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ON A THEOREM OF P. S. ALEKSANDROV

BY

ZBIGNIEW K A R N O (BIA LYSTOK)

Dedicated to the memory of my father, Zygmunt Karno

1. Background and statement of results. In [1] P. S. Aleksandrov
has proved that if X is an n-dimensional compactum (where n is finite ≥ 1),
then there exist a closed subset A of X and an essential mapping v from the
quotient space X/A to the n-dimensional sphere Sn. Actually, he has proved
the following theorem (see also [3]): If f is an essential mapping from an
n-dimensional compactum X to an n-dimensional disk Dn, then the pinch
mapping induced by f on the quotient spaces X/f−1(∂Dn) and Dn/∂Dn ≈
Sn is also essential. The proof is strictly algebraic. In this paper, using
geometric methods, we extend the Aleksandrov result in the following way.

1.1. Theorem. If f is an essential mapping from a compactum X to
an n-dimensional disk Dn and if n ≤ 2 or dimX < 2n − 2, then the pinch
mapping f• : X/f−1(∂Dn)→ Dn/∂Dn induced by f is also essential.

Recall that a mapping f of a space X into a sphere S is said to be
essential if it is not homotopic to a constant mapping; equivalently, if every
mapping g : X → S homotopic to f is surjective. A mapping f of a
space X into a disk D is said to be essential (in the sense of Aleksandrov–
Hopf) if there is no mapping g : X → ∂D such that g(x) = f(x) for each
x ∈ f−1(∂D); equivalently, if every mapping g : X → D homotopic to f
rel f−1(∂D) is surjective (see [1]). Note that (see [12]) f is essential if and
only if every mapping g : X → D which is homotopic to f as a map of pairs
(X, f−1(∂D))→ (D, ∂D) is surjective (essential).

Let f be a mapping of a compactum X into a disk D. Consider the
natural quotient mapping q : X → X/f−1(∂D) and similarly p : D →
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D/∂D. The mapping f induces a (continuous) mapping f• : X/f−1(∂D)→
D/∂D such that p ◦ f = f• ◦ q (see [4]). It may be defined by f•(a) =
(p ◦ f)(q−1(a)) for a ∈ X/f−1(∂D). We call f• the pinch mapping. Since
D/∂D is homeomorphic to Sn, where n = dimD, we will usually identify
f• with the corresponding mapping into Sn.

Actually we prove that the essentiality of f × idI , where I is the unit in-
terval, implies the essentiality of the pinch mapping f•. Therefore Theorem
1.1 is a consequence of the following theorem.

1.2. Theorem. If f is an essential mapping from a compactum X to
an n-dimensional disk Dn and if n ≤ 2 or dimX < 2n − 2, then f × idI :
X× I → Dn× I is essential (moreover , f × idIk : X× Ik → Dn× Ik is also
essential for all k).

This result is related to two theorems proved by W. Holsztyński [9],
[10] and by K. Morita [16], [17] (see also [11]); these claim in the case of
compacta that given an essential mapping f : X → In the product mapping
f × idI : X × I → In+1 is essential if n ≤ 2 or dimX = n (for the case
n = 1 see also [8], [7], [2], [12], [13]). Both proofs use algebraic topology.
Our proof is strictly geometric and it consists in proving the assertion first
for compact polyhedra and afterwards in using the Freudenthal theorem to
generalize it to arbitrary compacta.

Note that an essential mapping f : I4 → I3 with f × idI : I5 → I4

inessential, constructed by W. Holsztyński in [10], has inessential pinch f•.
So, Theorem 1.1 (and also Theorem 1.2) cannot be strengthened for com-
pacta with dimX ≥ 2n− 2 and n > 2.

The paper is organized as follows. In Section 2 we establish some con-
nections between mappings into disks and spheres, and their cones. Further-
more, we deduce 1.1 from 1.2. In the same section we show that an essential
mapping f : I4 → I3 with f × idI inessential has inessential pinch f•. In
the next two sections we prove 1.2 for mappings of compact polyhedra into
n-dimensional cubes, with dimX < 2n− 2 in Section 3, and with n = 2 in
Section 4. In Section 5 we complete the proof of 1.2 in the general case.

Throughout the paper, all spaces are metric and all mappings are con-
tinuous. Compactum means a compact metric space. By “dimension” we
understand the covering dimension. By an n-dimensional sphere S we mean
here any space homeomorphic to the unit n-dimensional sphere Sn, and
by an n-dimensional disk D we mean any space homeomorphic to the unit
n-dimensional cube In (I = I1 is the unit interval [0, 1]), by ∂D we denote
its geometric boundary, and by D◦ its geometric interior.

