## COLLOQUIUM MATHEMATICUM

## ON SOME SINGULAR INTEGRAL OPERATORS CLOSE TO THE HILBERT TRANSFORM

BY
T. GODOY, L. SAAL and M. URCIUOLO (CÓRDOBA)

Let $m: \mathbb{R} \rightarrow \mathbb{R}$ be a function of bounded variation. We prove the $L^{p}(\mathbb{R})$-boundedness, $1<p<\infty$, of the one-dimensional integral operator defined by

$$
T_{m} f(x)=\text { p.v. } \int k(x-y) m(x+y) f(y) d y
$$

where $k(x)=\sum_{j \in \mathbb{Z}}{ }^{j} \varphi_{j}\left(2^{j} x\right)$ for a family of functions $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ satisfying conditions (1.1)-(1.3) given below.

1. Introduction. We denote by $\mathcal{M}$ the space of real functions of bounded variation on $\mathbb{R}$ with the norm $\|\|$ given by $\| m\|=\| m \|_{\infty}+V(m)$, where $V(m)$ is the variation of $m$ on $\mathbb{R}$.

Let $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ be a family of functions in $L^{1}(\mathbb{R})$ satisfying, for all $j \in \mathbb{Z}$,

$$
\begin{gather*}
\int \varphi_{j}(x) d x=0,  \tag{1.1}\\
\operatorname{supp} \varphi_{j} \subseteq\{x \in \mathbb{R}: 1 / 2 \leq|x| \leq 2\}, \tag{1.2}
\end{gather*}
$$

and for some $c>0,0<\varepsilon<1$ and for all $j \in \mathbb{Z}$,

$$
\begin{equation*}
\int\left|\varphi_{j}(x+y)-\varphi_{j}(x)\right| d x \leq c|y|^{\varepsilon} . \tag{1.3}
\end{equation*}
$$

We define $\varphi_{j}^{(j)}(x)=2^{j} \varphi_{j}\left(2^{j} x\right)$. Let $m \in \mathcal{M}$, and let $T_{m, j}$ be defined by

$$
T_{m, j} f(x)=\int \varphi_{j}^{(j)}(x-y) m(x+y) f(y) d y
$$

Our aim is to prove the $L^{p}(\mathbb{R})$-boundedness, $1<p<\infty$, of the onedimensional integral operator defined by

$$
T_{m} f(x)=\lim _{(N, M) \rightarrow(-\infty, \infty)} \sum_{j=N}^{M} T_{m, j} f(x)
$$

1991 Mathematics Subject Classification: Primary 42B20.
Research partially supported by CONICOR-CONICET-SECYT (UNC).

In [R-S] the authors prove the boundedness on $L^{2}(\mathbb{R})$ of $T_{m}$ in the case where $m \in L^{\infty}(\mathbb{R})$ satisfies $\left|m^{\prime}(x)\right| \leq c /|x|$ and the family $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ gives rise to the Hilbert kernel, i.e. $\sum_{j \in \mathbb{Z}} 2^{j} \varphi_{j}\left(2^{j} x\right)=x^{-1}$.

The boundedness of $T_{m}$ on $L^{p}(\mathbb{R}), 1<p<\infty$, for $m \in L^{\infty}(\mathbb{R})$ satisfying the local Lipschitz condition $|m(x+h)-m(x)| \leq c(|h| /|x|)^{\delta}$ for $|h|<|x| / 2$ is obtained in [G-S-U].

We first prove some auxiliary results. Next we begin proving the boundedness of $T_{m}$ on $L^{p}(\mathbb{R}), 1<p<\infty$, for $m=\chi_{[a, b]}$, the characteristic function of $[a, b]$. Moreover, we find that $\left\|T_{m}\right\|$ is independent of $a$ and $b$. From these facts we derive the general case.
2. The main result. As usual, we denote by $\mathcal{S}(\mathbb{R})$ the Schwartz class of functions rapidly decreasing at infinity. We recall that the convolution operator $K$ with kernel $k=\sum_{j \in \mathbb{Z}} \varphi_{j}^{(j)}$ is bounded on $L^{p}(\mathbb{R}), 1<p<\infty$. The same result holds for the maximal operator given by

$$
K^{*} f(x)=\sup _{M}\left|\sum_{j=-\infty}^{M} \varphi_{j}^{(j)} * f(x)\right|
$$

