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CHAINS OF FACTORIZATIONS IN ORDERS OF GLOBAL FIELDS

BY

ALFRED GEROLD INGER (GRAZ)

1. Introduction. Let R be the ring of integers in an algebraic number
field. Every non-zero non-unit a ∈ R has a factorization into irreducible
elements of R. In general, there are several distinct factorizations. In
the qualitative theory of non-unique factorizations one tries to describe the
non-uniqueness of factorizations by various arithmetical invariants. A main
aim is to understand the interdependence of phenomena of non-unique fac-
torizations and other invariants of R, in particular its class group. In the
quantitative theory of non-unique factorizations one considers arithmetically
defined subsets Z ⊆ R and the asymptotic behaviour of the corresponding
counting function Z(x). Here Z(x) means the number of principal ideals aR
such that a ∈ Z and (R : aR) ≤ x. The classical sets are, for each k ∈ N+,

Gk(R) : the set of all a ∈ R having factorizations of at most k
different lengths,

Fk(R) : the set of all a ∈ R having at most k distinct factorizations

(cf. [Na; Chapter 9]). If Z is one of these sets, it turned out that, apart from
trivial cases,

lim
x→∞

Z(x)
R(x)

= 0.

So one might ask about the typical behaviour of factorizations of elements
of R. In other words, the problem is to characterize arithmetically simple
subsets Z ⊆ R such that

(1) lim
x→∞

Z(x)
R(x)

= 1.

By [Ge1; Satz 2], (1) is satisfied by the subset Z ⊆ R consisting of those
elements a ∈ R whose sets of lengths L(a) have the form

(2) L(a) = {y, y + 1, . . . , y + k}
for some y, k ∈ N+.
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84 A. GEROLDINGER

In this paper we study chains of factorizations of elements a ∈ R. To
be more precise, we consider the subset Z ⊆ R consisting of those elements
a ∈ R for which

(3) c(a) ≤ 3

(i.e., the elements a ∈ R such that for any two factorizations z, z′ of a there
exists a 3-chain of factorizations from z to z′). For general properties of
chains of factorizations and the significance of the catenary degree we refer
to [Ge3]. However, note that, in particular, (3) implies (2).

After fixing notations in Section 2 we show that there exists an element
a∗ ∈ R such that for all multiples a of a∗, we have c(a) ≤ 3 (Theorem 3.1).
This result is proved in the setting of Krull monoids. Its proof uses the finite-
ness of the catenary degree and some technical preparations done in [Ge3]. In
Section 4 we derive the desired quantitative interpretation of Theorem 3.1:

lim
x→∞

#{aR : (R : aR) ≤ x, c(a) ≤ 3}
#{aR : (R : aR) ≤ x}

= 1

(see Theorem 4.4). To do so, we use the abstract analytic machinery recently
established in [G-HK-K]. This allows us to obtain asymptotic results not
only for principal orders in algebraic number fields, but also for arbitrary
orders in global fields (Theorem 4.3).

2. Preliminaries. Throughout this paper, a monoid is a multiplica-
tively written, commutative and cancellative semigroupH with unit element
1 ∈ H. We denote by H× the group of invertible elements. H is said to be
reduced if H× = {1}.

For a set P we denote by F(P ) the free abelian monoid with basis P .
Then every a ∈ F(P ) has a unique representation

a =
∏
p∈P

pvp(a)

with vp(a) ∈ N and vp(a) = 0 for almost all p ∈ P . Furthermore,

σ(a) =
∑
p∈P

vp(a) ∈ N

is called the size of a.
Let D be a monoid and H ⊆ D a submonoid. We define the congruence

modulo H in D by

x ≡ y mod H if xH ∩ yH 6= ∅.
The factor monoid ofD with respect to the congruence moduloH is denoted
byD/H. For a∈ D, [a]∈ D/H denotes the class containing a. In particular,
we set Dred = D/D×.
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A monoid homomorphism ϕ : H → D is said to be a

(a) divisor homomorphism if a, b ∈ H and ϕ(a) |ϕ(b) implies a | b.
(b) divisor theory if D = F(P ) is free abelian, ϕ is a divisor homo-

morphism, and for every p ∈ P there exist u1, . . . , um ∈ H such that
p = gcd{ϕ(u1), . . . , ϕ(um)}.

A monoid H is called a Krull monoid if it admits a divisor theory ϕ :
H → D. The factor monoid Cl(H) = D/ϕ(H) is an abelian group, which
just depends on H. It is called the (divisor) class group of H; it will be
written additively.

Let G be an abelian group. As usual, we say that elements g1, . . . , gr are
linearly independent if each equation

∑r
i=1 nigi = 0 with integer coefficients

ni implies n1g1 = . . . = nrgr = 0.
For a subset G0 ⊆ G we consider the free abelian monoid F(G0) and the

submonoid

B(G0) =
{ ∏
g∈G0

gng ∈ F(G0) :
∑
g∈G0

ngg = 0
}
⊆ F(G0),

called the block monoid over G0. Block monoids are a powerful combinato-
rial tool for arithmetical investigations of Krull monoids.