2. Cones of mappings into disks and spheres. Let X be a
compactum. By the (unreduced) cone C(X) we mean the quotient space
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(X × I)/(X × 1). Obviously, C(X) is compact and metrizable (see [4]). We
will denote by [x, t] ∈ C(X) the image of (x, t) ∈ X × I under the natu-
ral quotient mapping cX : X × I → C(X). We will identify X with the
closed subspace {[x, 0] : x ∈ X} of C(X). Let f : X → Y be a mapping
between compacta. By the cone mapping C(f) : C(X)→ C(Y ) induced by
f we mean the (continuous) mapping defined by C(f)([x, t]) = [f(x), t] for
[x, t] ∈ C(X). It satisfies the equality cY ◦ (f × idI) = C(f) ◦ cX . Under the
identifications mentioned above, C(f)−1(Y ) = X and C(f)|X = f . Note
that the cone on an n-dimensional sphere S, and similarly the cone on an
n-dimensional disk D, are (n+ 1)-dimensional disks.

2.1. Proposition. Let g be a mapping from a compactum X into a
sphere S. Then g is essential if and only if C(g) is essential.

P r o o f. Follows from [6, Lemma 4.7] and [6, Theorem 4.11].

2.2. Theorem. If f is a mapping from a compactum X into a disk D,
then f × idI : X × I → D × I is essential if and only if C(f) is essential.

P r o o f. Suppose C(f) is not essential. Since cD ◦ (f × idI) = C(f) ◦ cX ,
it follows that C(f)◦ cX , and therefore cD ◦ (f × idI), is not essential either.
Then there exists g : X × I → ∂C(D) such that

(0) cD ◦ (f × idI)|Y = g|Y : Y → ∂C(D),

where Y = (cD ◦ (f × idI))−1(∂C(D)). Observe that ∂(D × I) and ∂C(D)
are spheres of the same dimension, ∂(D × I)/(D × 1) = ∂C(D) and D × 1
is a tame disk in ∂(D × I). It follows that there exists a homeomorphism
h : ∂C(D) → ∂(D × I) such that (h ◦ cD)|∂(D×I) ' id∂(D×I). Since (f ×
idI)−1(∂(D × I)) = Y , we conclude from (0) that (f × idI)|Y ' h ◦ g|Y as
mappings Y → ∂(D × I). Applying the homotopy extension theorem, we
get a mapping f∗ : X × I → ∂(D × I) such that f∗|Y = (f × idI)|Y , which
contradicts the essentiality of f × idI .

The reverse implication is quite obvious; f × idI is equivalent to
C(f)|cX(X×[0,t]) : cX(X × [0, t])→ cD(D × [0, t]), where 0 < t < 1.

2.3. Theorem. Let f be a mapping from a compactum X into a disk
D. If f × idI : X × I → D × I is essential , then the pinch mapping
f• : X/f−1(∂D)→ D/∂D is also essential.

P r o o f. According to 2.2, the cone mapping C(f) is essential. By
[6, Lemma 4.7], g = C(f)|Y : Y → ∂C(D) is essential, where Y =
(C(f))−1(∂C(D)) = X ∪ C(f−1(∂D)).

Consider the natural quotient mappings p : ∂C(D) → ∂C(D)/C(∂D)
and q : Y → Y/C(f−1(∂D)). We have the identifications ∂C(D) = D ∪
C(∂D), ∂C(D)/C(∂D) = D/∂D and Y/C(f−1(∂D)) = X/f−1(∂D). It
follows that f• ◦ q = p ◦ g. Since ∂C(D) is a sphere and C(∂D) is a tame
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disk in ∂C(D) such that dim ∂C(D) = dimC(∂D), we infer that there is
a homeomorphism h : ∂C(D)/C(∂D) → ∂C(D) such that h ◦ p ' id∂C(D).
Thus h ◦ f• ◦ q ' g. Since g is essential, so is h ◦ f• ◦ q. Hence h ◦ f• is
essential. Since h is a homeomorphism, we conclude that f• is essential.

P r o o f o f T h e o r e m 1.1. Combine 2.3 and 1.2.

From 1.1, 1.2, 2.1 and 2.2, we get the following observation.

2.4. Corollary. If f is an essential mapping from a compactum X to
In and if n ≤ 2 or dimX < 2n− 2, then

(a) C(f) : C(X)→ C(In) ≈ In+1 is essential ,
(b) C(f•) : C(X/f−1(∂In))→ C(In/∂In) ≈ In+1 is essential.

