[9] -, Universality of the product mappings onto products of I^{n} and snake-like spaces, Fund. Math. 64 (1969), 147-155.
[10] -, Universal mappings and a relation to the stable cohomology groups, Bull. Acad. Polon. Sci. 18 (1970), 75-79.
[11] Z. Karno, On ω-essential mappings onto manifolds, Fund. Math. 137 (1991), 97-105.
[12] J. Krasinkiewicz, Essential mappings onto products of manifolds, in: Geometric and Algebraic Topology, Banach Center Publ. 18, PWN-Polish Scientific Publishers, 1986, 377-406.
[13] K. Lorentz, On products of essential mappings onto intervals, Bull. Polish Acad. Sci. Math. 36 (1988), 403-407.
[14] S. Mardešić and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59.
[15] -, 一, Shape Theory, North-Holland, Amsterdam, 1982.
[16] K. Morita, Čech cohomology and covering dimension for topological spaces, Fund. Math. 87 (1975), 31-52.
[17] -, The Hopf extension theorem for topological spaces, Houston J. Math. 1 (1975), 121-129.
[18] E. H. Spanier, Algebraic Topology, Springer, New York, 1966.

Institute of Mathematics
Institute of Mathematics
Warsaw University at Białystok Polish Academy of Sciences

Akademicka 2

15-267 Białystok 1, Poland
E-mail: zkarno@math.uw.bialystok.pl

Sniadeckich 8
00-950 Warszawa, Poland
E-mail: zkarno@impan.impan.gov.pl

[^0]: 1991 Mathematics Subject Classification: 54F45, 54C10, 54C50, 54E40, 55P99, 57Q99.

 Key words and phrases: dimension, compact metric space, essential mapping, product, cone, pinch, modification.

 Supported in part by KBN grant 2 P301 01305.