Let H be a Krull monoid with divisor class group G. For simplicity, we
suppose that H is reduced and the inclusion H ↪→ F(P ) is a divisor theory.
Let G0 = {[p] ∈ G : p ∈ P} ⊆ G denote the set of classes containing prime
divisors. Then the block homomorphism

β : F(P ) → F(G0)

defined by β(p) = [p] ∈ G0, for all p ∈ P , carries over essential arithmetical
information from H to β(H) = B(G0) (cf. [Ge3; Section 4]).

We briefly recall some basic notions from the theory of non-unique fac-
torizations.

Let H be a monoid. We denote by U(H) the set of irreducible elements
of H. The factorization monoid Z(H) of H is defined as the free abelian
monoid with basis U(Hred). Thus,

Z(H) = F(U(Hred))

and the elements z ∈ Z(H) are written in the form

z =
∏

u∈U(Hred)

uvu(z).

Let π : Z(H) → Hred be the canonical homomorphism. We say that H is
atomic if π is surjective.

For a finite abelian group G let Davenport’s constant D(G) be defined as

D(G) = max{σ(U) : U ∈ B(G) is irreducible} ∈ N+.
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For the significance of Davenport’s constant in factorization theory the
reader is referred to [Ch].

Suppose that H is an atomic monoid. For a ∈ H the elements of

ZH(a) = Z(a) = π−1(aH×) ⊆ Z(H)

are called factorizations of a and

LH(a) = L(a) = {σ(z) : z ∈ Z(a)} ⊆ N
denotes the set of lengths of a. For two factorizations z, z′ ∈ Z(H) we call

d(z, z′) = max
{
σ

(
z

gcd(z, z′)

)
, σ

(
z′

gcd(z, z′)

)}
∈ N

the distance between z and z′.
Finally, we define the central arithmetical notion of this paper. For a

motivation and a broader discussion the reader is referred to [Ge3; Section 3].
Let a ∈ H, z, z′ ∈ Z(a) and N ∈ N ∪ {∞}; we say that there is an

N -chain (of factorizations) from z to z′ if there exist factorizations z =
z0, z1, . . . , zk = z′ ∈ Z(a) such that d(zi−1, zi) ≤ N for 1 ≤ i ≤ k.

The catenary degree

cH(H ′) = c(H ′) ∈ N ∪ {∞}
of a subset H ′ ⊆ H is the minimal N ∈ N ∪ {∞} such that for any a ∈ H ′

and any two factorizations z, z′ ∈ Z(a) there exists an N -chain from z to
z′. For simplicity, we write c(a) instead of c({a}).

By definition, we have c(a) = 0 if and only if #Z(a) = 1. Thus H is
factorial if and only if c(H) = 0. Furthermore, if c(a) = 2, then #L(a) = 1;
therefore c(H) = 2 implies that H is half-factorial.

3. Chains of factorizations of large elements. Let H be a Krull
monoid with finite divisor class group G such that each class contains a
prime divisor. Then for all a ∈ H we have

c(a) ≤ c(G) ≤ D(G)

(see [Ge3; Propositions 4.2 and 4.3]). In this section we show that if a ∈ H
is sufficiently large, then

c(a) ≤ 3.
If #G > 2, then H is not half-factorial and thus “c(a) ≤ 3” is best possi-
ble. Furthermore, if c(a) ≤ 3, then L(a) = {y, y + 1, . . . , y + k} for some
y, k ∈ N. Hence, the following result will sharpen [Ge1; Proposition 11]; cf.
also [Ge2; Theorem 1].

Theorem 3.1. Let H be a reduced Krull monoid with divisor theory H ↪→
F(P ) and finite divisor class group G, and suppose that each class contains a
prime divisor. Then there exists some element A∗ ∈ B(G) such that c(a) ≤ 3
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for every a ∈ H with A∗ |β(a), where β : F(P ) → F(G) denotes the block
homomorphism.

Throughout this section we keep the following notation: G denotes the
divisor class group of H, G′ = G\{0}, and G′′ ⊆ G′ is a half-system (i.e.,
G′′ ⊆ G′ is minimal such that G′ = G′′ ∪ {−g : g ∈ G′′}). In the case
where #G ≤ 2, Theorem 3.1 holds with A∗ = 1 (cf. [Ge3; Propositions 4.2
and 4.3]). Hence we suppose that #G ≥ 3.

Lemma 3.2. Let A ∈ B(G′) and (ng)g∈G′′ ∈ NG′′
be such that

(∗)
∏
g∈G′

gord(g)
∏
g∈G′′

(−g · g)ng |A.

Then for every z ∈ Z(A) there exists a 3-chain of factorizations from z to

z′ =
∏
g∈G′′

(−g · g)ngy′ ∈ Z(A)

for some y′ ∈ Z(A
∏
g∈G′′(−g · g)−ng ).

P r o o f. We set N =
∑
g∈G′′ ng and complete the proof by induction

on N . If N = 0, nothing has to be done. Let N > 0 and suppose the lemma
is true for all B ∈ B(G′) and all (mg)g∈G′′ ∈ NG′′

satisfying (∗) and with∑
g∈G′′ mg < N .
Now let A ∈ B(G′), z ∈ Z(A) and (ng)g∈G′′ be given such that (∗) holds

and
∑
g∈G′′ ng = N . Since N > 0, there is some g1 ∈ G′′ with ng1 > 0.