2.5. Example. In [10, Example 3.8] W. Holsztyński gave an example
of an essential mapping f : I4 → I3 with f−1(∂I3) = ∂I4 such that f ×
idI : I5→ I4 is not essential (see also [9, Proposition 1.1]). According to
Theorem 2.2, the cone mapping C(f) : C(I4)→C(I3) is not essential either.

We now prove that the pinch mapping f• : I4/∂I4 → I3/∂I3 is not essen-
tial. Consider the natural quotient mappings p : C(I3)→ C(I3)/C(∂I3) and
q : C(I4) → C(I4)/C(∂I4). There exists a mapping f∗ : C(I4)/C(∂I4) →
C(I3)/C(∂I3) such that f∗◦q = p◦C(f). Since I4 ≈ C(I3) ≈ C(I3)/C(∂I3)
and I5 ≈ C(I4) ≈ C(I4)/C(∂I4), it follows that there exist homeomor-
phisms h : C(I3)/C(∂I3)→ C(I3) and g : C(I4)/C(∂I4)→ C(I4) such that
h◦p and idC(I3) are homotopic as mappings of the pair (C(I3), ∂C(I3)), and
q ◦ g and idC(I4)/C(∂I4) are homotopic as mappings of the pair
(C(I4)/C(∂I4), ∂(C(I4)/C(∂I4))). Since C(f) is not essential, from the ho-
motopy extension theorem applied to appropriate mappings, we infer that
h ◦ p ◦ C(f) is not essential. Since h is a homeomorphism, p ◦ C(f) is not
essential. Thus f∗ ◦ q is not essential. Since g is a homeomorphism, f∗ ◦ q ◦g
is not essential. Applying the homotopy extension theorem again, we con-
clude that f∗ is not essential. Observe that I3/∂I3 = ∂(C(I3)/C(∂I3)),
I4/∂I4 =∂(C(I4)/C(∂I4)), and furthermore f•=(f∗)|∂(C(I3)/C(∂I3)). Since
C(I3)/C(∂I3) is contractible, from [6, Theorem 4.11] we conclude that f•
is not essential. Moreover, since f• is not essential, from 2.1 we infer that
C(f•) : C(I4/∂I4)→ C(I3/∂I3) is not essential.

3. Mappings of polyhedra into high dimensional cubes. In this
section and subsequently we will denote by qX the projection of X × I to
X and by qI the projection of X × I to I. By pIn and pI we will denote
the analogous projections from In × I to In and I, respectively. Note that
if f : X → In, then f × idI = (pIn ◦ (f × idI), pI ◦ (f × idI)) = (f ◦ qX , qI).

We prove here a polyhedral version of Theorem 1.2 under the assumption
dimX < 2n − 2 (see also [11, Lemma 2.2] for the analogous fact but with
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a complicated proof). In this case we have n > 2 and dimX ≥ n; the last
inequality follows from the essentiality assumption. The case n ≤ 2 will be
discussed in the remaining sections.

3.1. Theorem. If f is an essential mapping from a compact polyhedron
X to In and if dimX < 2n− 2, then f × idI is essential.

As a preliminary to the proof of this theorem, we state an auxiliary
lemma. It will also be needed in the next section.

3.2. Lemma. Let f be a mapping from a compact polyhedron X into
In. Suppose f × idI is not essential. Then there exists a PL-mapping
G : X × I → ∂In+1 such that

(a) X × i ⊂ G−1(In × i) for i = 0, 1, and
(b) f−1(∂In)× I ⊂ G−1((∂In)× I).

Moreover , for i = 0, 1 the mapping gi : X → In defined by the formula
gi(x) = (pIn ◦G)(x, i), x ∈ X, is PL and has the following properties:

(c) f−1(∂In) ⊂ g−1i (∂In), and gi and f are homotopic as mappings
(X, f−1(∂In))→ (In, ∂In),

(d) if f is essential , then gi is also essential.

P r o o f. Since f × idI is not essential, there exists F0 : X × I → ∂In+1

such that

(1) (f × idI)(x, t) = F0(x, t) for (x, t) ∈ (f × idI)−1(∂In+1).

Let u : In → In be any mapping such that

(2) u|∂In = (idIn)|∂In and ∂In ⊂ Intu−1(∂In).