(see [D-R]).
Lemma 2.1. Let $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ be a family of functions satisfying (1.1)-(1.3). Let $f \in \mathcal{S}(\mathbb{R})$ and $m \in \mathcal{M}$. Then

$$
\lim _{(N, M) \rightarrow(-\infty, \infty)} \sum_{j=N}^{M} T_{m, j} f(x)
$$

exists and is finite for a.e. $x \in \mathbb{R}$.
Proof. Since $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ satisfies (1.3) there exist $q_{0}>1$ and $c>0$ such that $\left\|\varphi_{j}\right\|_{q_{0}} \leq c$ for all $j \in \mathbb{Z}$ (see $\left.[\mathrm{S}]\right)$. Then

$$
\begin{aligned}
& \sum_{j=N}^{0} \int \mid \varphi_{j}^{(j)}(x-y) m(x+y) f(y) \mid d y \\
& \leq\|m\|_{\infty} \sum_{j=N}^{0}\left|\varphi_{j}^{(j)}\right| *|f|(x) \leq\|m\|_{\infty} \sum_{j=N}^{0}\left\|\varphi_{j}^{(j)}\right\|_{q}\|f\|_{q^{\prime}} \\
&=\|m\|_{\infty} \sum_{j=N}^{0} 2^{j(1-1 / q)}\left\|\varphi_{j}\right\|_{q}\|f\|_{q^{\prime}} \\
& \leq c\|m\|_{\infty}\|f\|_{q^{\prime}} \sum_{j=N}^{0} 2^{j(1-1 / q)}
\end{aligned}
$$

and this geometric sum converges as $N \rightarrow-\infty$. Now

$$
\begin{array}{rl}
\sum_{j=0}^{M} \int \varphi_{j}^{(j)}(x-y) m(x+y) f & f(y) d y \\
= & \sum_{j=0}^{M} \int \varphi_{j}^{(j)}(x-y) m(x+y)(f(y)-f(x)) d y \\
& +f(x) \sum_{j=0}^{M} \int \varphi_{j}^{(j)}(x-y) m(x+y) d y
\end{array}
$$

To estimate the first term we observe that

$$
\begin{aligned}
\sum_{j=0}^{M} \int\left|\varphi_{j}^{(j)}(x-y)\right| \cdot \mid m(x & +y)|\cdot| f(y)-f(x) \mid d y \\
& \leq\|m\|_{\infty}\|\nabla f\|_{\infty} \sum_{j=0}^{M} \int\left|\varphi_{j}^{(j)}(x-y)\right| \cdot|x-y| d y
\end{aligned}
$$

But (1.2) implies that $|x-y| \leq 2^{-j+1}$ for $2^{j}(x-y) \in \operatorname{supp} \varphi_{j}$, thus the last expression can be bounded by $c\|m\|_{\infty}\|\nabla f\|_{\infty} \sum_{j=0}^{M} 2^{-j}$ and this geometric sum converges.

To estimate the second term we note that for $l \in \mathbb{N} \cup\{0\}, l \leq|x| \leq l+1$ and $2^{j}(x-y) \in \operatorname{supp} \varphi_{j}$, we have $|x+y| \leq 2 l+4$, and thus

$$
\begin{aligned}
f(x) \sum_{j=0}^{M} \int \varphi_{j}^{(j)} & (x-y) m(x+y) d y \\
& =f(x) \sum_{j=0}^{M} \int \varphi_{j}^{(j)}(x-y) m(x+y) \chi_{[-2 l-4,2 l+4]}(x+y) d y \\
& =f(x) \sum_{j=0}^{M} \varphi_{j}^{(j)} *\left(m \chi_{[-2 l-4,2 l+4]}\right)(2 x),
\end{aligned}
$$

and this sum converges as $M \rightarrow \infty$ almost everywhere for $|x| \in[l, l+1]$ since it is a partial sum of the series defining $K\left(m \chi_{[-2 l-4,2 l+4]}\right)(2 x)$.

For $f \in L^{p}(0, \infty)$ we denote also by $f$ its extension to $\mathbb{R}$ by zero on the negative real axis.