Assertion. There exists a 3-chain of factorizations from z to

z′ = (−g1 · g1)y′

for some y′ ∈ Z(B) and B = A(−g1 · g1)−1 ∈ B(G′).

Given the assertion, Lemma 3.2 follows by applying the induction hy-
pothesis to B and to (mg)g∈G′′ with mg1 = ng1 − 1 and mg = ng for
g ∈ G′′\{g1}.

In order to prove the assertion, suppose z =
∏ϕ
i=1 Ui with U1, . . . , Uϕ ∈

U(B(G′)) and U1 =
∏k
j=1 gj . We argue by induction on k = σ(U1). For

k = 2 we are done. Suppose k ≥ 3, and set g0 = gk−1 + gk. Since

vg0(A) ≥ ord(g0) and vg0(U1) < ord(g0),

it follows that vg0(U2 . . . Uϕ) > 0 and hence we may suppose without re-
striction of generality that U2 = g0

∏l
j=k+1 gj .

Then V1 =
∏k−2
j=0 gj ∈ U(B(G′)) and

∏l
j=k−1 gj is a product of at most

two irreducible blocks, say
∏l
j=k−1 gj =

∏t
ν=2 Vν with t ∈ {2, 3} and Vν ∈
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U(B(G′)). Setting

y =
t∏

ν=1

Vν

ϕ∏
ν=3

Uν

we infer that d(z, y) ≤ 3. Since σ(V1) < σ(U1) and vg1(V1) > 0, the induc-
tion hypothesis applies to V1, which implies the assertion.

For every A ∈ B(G′) we have A =
∏
g∈G′ gvg(A) and we set

−A =
∏
g∈G′

(−g)vg(A).

Then

(−A)A =
∏
g∈G′

(−g · g)vg(A).

Whenever in the sequel we consider N -chains of factorizations z =
z0, z1, . . . , zk = z′, then of course all zi are factorizations of some fixed
block B ∈ B(G).

Lemma 3.3. Let U1, . . . , Uϕ ∈ U(B(G′)) and

z =
∏
g∈G′′

(−g · g)D(G)
∏
g∈G′

(−g · g)
∑ϕ
i=1 vg(Ui) ∈ Z(B(G)).

Then there exists a 3-chain of factorizations from z to

z′ =
∏
g∈G′′

(−g · g)D(G)

ϕ∏
i=1

(−Ui)Ui.

P r o o f. We give a proof for ϕ = 1. The general case follows by an
inductive argument.

Suppose U1 = U =
∏k
j=1 gj . It suffices to find a 3-chain of factorizations

from

x =
∏
g∈G′

(−g · g)vg(U)
∏
g∈G′′

(−g · g)σ(U)

to

x′ = (−U)U
∏
g∈G′′

(−g · g)σ(U).

We proceed by induction on σ(U) = k. There is nothing to show for
k = 2. Let k ≥ 3 and set g0 = gk−1 + gk and V =

∏k−2
j=0 gj . Since

σ(V ) < σ(U) and ∏
g∈G′

(−g · g)vg(V )
∏
g∈G′′

(−g · g)σ(V )
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divides x (in Z(B(G))), the induction hypothesis gives a 3-chain of factor-
izations from x to

(−V )V
∏
g∈G′

(−g · g)vg(U)−vg(V )
∏
g∈G′′

(−g · g)σ(U).

If W = (−g0 · gk−1 · gk), then VW = U(−g0 · g0) and for all g ∈ G′ we have

vg(U)− vg(V )− vg(W ) = −vg(−g0 · g0).

Thus ∏
g∈G′

(−g · g)vg(U)−vg(V )−vg(W )
∏
g∈G′′

(−g · g)σ(U) ∈ B(G)

and we obtain

(−V )V
∏
g∈G′

(−g · g)vg(U)−vg(V )
∏
g∈G′′

(−g · g)σ(U)

= (−V )V (−W )W
∏
g∈G′

(−g · g)vg(U)−vg(V )−vg(W )
∏
g∈G′′

(−g · g)σ(U)

= (−V )(−W )U(−g0 · g0)
∏
g∈G′

(−g · g)−vg(−g0·g0)
∏
g∈G′′

(−g · g)σ(U)

= (−U)U
∏
g∈G′′

(−g · g)σ(U).

Since the distance of any two subsequent factorizations is bounded by 3, the
assertion is proved.

Let e1, . . . , er ∈ G′′ be such that G =
⊕r

i=1 Zei. We may choose r as
the maximal p-rank of G, which is the minimal possible r. This makes some
subsequent invariants small, but the proof works for all e1, . . . , er.

For 1 ≤ i ≤ r we set A(ei) = e
ord(ei)
i ∈ B(G) and for g ∈ G′\{e1, . . . , er},

let A(g) denote the irreducible block in B({g, e1, . . . , er}) with vg(A(g)) = 1.
Let B =

∏k
j=1 gj ∈ B(G) and for 1 ≤ i ≤ r let τi(B) be defined by

k∏
j=1

A(gj) = B

r∏
i=1

A(ei)τi(B).