Define F : X×I → ∂In+1 by F (x, t) = (u◦pIn ◦F0(x, t), t) for (x, t) ∈ X×I.
It is easy to check, using (1) and (2), that

(3) X × i ⊂ F−1(In × i) for i = 0, 1,

(4) f−1(∂In)× I ⊂ IntF−1((∂In)× I),

and for i = 0, 1, the mapping fi : X → In defined by fi(x) = (pIn ◦F )(x, i),
x ∈ X, satisfies

(15) f−1(∂In) ⊂ Int f−1i (∂In) and fi(x) = f(x) for x ∈ f−1(∂In).

From (4) and (5) it follows that there is a polyhedron P ⊂ X such that

P × I ⊂ F−1((∂In)× I),(6)

f−1(∂In) ⊂ P ⊂ f−1i (∂In) for i = 0, 1.(7)

Let K be any triangulation of X × I such that P × I and X × i are the
underlying polyhedra of some subcomplexes of K. Similarly, let L be any
triangulation of ∂In+1 with an analogous property with respect to (∂In)×I
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and In × i. Consider any simplicial approximation G : X × I → ∂In+1

to F : K → L. We show that G, and gi defined as in the assertion of
Lemma 3.2, meet the requirements.

Clearly, G is PL and so is gi for i = 0, 1. From (3) we have F (X × i)
⊂ In × i. Since G is a simplicial approximation to F , we conclude that
G(X × i) ⊂ In × i and

(8) gi is a simplicial approximation to fi,

by [18, p. 127]. Thus, in particular, (a) is satisfied. From (6) we have F (P ×
I)
⊂ (∂In) × I. In the same manner we can see that G(P × I) ⊂ (∂In) × I.
Therefore G(f−1(∂In)× I) ⊂ (∂In)× I, by (7). Thus (b) is satisfied. From
what has already been shown, we can also see that G(P × i) ⊂ (∂In) × i.
It follows that P ⊂ g−1i (∂In). Therefore f−1(∂In) ⊂ g−1i (∂In), by (7).
Moreover, from (7) and (8) it follows that gi and fi are homotopic as map-
pings (X,P )→ (In, ∂In) (see [18, p. 128]). But fi and f are homotopic rel
f−1(∂In), by (5). From (7), we conclude that gi and f are homotopic as
mappings (X, f−1(∂In))→ (In, ∂In). Thus (c), and hence (d), is satisfied.
This completes the proof.

P r o o f o f T h e o r e m 3.1. Set k = dimX. Suppose that f is essential
and, on the contrary, f × idI is not. By Lemma 3.2, there exists a PL-
mapping G : X × I → ∂In+1 such that

X × i ⊂ G−1(In × i) for i = 0, 1,(1)

f−1(∂In)× I ⊂ G−1((∂In)× I),(2)

and for the PL-mapping g : X → In defined by g(x) = (pIn ◦ G)(x, 0),
x ∈ X, we have

(3) f−1(∂In) ⊂ g−1(∂In), and g and f are homotopic as mappings
(X, f−1(∂In))→ (In, ∂In).

Consider a triangulation K of X × I and a triangulation L of ∂In+1

such that G : K → L is simplicial. For i = 0, 1, choose an n-dimensional
simplex Ai in L contained in In × i. Now pick a point a0 in the geometric
interior of A0. It follows that G−1(a0) is a subpolyhedron of X × I and
dimG−1(a0) ≤ k + 1 − n. Since a0 ∈ In × 0 and a0 6∈ (∂In) × I, from (1)
and (2) we have G−1(a0) ∩ ((X × 1) ∪ (f−1(∂In)× I)) = ∅.

Set P0 = qX(G−1(a0)). Since qX is PL, we infer that P0 is a subpolyhe-
dron of X such that

dimP0 ≤ k + 1− n,(4)

P0 ∩ f−1(∂In) = ∅,(5)

G−1(a0) ⊂ P0 × [0, 1).(6)
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Observe that A1 ∩ G(P0 × I) = G(G−1(A1) ∩ (P0 × I)), hence by (4)
we have dim(A1 ∩ G(P0 × I)) ≤ k + 2 − n < n, because according to the
assumption k < 2n − 2. Therefore there exists a point a1 in the geometric
interior of A1 such that a1 6∈ G(P0 × I). Set P1 = qX(G−1(a1)). Obviously,

(7) P0 ∩ P1 = ∅.

Since a1 ∈ In × 1, from (1) we have G−1(a1) ∩ (X × 0) = ∅. Thus

(8) G−1(a1) ⊂ P1 × (0, 1].

By (5) and (7) there exists a mapping u : X → I such that

(9) u(P0) ⊂ {1} and u(P1 ∪ f−1(∂In)) ⊂ {0}.