Our next purpose is to construct an analogue to the Hilbert integral. We will need the result proved in [G-U] that we now state:

Lemma 2.2. Let $q$ and $q^{\prime}$ be conjugate exponents, $1<q<\infty, q^{-1}+$ $q^{\prime-1}=1$. For $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ define $g^{(j, q)}(x)=2^{j n / q} g\left(2^{j} x\right)$. Let $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$
and $\left\{\psi_{j}\right\}_{j \in \mathbb{Z}}$ be two families of measurable functions on $\mathbb{R}^{n}$ with support contained in $\left\{t: 2^{-1} \leq|t| \leq 2\right\}$ such that

$$
\left\|\varphi_{j}\right\|_{q_{0}} \leq c_{1}, \quad\left\|\psi_{j}\right\|_{q_{1}} \leq c_{2}
$$

for some $q_{0}>q, q_{1}>q^{\prime}, c_{1}>0, c_{2}>0$, and for all $j \in \mathbb{Z}$. Then the integral operator defined by

$$
U f(\xi)=\int_{\mathbb{R}^{n}} K_{1}(\xi-y) K_{2}(\xi+y) f(y) d y,
$$

where $K_{1}(x)=\sum_{j \in \mathbb{Z}} \varphi_{j}^{(j, q)}(x)$ and $K_{2}(x)=\sum_{j \in \mathbb{Z}} \psi_{j}^{\left(j, q^{\prime}\right)}(x)$, is bounded on $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$.

Lemma 2.3. The operator defined by

$$
I(f)(x)=\sum_{j \in \mathbb{Z}} \int\left|\varphi_{j}^{(j)}(y)\right| \cdot|f(y-x)| d y
$$

is bounded from $L^{p}(0, \infty)$ into $L^{p}(0, \infty)$.
Proof. Since supp $f \subseteq(0, \infty)$, we have, for $x>0$,

$$
I(f)(x)=\left(\sum_{j \in \mathbb{Z}} \int_{2 x<y}+\sum_{j \in \mathbb{Z}} \int_{x<y<2 x}\right)\left|\varphi_{j}^{(j)}(y)\right| \cdot|f(y-x)| d y .
$$

We note that the first term equals

$$
\begin{aligned}
& \sum_{j \in \mathbb{Z}} \int\left|\varphi_{j}^{(j)}(y)\right| \chi_{(-\infty, 0)}(2 x-y)|f(y-x)| d y \\
&=\sum_{j, k \in \mathbb{Z}} \int\left|\varphi_{j}^{(j)}(y)\right| \chi_{(-1,-1 / 2)}\left(2^{k}(2 x-y)\right)|f(y-x)| d y .
\end{aligned}
$$

Now, for $x>0$ and $j \geq k+2$, the $j, k$ term of the last sum vanishes. So we only consider $j<k+2$. In this case, for $1<q<q_{0}$,

$$
\begin{aligned}
& \sum_{j<k+2} \int\left|\varphi_{j}^{(j)}(y)\right| \chi_{(-1,-1 / 2)}\left(2^{k}(2 x-y)\right)|f(y-x)| d y \\
&=\sum_{j<k+2} \int 2^{j / q}\left|\varphi_{j}\left(2^{j} y\right)\right| 2^{j / q^{\prime}} \chi_{(-1,-1 / 2)}\left(2^{k}(2 x-y)\right)|f(y-x)| d y \\
& \leq \sum_{j<k+2} \int 2^{j / q}\left|\varphi_{j}\left(2^{j} y\right)\right| 2^{(k+2) / q^{\prime}} \chi_{(-1,-1 / 2)}\left(2^{k}(2 x-y)\right)|f(y-x)| d y \\
& \quad \leq 2^{2 / q^{\prime}} \sum_{j, k} \int\left|\varphi_{j}^{(j, q)}(y)\right| \chi_{(-1,-1 / 2)}^{\left(k, q^{\prime}\right)}(2 x-y)\left|f^{\vee}(x-y)\right| d y,
\end{aligned}
$$

where $f^{\vee}(t)=f(-t)$.
On the other hand, we observe that for each fixed $x$ the second term of $I(f)(x)$ is bounded by $5 M(|f|)(x)$ where $M(f)(x)=\sup \left(\left|\varphi_{j}^{(j)}\right| * f\right)(x)$.

A straightforward application of Lemma 2.2 and the boundedness on $L^{p}(\mathbb{R})$ of the maximal operator $M$ (see [D-R]) give us the desired result.