Let 1 ≤ i ≤ r. Comparing both sides of the equality shows that

τi(B) =
1

ord(ei)

( k∑
j=1

vei(A(gj))− vei(B)
)

and hence
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τi(B) ≤ 1
ord(ei)

k · (ord(ei)− 1) ≤ k − 1.

Furthermore, we have

τi(BC) = τi(B) + τi(C)

for every C ∈ B(G).

Lemma 3.4. For every U =
∏k
j=1 gj ∈ U(B(G′)) there exists a 3-chain

of factorizations from∏
g∈G′′

(−g · g)rσ(U)
r∏
i=1

A(ei)(r+1)σ(U)U

to ∏
g∈G′′

(−g · g)rσ(U)
r∏
i=1

A(ei)(r+1)σ(U)−τi(U)
k∏
j=1

A(gj).

P r o o f. We proceed in 3 steps.

S t e p 1. Suppose r = 1 and let U ∈ U(B(G′)) be given. We complete
the proof by induction on k = σ(U).

For k = 2 the assertion holds since

A(e1)(−g1 · g1) = A(g1)A(−g1).

Let k ≥ 3, U =
∏k
j=1 gj , and suppose the assertion holds for all irreducible

blocks V with σ(V ) < k. We set g0 = gk−1 + gk, V =
∏k−2
j=0 gj , and

W = (−g0 ·gk−1 ·gk). Then V,W ∈ U(B(G)) and U(−g0 ·g0) = VW . Hence
we infer that∏

g∈G′′

(−g · g)σ(U)A(e1)2σ(U)U

=
∏
g∈G′′

(−g · g)σ(V )A(e1)2σ(V )V A(e1)2
∏

g∈G′′\{±g0}

(−g · g)W

=
∏
g∈G′′

(−g · g)σ(V )A(e1)2σ(V )V

×
∏

g∈G′′\{±g0}

(−g · g)A(e1)2−τ1(W )A(−g0)A(gk−1)A(gk).

By the induction hypothesis there is a 3-chain of factorizations to
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g∈G′′

(−g · g)σ(V )A(e1)2σ(V )−τ1(V )

×
k−2∏
j=0

A(gj)
∏

g∈G′′\{±g0}

(−g · g)A(e1)2−τ1(W )A(−g0)A(gk−1)A(gk)

=
∏
g∈G′′

(−g · g)σ(V )A(e1)2σ(V )−τ1(V )

×
k∏
j=1

A(gj)
∏

g∈G′′\{±g0}

(−g · g)(−g0 · g0)A(e1)2−τ1(W )+1

=
∏
g∈G′′

(−g · g)σ(U)A(e1)2σ(U)−τ1(U)
k∏
j=1

A(gj).

The distance of any two subsequent factorizations is bounded by 3, which
implies the assertion.

S t e p 2. We define a special class of irreducible blocks in B(G). Let
r ≥ 2, ∅ 6= I ⊆ {1, . . . , r}, #I ≥ 2, ∅ 6= J ⊆ I, and for i ∈ I let 0 6= hi ∈ Zei.
Let

A
( ∑
i∈I

hi, −
∑
i∈J

hi

)
∈ B

({ ∑
i∈I

hi, −
∑
i∈J

hi, e1, . . . , er

})
denote the irreducible block which contains the elements

∑
i∈I hi and

−
∑
i∈J hi exactly once (i.e.,

A
( ∑
i∈I

hi, −
∑
i∈J

hi

)
=

( ∑
i∈I

hi

)
·
(
−

∑
i∈J

hj

)
·

∏
i∈I\J

enii ∈ U(B(G′))

with exponents 0 ≤ ni < ord(ei)).
We show that Lemma 3.4 holds for irreducible blocks of the above form.

In order to simplify notation, we assume without restriction of generality
that I = {1, . . . , s} with 2 ≤ s ≤ r and J = {1, . . . , ν} with 1 ≤ ν ≤ s.

We verify the following assertion which is stronger than Lemma 3.4. For
every 2 ≤ s ≤ r and every 1 ≤ ν ≤ s, there is a 3-chain of factorizations
from

z =
ν−1∏
i=1

(
−

i∑
j=1

hj ·
i∑

j=1

hj

) ν∏
i=1

A(ei)A
( s∑
i=1

hi, −
ν∑
i=1

hi

)
to

z′ =
ν−1∏
i=1

(
−

i∑
j=1

hj ·
i∑

j=1

hj

)
A

( s∑
i=1

hi

)
A

(
−

ν∑
i=1

hi

)
.
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Let 2 ≤ s ≤ r. We proceed by induction on ν. The assertion holds for ν = 1,
since the distance of the two given factorizations equals max{ν + 1, 2} = 2.
Let ν ≥ 2. We pass from ν − 1 to ν. The distance from z to

x1 =
ν−2∏
i=1

(
−

i∑
j=1

hj ·
i∑

j=1

hj

) ν−1∏
i=1

A(ei)A
( s∑
i=1

hi, −
ν−1∑
i=1

hi

)
A

(
−

ν∑
i=1

hi,

ν−1∑
i=1

hi

)
equals 3. By the induction hypothesis there is a 3-chain of factorizations
from x1 to

x2 =
ν−2∏
i=1

(
−

i∑
j=1

hj ·
i∑

j=1

hj

)
A

( s∑
i=1

hi

)
A

(
−
ν−1∑
i=1

hi

)
A

(
−

ν∑
i=1

hi,

ν−1∑
i=1

hi

)
.