From (6) and (8) it follows that

(10) {(x, u(x)) : x ∈ X} ∩ (G−1(a0) ∪G−1(a1)) = ∅.

Set a = pIn(a0). Let p : ∂In+1 → In be any mapping such that

(11) p−1(a) = {a0, a1} and p(x, t) = x for (x, t) ∈ (In×0)∪ (∂In× I)

The task is now to construct a homotopy H : X×I → In, which connects
g rel f−1(∂In) with a mapping that is not surjective. Such a homotopy can
be defined by H(x, t) = (p ◦G)(x, u(x)t) for x ∈ X and t ∈ I. It has all the
required properties. By (2), (9) and (11), H is a homotopy rel f−1(∂In). By
(11), H(x, 0) = g(x) for x ∈ X. By (10) and (11), the mapping h : X → In

defined by h(x) = H(x, 1) for x ∈ X is not surjective because a 6∈ h(X).

Consequently, we conclude from (3) that f and h are homotopic as map-
pings (X, f−1(∂In))→ (In, ∂In). Since h is not surjective, f is not essential,
a contradiction.

3.3. Theorem. If f is an essential mapping from a compact polyhedron
X to In and if dimX < 2n − 2, then f × idIk : X × Ik → In+k is also
essential for all k.

P r o o f. By 3.1, f × idI : X × I → In+1 is essential. Assuming the
assertion to hold for k ≥ 1, we will prove it for k+1. We have dim(X×Ik) =
k+ dimX < 2 (n+ k)− 2. Since f × idIk is essential, from 3.1 we conclude
that (f × idIk)× idI = f × idIk+1 is essential, which completes the proof.

4. Mappings of polyhedra into the square. In this section we prove
a polyhedral version of Theorem 1.2 under the assumption n = 2; first in
the case dimX = 2, and afterwards for arbitrary polyhedra.

4.1. Theorem. If f is an essential mapping from a 2-dimensional
compact polyhedron X to I2, then f × idI is essential.
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For the proof we need the concept of T-modifications of mappings. Let
X be a 2-dimensional compact polyhedron and let f : X → I2. By a
T-modification of f we mean any composition f∗ = f ◦ ϕ : X∗ → I2, where
X∗ and ϕ : X∗ → X have the following properties: there are two collections
of pairwise disjoint sets {D1, . . . , Dk} and {T1, . . . , Tk} such that

(a) Di is a 2-dimensional disk in X − f−1(∂I2) with D◦i open in X,

(b) Ti is a once-punctured 2-dimensional torus in X∗ − (f ◦ ϕ)−1(∂I2)
with T ◦i open in X∗, and

(c) ϕ maps homeomorphically X∗ −
⋃

i T
◦
i onto X −

⋃
iD
◦
i so that

ϕ(∂Ti) = ∂Di and ϕ(T ◦i ) ⊂ D◦i .

Here T ◦i and ∂Ti denote the geometric interior and the geometric bound-
ary of Ti, respectively.

4.2. Lemma. If f is an essential mapping from a 2-dimensional compact
polyhedron X to I2, then every T-modification f∗ of f is essential.

P r o o f. On the contrary, suppose that f∗ = f ◦ ϕ : X∗ → I2 is an
inessential T-modification of f , where X∗ and ϕ : X∗ → X have the above
mentioned properties (a)–(c). There is a mapping g : X∗ → ∂I2 such that
f∗|f−1

∗ (∂I2) = g|f−1
∗ (∂I2). In particular, we have g(Ti) ⊂ ∂I2, for i = 1, . . . , k.

We wish to examine the mappings g|∂Ti
: ∂Ti → ∂I2.

We first make the following:

Claim. If g is a mapping of a once-punctured 2-dimensional torus T into
a circle S1, then the restriction mapping g|∂T : ∂T → S1 is not essential.

P r o o f. Fix a base point ∗ in ∂T . Let ι : ∂T → T denote the inclusion
mapping. It induces the homomorphism ι# : π1(∂T, ∗) → π1(T, ∗) of the
fundamental groups. Let c be a generator of π1(∂T, ∗) = Z and let a and
b be generators of the free group π1(T, ∗) = Z ∗ Z. We may assume that
[a, b] = ι#(c), where [a, b] = a−1b−1ab is the commutator of a and b in
π1(T, ∗). The mapping g induces a homomorphism g# : π1(T, ∗)→ π1(S1).
Since π1(S1) = Z is abelian, we have [a, b] ∈ ker g#. Thus ι#(π1(∂T, ∗)) ⊂
ker g#. Since (g|∂T )# = g#◦ι#, it follows that (g|∂T )# : π1(∂T, ∗)→ π1(S1)
is a trivial homomorphism, and, in consequence, g|∂T is not essential.