Since the distance between x2 and z′ equals 2, the proof is complete.

S t e p 3. We treat the general case by induction on r. Step 1 settles the
problem for r = 1. Suppose r ≥ 2. We pass from r − 1 to r. Let

U =
j∏

ν=1

(gν + hν)
k∏

ν=j+1

gν

l∏
ν=j+1

hν ∈ U(B(G′))

be given with 0 ≤ j ≤ k, 0 ≤ j ≤ l, 0 6= gν ∈
⊕r−1

i=1 Zei, and 0 6= hν ∈ Zer.
If j = 0, then either U ∈ B(

⊕r−1
i=1 Zei) or U ∈ B(Zer) and the assertion

follows by the induction hypothesis. So now suppose that j ≥ 1. Then
k ≥ 2 and l ≥ 2.

Note for all 1 ≤ i ≤ r − 1 that

τi(A(gν + hν ,−gν)) ≤ 1 and τr((−hν · hν)) = 1.

(i) First we show that there is a 3-chain of factorizations from

z1 =
∏
g∈G′′

(−g · g)rσ(U)
r∏
i=1

A(ei)(r+1)σ(U)U

to a factorization z2 of the form

z2 = xy
∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=1

(−gν · gν)−1(−hν · hν)−1

×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=1 τi(A(gν+hν ,−gν))A(er)(r+1)σ(U)−j

×
j∏

ν=1

A(gν + hν)A(−gν)A(−hν)

for some x ∈ Z(V ), y ∈ Z(W ) with V =
∏l
ν=1 hν ∈ B(Zer) and W =∏k

ν=1 gν ∈ B(
⊕r−1

i=1 Zei).
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To do so, we define a sequence (z′ψ)jψ=0 with z′0 = z2 and z′j = z1. For
every 1 ≤ ψ ≤ j we verify that there is a 3-chain from z′ψ to z′ψ−1. Let
1 ≤ ψ ≤ j. If

%ψ ∈ Z
( ψ∏
ν=1

(gν + hν)
k∏

ν=ψ+1

gν

l∏
ν=ψ+1

hν

)
,

then

%ψ−1 ∈ Z
( ψ−1∏
ν=1

(gν + hν)
k∏

ν=ψ

gν

l∏
ν=ψ

hν

)
should be the factorization which arises by replacing gψ + hψ by gψ · hψ.
Obviously, %j = U and %0 ∈ Z(VW ).

Now we define, for all 0 ≤ ψ ≤ j,

z′ψ = %ψ
∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=ψ+1

(−gν · gν)−1(−hν · hν)−1

×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=ψ+1 τi(A(gν+hν ,−gν))A(er)(r+1)σ(U)−(j−ψ)

×
j∏

ν=ψ+1

A(gν + hν)A(−gν)A(−hν).

Let 1 ≤ ψ ≤ j. By definition of %ψ we have d(z′ψ, z
′′
ψ) ≤ 3 with

z′′ψ = %ψ−1

(
(gψ + hψ) · (−gψ) · (−hψ)

)
×

∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=ψ

(−gν · gν)−1(−hν · hν)−1

×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=ψ+1 τi(A(gν+hν ,−gν))A(er)(r+1)σ(U)−(j−ψ)

×
j∏

ν=ψ+1

A(gν + hν)A(−gν)A(−hν).

Next we have d(z′′ψ, z
′′′
ψ ) ≤ 2 with

z′′′ψ = %ψ−1A(gψ + hψ,−gψ)A(−hψ)A(er)−1

×
∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=ψ

(−gν · gν)−1(−hν · hν)−1
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×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=ψ+1 τi(A(gν+hν ,−gν))A(er)(r+1)σ(U)−(j−ψ)

×
j∏

ν=ψ+1

A(gν + hν)A(−gν)A(−hν).

By Step 2 there is a 3-chain from z′′′ψ to

z′ψ−1 = %ψ−1A(gψ + hψ)A(−gψ)A(−hψ)A(er)−1

×
∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=ψ

(−gν · gν)−1(−hν · hν)−1

×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=ψ τi(A(gν+hν ,−gν))A(er)(r+1)σ(U)−(j−ψ)

×
j∏

ν=ψ+1

A(gν + hν)A(−gν)A(−hν).

(ii) Since

A(er)2σ(V ) |A(er)(r+1)σ(U)−j

and ∏
g∈G′′∩Zer

(−g · g)σ(V ) |
∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=1

(−gν · gν)−1(−hν · hν)−1,

Step 1 may be applied σ(x) times and we obtain a 3-chain of factorizations
from z2 to

z3 =
∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=1

(−gν · gν)−1(−hν · hν)−1

×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=1 τi(A(gν+hν ,−gν))A(er)(r+1)σ(U)−j−τr(V )

×
j∏

ν=1

[A(gν + hν)A(−gν)A(−hν)]
l∏

ν=1

A(hν)y.

(iii) Since

r−1∏
i=1

A(ei)rσ(W ) |
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=1 τi(A(gν+hν ,−gν))
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and ∏
g∈G′′∩⊕r−1

i=1 Zei

(−g ·g)(r−1)σ(W ) |
∏
g∈G′′

(−g ·g)rσ(U)

j∏
ν=1

(−gν ·gν)−1(−hν ·hν)−1,

we may apply the induction hypothesis σ(y) times and obtain a 3-chain of
factorizations from z3 to

z4 =
∏
g∈G′′

(−g · g)rσ(U)

j∏
ν=1

(−gν · gν)−1(−hν · hν)−1

×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=1 τi(A(gν+hν ,−gν))−τi(W )

×A(er)(r+1)σ(U)−j−τr(V )

×
j∏

ν=1

[A(gν + hν)A(−gν)A(−hν)]
l∏

ν=1

A(hν)
k∏
ν=1

A(gν).

(iv) Because (for 1 ≤ ν ≤ j)

2σ((−hν · hν))− τr((−hν · hν))
= 3 ≤ 3(k + l − j)− j − (l − 1) ≤ 3σ(U)− j − τr(V )

≤ (r + 1)σ(U)− j − τr(V ),

we have

A(er)2σ((−hν ·hν))−τr((−hν ·hν)) |A(er)(r+1)σ(U)−j−τr(V )

and clearly

∏
g∈G′′∩Zer

(−g·g)σ((−hν ·hν)) |
∏
g∈G′′

(−g·g)rσ(U)

j∏
µ=1

(−gµ·gµ)−1

j∏
µ=1

(−hµ·hµ)−1.

Furthermore (for 1 ≤ ν ≤ j),

rσ((−gν · gν))− τi((−gν · gν))
= 2r − 1 ≤ (r + 1)(k + l − j)− j − (k − 1)

≤ (r + 1)σ(U)−
j∑

µ=1

τi(A(gµ + hµ,−gµ))− τi(W )

and hence
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r−1∏
i=1

A(ei)rσ((−gν ·gν))−τi((−gν ·gν)) |

r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
µ=1 τi(A(gµ+hµ,−gµ))−τi(W ).

Obviously,∏
g∈G′′∩⊕r−1

i=1 Zei

(−g · g)(r−1)σ((−gν ·gν)) |

∏
g∈G′′

(−g · g)rσ(U)

j∏
µ=1

(−gµ · gµ)−1(−hµ · hµ)−1.

Therefore, by the induction hypothesis there is a 3-chain of factorizations
from z4 to

z5 =
∏
g∈G′′

(−g · g)rσ(U)

×
r−1∏
i=1

A(ei)(r+1)σ(U)−
∑j
ν=1 τi(A(gν+hν ,−gν))−τi(W )+

∑j
ν=1 τi((−gν ·gν))

×A(er)(r+1)σ(U)−j−τr(V )+
∑j
ν=1 τr((−hν ·hν))

×
j∏

ν=1

A(gν + hν)
l∏

ν=j+1

A(hν)
k∏

ν=j+1

A(gν).

Since, for 1 ≤ i ≤ r − 1,

−
j∑

ν=1

τi(A(gν + hν ,−gν))− τi(W ) +
j∑

ν=1

τi((−gν · gν)) = −τi(U)

and

−j − τr(V ) +
j∑

ν=1

τr((−hν · hν)) = −τr(U),

the proof of Lemma 3.4 is complete.

P r o o f o f T h e o r e m 3.1. By [Ge3; Proposition 4.2] it is sufficient to
prove the assertion for B(G) instead of H. We set

A∗ =
∏
g∈G′

gord(g)
∏
g∈G′′

(−g · g)ng ,

where
ng =

{
rD(G) + s ord(ei) if g = ei for some 1 ≤ i ≤ r,
rD(G) otherwise,

with s = (r + 1)D(G) + (D(G)− 1)(c(G)− 1).



ORDERS OF GLOBAL FIELDS 97

Let A ∈ B(G) with A∗ |A. Since (0) ∈ B(G) is a prime element in
B(G), we may suppose without restriction of generality that v0(A) = 0 (i.e.,
A ∈ B(G′)). We have to show that for any two factorizations z, z′ ∈ Z(A)
there is a 3-chain of factorizations from z to z′.

There is some B ∈ B(G) such that∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)sB = A.

We define a subset Z ⊆ Z(A) as

Z =
{ ∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)sy : y ∈ Z(B)
}
.

We proceed in two steps which immediately imply the assertion.

S t e p 1. For every z ∈ Z(A) there is a 3-chain of factorizations to some
z′ ∈ Z.

P r o o f. Let z ∈ Z(A) be given. By Lemma 3.2 there is a 3-chain of
factorizations from z to

z′ =
∏
g∈G′′

(−g · g)ngy′ =
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

(−ei · ei)s·ord(ei)y′ ∈ Z(A)

for some y′ ∈ Z(B(G)). By Lemma 3.3 there is a 3-chain of factorizations
from z′ to

z′′ =
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

(−A(ei))sA(ei)sy′

=
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)sy′′

with y′′ ∈ Z(B), and hence z′′ ∈ Z.