We now turn to the proof of Lemma 4.2. According to the above claim,
no mapping g|∂Ti

: ∂Ti → ∂I2 is essential. From (c) it follows that (g ◦
ψ)|∂Di

: ∂Di → ∂I2 is not essential, where ψ = ϕ−1 : X −
⋃

iD
◦
i → X∗ −⋃

i T
◦
i . Hence there is an extension g∗ : X → ∂I2 of g◦ψ : X−

⋃
iD
◦
i → ∂I2.

From (b), we have Ti ∩ f−1∗ (∂I2) = ∅. Therefore ψ sends homeomorphically
f−1(∂I2) onto f−1∗ (∂I2), by (c) and (a). Hence f|f−1(∂I2) = (g◦ψ)|f−1(∂I2) =
g∗|f−1(∂I2). This contradicts the essentiality of f .
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4.3. Lemma. Let f be a mapping from a 2-dimensional compact poly-
hedron X to I2. If every T-modification f∗ of f is essential , then f × idI is
essential.

P r o o f. On the contrary, suppose that f × idI is not essential. By 3.2,
there exists a PL-mapping G : X × I → ∂I3 such that

X × i ⊂ G−1(I2 × i) for i = 0, 1,(1)

f−1(∂I2)× I ⊂ G−1((∂I2)× I),(2)

and for the PL-mapping g : X → I2 defined by g(x) = (pI2 ◦G)(x, 0), x ∈ X,
we have

(3) f−1(∂I2) ⊂ g−1(∂I2), and g and f are homotopic as mappings
(X, f−1(∂I2))→ (I2, ∂I2).

Let K be a fixed triangulation of X such that g−1(∂I2) is the underlying
polyhedron of some subcomplex of K. Set P = (|K(1)|×I)∪(X×{0, 1}) and
P0 = (|K(0)| × I) ∪ (|K(1)| × {0, 1}), where K(j) denotes the j-dimensional
skeleton of K. Consider a triangulation M of X × I and a triangulation L
of ∂I3 so that G : M → L is simplicial, |K(1)| × I and X × {0, 1} are the
underlying polyhedra of some subcomplexes of M , and similarly (∂I2) × I
and I2 × {0, 1} are the underlying polyhedra of some subcomplexes of L.

For i = 0, 1, choose a 2-dimensional simplex Ai in L contained in I2 × i.
We may assume that Ai is disjoint from ∂I2 × i and the geometric interiors
of the disks pI2(A0) and pI2(A1) intersect. Now pick points a in I2 and ai
in the geometric interior of Ai, i = 0, 1, such that a = pI2(a0) = pI2(a1).
Since G is simplicial, Y = (pI2 ◦ G)−1(a) is a subpolyhedron of X × I and
dimY ≤ 1. From the construction, it follows that

(4) the set P ∩ Y is finite and disjoint from P0, and

(5) for any A ∈ K, A ⊂ X − g−1(∂I2) if (A× I) ∩ Y 6= ∅.

Moreover, for every 2-dimensional simplex A ∈ K, (A × I) ∩ Y is ei-
ther empty or a 1-dimensional manifold properly embedded in A × I. In
particular,

(6) for every 2-dimensional simplex A ∈ K, every component of (A×I)∩Y
intersecting ∂(A× I) is a PL-arc properly embedded in A× I.

Without loss of the properties (1)–(6) we may assume that

(7) the projection qX : X × I → X is an embedding on the set P ∩ Y .

For otherwise one can replace G by G◦h−1, where h is a PL-homeomorphism
of X × I to itself which is the identity on P0 ∪ (g−1(∂I2)× I) and sending
A× I to itself for any A ∈ K, so that qX is an embedding on h(P ∩ Y ).
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Let Y0 be the union of all components of Y intersecting X×0. From (1)
we have

(8) (X × 1) ∩ Y0 = ∅.

Observe that the set E = (|K(1)| × I)∩ Y0 ⊂ P ∩ Y is finite. By (4) and
(6), qX(E) is disjoint from |K(0)|, qX(Y −Y0) and qX((X×0)∩Y0), because
for any e ∈ E every interval of the form (qX(e))×I intersects Y0 exactly in e.

By (4) and (7), there exists a simplicial subdivision K1 of K such that all
qX(e), where e ∈ E, are vertices of K1, and all closed stars st(qX(e),K1) are
pairwise disjoint and do not intersect |K(0)|, qX(Y −Y0) and qX((X×0)∩Y0).

Let u : X → I be a linear extension on all simplices in K1 of the vertex

map u : K
(0)
1 → I defined by u(v) = 1 if v ∈ qX(E), and u(v) = 0 if

v 6∈ qX(E). For any Z ⊂ X denote by Zu = {(z, u(z)) ∈ X × I : z ∈ Z} the
graph of u|Z .

We wish to define the desired X∗ as Xu which will be modified in the
following way: first in Xu a finite collection of pairs of disjoint disks will be
removed, and in the place of every pair a pipe will be inserted, i.e., a set
homeomorphic to S1 × I, so that X∗ ∩ Y = ∅.

Observe that |K(1)|u is disjoint from Y and Xu is disjoint from Y − Y0.
Hence Xu ∩ Y =

⋃
{A◦u ∩ Y0 : A ∈ K −K(1)}. Consider A ∈ K −K(1) and

let DA = {(x, t) ∈ A × I : t ≥ u(x)} be the shadow over Au. Clearly, DA

is a 3-dimensional PL-disk, and Au is a 2-dimensional disk in ∂DA. By (6)
and (8), one can choose K1 so fine that every component of DA ∩ Y0 is a
PL-arc properly embedded in DA with end points in A◦u. Take a sufficiently
small regular neighborhood of such an arc, which is disjoint from Y −Y0 and
homeomorphic to D × I, where D is a 2-dimensional disk. Now we replace
each pair of disks corresponding to D × {0, 1} in Xu by the pipe (∂D)× I,
and we get the desired X∗ disjoint from Y . In a natural way, we can define
ϕ : X∗ → X which agrees with qX on |K(1)|u and g−1(∂I2), and has the
property that ϕ(z) ∈ A◦ if qX(z) ∈ A◦.

We claim that the T-modification g∗ of g defined by

(9) g∗ = g ◦ ϕ : X∗ → I2 is not essential.

Indeed, we have g−1∗ (∂I2) = ϕ−1(g−1(∂I2)) = (qX|X∗)−1(g−1(∂I2)) =
g−1(∂I2)×0 and both g∗ and g◦(qX|X∗) are homotopic rel g−1∗ (∂I2), because
there is a homotopy along vertical intervals connecting ϕ and qX|X∗ . The
mapping g ◦ (qX|X∗) is also homotopic to pI2 ◦ G ◦ ι rel g−1∗ (∂I2), where
ι : X∗ → X × I is given by ι(x, t) = (x, 0). On the other hand, pI2 ◦ G ◦ ι
is homotopic to (pI2 ◦ G)|X∗ rel g−1∗ (∂I2), because ι is homotopic to an
embedding of X∗ into X × I under a homotopy leaving g−1∗ (∂I2) inside
(pI2 ◦G)−1(∂I2) = G−1((∂I2)× I). By the construction, the last mapping
is not surjective, and (9) is proved.
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Define a T-modification of f by f∗ = f ◦ ϕ. From (3) and from the
construction of ϕ, it follows that g∗ and f∗ are homotopic as mappings
(X, f−1∗ (∂I2))→ (I2, ∂I2). By (9), we conclude that f∗ is not essential.

P r o o f o f T h e o r e m 4.1. Combine 4.2 and 4.3.

4.4. Theorem. If f is an essential mapping from a compact polyhedron
X to I2, then f × idIk : X × Ik → Ik+2 is essential for all k.

P r o o f. Let Y be the 2-dimensional skeleton in any triangulation of X.
We first prove that f|Y : Y → I2 is essential.

On the contrary, suppose that f|Y is not essential. Then there exists
g : Y ∪ f−1(∂I2)→ ∂I2 such that g|f−1(∂I2) = f|f−1(∂I2). Since ∂I2 ≈ S1 is
an Eilenberg–MacLane space K(Z, 1), we infer that there is a continuous ex-
tension g∗ : X → ∂I2 of g. Hence g∗|f−1(∂I2) = f|f−1(∂I2), which contradicts
the essentiality of f .

Since (f|Y )×idIk = (f×idIk)|(Y×Ik), it suffices to show that (f|Y )×idIk :

Y × Ik → Ik+2 is essential. From the essentiality of f|Y : Y → I2 and from
4.1, it follows that (f|Y )× idI : Y × I → I3 is essential. Since Y × I satisfies
the dimensional condition in 3.3, we conclude that ((f|Y )× idI)× idIk−1 =
(f|Y )× idIk is essential.