S t e p 2. For any two factorizations z, z′ ∈ Z there is a 3-chain of
factorizations from z to z′.

P r o o f. Let

z =
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)sy ∈ Z

and

z′ =
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)sy′ ∈ Z
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be given with y, y′ ∈ Z(B). There exist factorizations y = y0, y1, . . . , ym =
y′ ∈ Z(B) with d(yl, yl+1) ≤ c(G) for every 0 ≤ l ≤ m− 1. Hence we have
to verify that there is a 3-chain of factorizations from

zl =
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)syl

to

zl+1 =
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)syl+1

for every 0 ≤ l ≤ m − 1. Let l ∈ {0, . . . ,m − 1} and suppose yl =
xU1 . . . Uλ, yl+1 = xV1 . . . Vµ with x ∈ Z(B(G)), U1, . . . , Uλ, V1, . . . Vµ ∈
U(B(G)), λ ≤ c(G), µ ≤ c(G) and

U1 . . . Uλ = V1 . . . Vµ =
k∏
j=1

gj .

Since for every Uν we have σ(Uν) ≤ D(G), τi(Uν) ≤ D(G) − 1, and s =
(r + 1)D(G) + (D(G)− 1)(c(G)− 1), Lemma 3.4 may be applied λ ≤ c(G)
times to obtain a 3-chain of factorizations from zl to

z′′ =
∏
g∈G′′

(−g · g)rD(G)
r∏
i=1

A(ei)s−τi(
∏k
j=1 gj)

k∏
j=1

A(gj)x.

For the same reasons there is a 3-chain of factorizations from zl+1 to z′′ and
the proof is complete.

4. Arithmetical order formations. In this section we give a quan-
titative interpretation of Theorem 3.1 for orders in global fields (see The-
orems 4.3 and 4.4). To do so we rely entirely on the methods developed
in [G-HK-K]. We recall the necessary notions and results, for all details we
refer to [G-HK-K].

For two real-valued functions f, g we write f � g if f � g and g � f ;
furthermore, f ∼ g means that

lim
x→∞

f(x)
g(x)

= 1.

We use that branch of the complex logarithm which is real for positive
arguments. By a norm function on a reduced monoid H, we mean a monoid
homomorphism | · | : H → N+ satisfying |a| = 1 if and only if a = 1.

Definition 4.1. An arithmetical order formation [F(P ), T,H, | · |] (of
rank r ∈ N+) consists of a free abelian monoid F(P ), a reduced monoid T ,
a submonoid H ⊆ F(P )×T , where the inclusion H ↪→ F(P )×T is a divisor
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homomorphism, and a norm function | · | : F(P ) × T → N+ such that the
following conditions are satisfied:

(a) G = F(P )× T/H is a finite abelian group, called the class group of
the formation.

(b) For every g ∈ G, there is a complex function hg(s) regular in the
half-plane Rs > 1 and also in some neighbourhood of s = 1 and such that∑

p∈P∩g
|p|−s =

1
#G

log
1

s− 1
+ hg(s) for Rs > 1.

(c) #{t ∈ T : |t| ≤ x} � (log x)r.

R e m a r k. Let [F(P ), T,H, | · |] be an arithmetical order formation with
class group G. Then H ∩F(P ) ↪→ F(P ) is a divisor theory with class group
G and each class contains infinitely many prime divisors. In particular,
H ∩ F(P ) is a reduced Krull monoid (cf. [G-HK-K; Lemma 1]).

The most important examples of arithmetical order formations arise from
orders in global fields which we will discuss briefly (for details and for other
examples see [G-HK-K; §3]).

A global field K is either an algebraic number field or an algebraic func-
tion field in one variable over a finite field. Let S(K) denote the set of
all non-archimedean places and for v ∈ S(K) let Rv be the corresponding
valuation domain. For a finite subset S ⊂ S(K), with S 6= ∅ in the function
field case,

RS =
⋂

v∈S(K)\S

Rv ⊆ K

is called the holomorphy ring of K associated with S . RS is a Dedekind
domain with quotient field K. A subring o ⊆ RS is called an order in RS if
RS is a finitely generated o-module and o has quotient field K (equivalently,
RS/o is a finitely generated torsion o-module).

Let K be a global field, R ⊆ K a holomorphy ring and o ⊆ R an order.
Then o is a one-dimensional noetherian domain with finite Picard group, R
is the integral closure of o inK and R is a finitely generated o-module. Hence
o is a weakly Krull domain satisfying all assumptions of [Ge3; Theorem 7.3;
see Lemmata 7.6 and 7.7 therein]. Thus c(o•) <∞.