5. Essential mappings of compacta into cubes. We prove here
Theorem 1.2 for arbitrary compacta. In the case n = 1 we have the following
well known fact [8], [7], [2], [12], [13].

5.1. Proposition. If for i = 1, . . . , n, fi is an essential mapping from
a compactum Xi to the unit interval I, then the product mapping

f1 × . . .× fn : X1 × . . .×Xn → In

is essential ; in particular , fi× idIk : Xi×Ik → Ik+1 is essential for all k.

P r o o f o f T h e o r e m 1.2. According to the Freudenthal theorem (see,
e.g., [5, Theorem 1.13.2]), X is the inverse limit of an inverse sequence
{Xi, πi,j} consisting of compact polyhedra Xi with

(1) dimXi ≤ dimX.

First we are going to use inverse limits to construct a compactum X∗

which contains mutually disjoint copies of all Xi as closed subsets, and a
copy of X as a closed subset approximated sufficiently closely by Xi (cf.
[14], [11]).

Set X∗i = X1 t . . . tXi. Define the bonding mappings τi,j : X∗j → X∗i
by τi,i = idX∗

i
and τi,j = τi,i+1 ◦ τi+1,i+2 ◦ . . . ◦ τj−1,j for j > i, whereas

τi,i+1(x) = x if x ∈ X∗i , and τi,i+1(x) = πi,i+1(x) if x ∈ Xi+1. Define
X∗ = lim←−{X

∗
i , τi,j}.
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We may assume that Dn = In. Now set A = f−1(∂In). Since A
is a closed subset of X, Ai = πi(A) is also closed, where πi : X → Xi

is the projection. Therefore A = lim←−{Ai, πi,j|Aj
} (see, e.g., [4, p. 138]).

Let A∗i = A1 t . . . t Ai. Clearly, A∗i is a closed subset of X∗i . Therefore
A∗ = lim←−{A

∗
i , τi,j |A∗

j
} is a closed subset of X∗.

Since ∂In is an absolute neighborhood retract, there exist an open neigh-
borhood V of A in A∗ and an extension f0 : V → ∂In of f|A : A → ∂In.
Then Ai ⊂ V for almost all i. Without loss of generality we may assume
that A∗ ⊂ V . Using the same argument for the mapping g0 : X ∪ A∗ → In

defined by g0(x) = f(x) if x ∈ X and g0(x) = f0(x) if x ∈ A∗, we get an
open neighborhood U of X ∪ A∗ in X∗ and an extension g : U → In of
g0. As before, we may assume that X∗ ⊂ U . Observe that g|X = f . Set
fi = g|Xi

: Xi → In. We have fi(πi(A)) = fi(Ai) = f0(Ai) ⊂ ∂In. Hence

(2) πi(A) ⊂ f−1i (∂In).

Now we prove that

(3) fi is essential for almost all i.

According to [15, p. 71], there exists an ε > 0 such that for any mapping
f ′ : (X, f−1(∂In))→ (In, ∂In) which is ε-near to f , f and f ′ are homotopic
as mappings of pairs. Since for every δ > 0 there exists i such that πi is a
δ-push, from the uniform continuity of g it follows that there is a j such that
for every i ≥ j, dist(g|X , (g ◦ πi)|X) < ε, and therefore dist(f, fi ◦ πi) < ε.
By (2), we have fi ◦ πi : (X, f−1(∂In)) → (In, ∂In). Thus f and fi ◦ πi
are homotopic as mappings of pairs. Since f is essential, we conclude that
fi ◦ πi, and in consequence fi, is essential.

By the assumption and by (1), n ≤ 2 or dimXi < 2n− 2. Therefore

(4) fi × idIk is essential for almost all i,

by (3), 4.1 and by Theorems 3.3 and 4.4.
Suppose, on the contrary, that f × idIk : X× Ik → In+k is not essential.

We have f × idIk = (g|X) × idIk = (g × idIk)|X×Ik . By [12, Theorem

I.1.10], there exists a neighborhood U ⊂ X∗ × Ik of X × Ik such that
(g × idIk)|U is not essential. Since X × Ik is a compact subset of X∗ × Ik
approximated sufficiently closely by Xi × Ik, it follows that there exists an
index j such that for each i ≥ j, Xi × Ik ⊂ U . Hence for each i ≥ j,
(g × idIk)|Xi×Ik = (g|Xi

)× idIk = fi × idIk is not essential, contrary to (4).
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