Let f denote the conductor of R/o and let r ≥ 0 be the number of distinct
prime ideals of R dividing f. We set P = {p ∈ X(1)(o) | p 6⊃ f} and T ⊆ I(o)
is the submonoid generated by the sets Ω(p) for those p ∈ X(1)(o) with p ⊃ f
(see [Ge3; Section 7] for the necessary definitions). Then I(o) = F(P )× T .
For an ideal I ∈ I(o) we set |I| = (o : I) and let H = H(o) ⊆ I(o) denote
the submonoid of principal ideals. Then [F(P ), T,H, | · |] is an arithmetical
order formation of rank r.
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Let [F(P ), T,H, | · |] be an arithmetical order formation with class group
G. Let β : F(P ) × T → F(G) × T denote the block homomorphism and
for g ∈ G let Bg(G) = {S ∈ F(G) : Sg ∈ B(G)}. For a non-empty subset
Q ⊆ G and a function σ : G\Q→ N we set

Ω(Q, σ) = {S ∈ F(G) : vg(S) = σ(g) for all g ∈ G\Q}.

For any subset Z ⊆ F(P )× T and for x ∈ R≥0 let

Z(x) = {a ∈ Z : |a| ≤ x}.

Proposition 4.2. Let all notations be as above, and let g ∈ G be such
that Ω(Q, σ) ∩ Bg(G) 6= ∅. Then, for x tending to infinity , we have

#{a ∈ F(P ) : β(a) ∈ Ω(Q, σ) ∩ Bg(G), |a| ≤ x} � x(log x)−η(log log x)d

with η = #(G\Q)/#G and d =
∑
g∈G\Q σ(g).

P r o o f. This is a special case of Proposition 8 in [G-HK-K].

Theorem 4.3. Let [F(P ), T,H, | · |] be an arithmetical order formation.
Then, for x tending to infinity , we have

#{a ∈ H : c(a) ≤ 3, |a| ≤ x} � x.

P r o o f. Let G = F(P )× T/H denote the class group of the formation.
By the remark after Definition 4.1, H∩F(P ) is a reduced Krull monoid and
each class contains a prime divisor. Hence by Theorem 3.1 there exists an
element A∗ ∈ B(G) such that

H ⊇ {a ∈ H : c(a) ≤ 3}(1)
⊇ {a ∈ H ∩ F(P ) : c(a) ≤ 3}
⊇ {a ∈ H ∩ F(P ) : A∗ |β(a)} (by Theorem 3.1)

⊇ (H ∩ F(P ))\
⋃
g∈G

vg(A
∗)−1⋃

i=0

{a ∈ H ∩ F(P ) : vg(β(a)) = i}.

For t ∈ T we set

Ht = {a ∈ F(P ) : at ∈ H} = {a ∈ F(P ) : β(a) ∈ Ω(G, 0) ∩ B�(t)(G)}

and
Ht(x) = C(t, x) · x

for a function C : T × (0,∞) → [0,∞). Proposition 4.2 implies that for
every t ∈ T and for x tending to infinity,

(2) Ht(x) � x,

whence C(t, x) � 1. Since for t, t′ ∈ T with β(t) = β(t′) we have Ht = Ht′ ,
there are at most #G distinct functions Ht(x). Therefore the function C is
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bounded. Thus by Proposition 5 of [G-HK-K] it follows that

(3) H(x) � x.

In case t = 1, (2) means that

(4) H1(x) = (H ∩ F(P ))(x) � x.

If #G = 1, then {a ∈ H ∩ F(P ) : c(a) ≤ 3} = H ∩ F(P ), whence the
assertion follows from (1), (3) and (4).

Now suppose #G > 1. For g ∈ G and i ∈ N we set Q = G\{g} and
define the function σ : G\Q = {g} → N by σ(g) = i. Then ∅ 6= Q and by
Proposition 4.2 we infer that

(5) #{a ∈ H ∩ F(P ) : vg(β(a)) = i, |a| ≤ x}
= #{a ∈ F(P ) : β(a) ∈ Ω(Q, σ) ∩ B(G), |a| ≤ x}

� x(log x)−1/#G(log log x)i.

Thus the assertion follows from (1), (3), (4) and (5).

For rings of integers in algebraic number fields we obtain an essentially
stronger asymptotic result.

Theorem 4.4. Let K be an algebraic number field , R ⊆ K the ring of
integers and G its ideal class group. Then c(R•) ≤ D(G) and

#{aR : a ∈ R•, (R : aR) ≤ x} ∼ #{aR : a ∈ R•, c(a) ≤ 3, (R : aR) ≤ x}

=
(

1
#G

%K +O

(
(log log x)M

(log x)1/#G

))
· x,

where %K denotes the residue of Dedekind’s zeta function of K at s = 1 and
M = max{0, vg(A∗)− 1 : g ∈ G} with A∗ ∈ B(G) satisfying the conclusions
of Theorem 3.1.

P r o o f. Clearly, R is a Dedekind domain, H = H(R) ↪→ I(R) is a
divisor theory with divisor class group G and each class contains a prime
ideal. Hence

c(R•) ≤ D(G)
by [Ge3; Propositions 4.2 and 4.3].

Relation (1) in the proof of Theorem 4.3 reduces to

H ⊇ {a ∈ H : c(a) ≤ 3} ⊇ H \
⋃
g∈G

vg(A
∗)−1⋃

i=0

{a ∈ H : vg(β(a)) = i}.

Since

H(x) =
1

#G
%Kx+O(x1−1/[K:Q])
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(cf. [La; p. 132 and p. 161]), the assertion follows from relation (5) in the
proof of Theorem 4.3.
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