LEMMA 2.4. Let $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of functions in $L^{\infty}(\mathbb{R})$ satisfying
(i) There exists $\alpha>0$ such that $\left\|m_{j}\right\|_{\infty} \leq \alpha$ for all $j \in \mathbb{N}$.
(ii) $m(x)=\lim _{j \rightarrow \infty} m_{j}(x)$ exists for a.e. $x \in \mathbb{R}$.
(iii) If $1<p<\infty$, then there exists $c>0$ such that for $j \in \mathbb{N}, N, M \in \mathbb{Z}$ and $f \in \mathcal{S}(\mathbb{R})$,

$$
\left\|\sum_{k=N}^{M} T_{m_{j}, k} f\right\|_{p} \leq c\|f\|_{p}
$$

Then, for $f \in \mathcal{S}(\mathbb{R})$,

$$
\left\|\sum_{k=N}^{M} T_{m, k} f\right\|_{p} \leq c\|f\|_{p} \quad \text { and } \quad\left\|T_{m} f\right\|_{p} \leq c\|f\|_{p}
$$

Proof. We have

$$
\left\|\sum_{k=N}^{M} T_{m_{j}, k} f\right\|_{p}^{p}=\int\left|\int \sum_{k=N}^{M} \varphi_{k}^{(k)}(t) m(2 x-t) f(x-t) d t\right|^{p} d x
$$

By the dominated convergence theorem and the Fatou lemma the last expression is bounded by

$$
\begin{aligned}
& \liminf _{j \rightarrow \infty} \int\left|\int \sum_{k=N}^{M} \varphi_{k}^{(k)}(t) m_{j}(2 x-t) f(x-t) d t\right|^{p} d x \\
&=\liminf _{j \rightarrow \infty}\left\|\sum_{k=N}^{M} T_{m_{j}, k} f\right\|_{p}^{p} \leq c\|f\|_{p}^{p}
\end{aligned}
$$

A direct application of the Fatou lemma gives us the second assertion.
We now study the operator $T_{m}$ in the case where $m=\chi_{[a, b]}$, the characteristic function of the interval $[a, b]$. We obtain the following

Lemma 2.5. Let $m=\chi_{[a, b]}$ and $f \in L^{p}(\mathbb{R}), 1<p<\infty$. Then there exists $c_{p}$ such that for all $N, M \in \mathbb{Z}$ with $N<M$,

$$
\left\|\sum_{k=N}^{M} T_{m, k} f\right\|_{p} \leq c_{p}\|f\|_{p}
$$

Proof. We can assume $f>0$.
Case 1: $\quad x \in(-\infty, a / 2)$. We will prove that for all $M, N \in \mathbb{Z}$,

$$
\begin{equation*}
\left|\sum_{k=N}^{M} T_{m, k} f(x)\right| \leq I^{\vee}\left(\left(\tau_{-a / 2} f\right)_{\mid \mathbb{R}^{+}}\right)(a / 2-x) \tag{2.6}
\end{equation*}
$$

where $\tau_{a} f(x)=f(x-a)$ and $I^{\vee}$ is the operator provided by Lemma 2.3 associated with the family $\left\{\varphi_{k}^{\vee}\right\}_{k \in \mathbb{Z}}$ defined by $\varphi_{k}^{\vee}(t)=\varphi_{k}(-t)$. Indeed,

$$
\begin{aligned}
\left|\sum_{k=N}^{M} T_{m, k} f(x)\right| & =\left|\int \sum_{k=N}^{M} \varphi_{k}^{(k)}(t) \chi_{[a, b]}(2 x-t) f(x-t) d t\right| \\
& \leq \int_{2 x-b}^{2 x-a} \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(t)\right| f(x-t) d t \\
& =\int_{a-2 x}^{b-2 x} \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(-y)\right| f(x+y) d y \\
& \leq \int_{a / 2-x}^{\infty} \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(-y)\right| f(x+y) d y \\
& =\int_{a / 2-x}^{\infty} \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(-y)\right|\left(\tau_{-a / 2} f\right)(y-(a / 2-x)) d y \\
& =\int \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(-y)\right|\left(\tau_{-a / 2} f\right)_{\mid \mathbb{R}^{+}}(y-(a / 2-x)) d y
\end{aligned}
$$

and so we obtain (2.6).
Case 2: $\quad x \in(b / 2, \infty)$. Analogously to the first case we obtain

$$
\begin{equation*}
\left|\sum_{k=N}^{M} T_{m, k} f(x)\right| \leq I\left(\left(\tau_{b / 2} f^{\vee}\right)_{\mid \mathbb{R}^{+}}\right)(x-b / 2) \tag{2.7}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\left|\sum_{k=N}^{M} T_{m, k} f(x)\right| & \leq \int_{2 x-b}^{2 x-a} \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(t)\right| f(x-t) d t \\
& \leq \int_{x-b / 2}^{\infty} \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(t)\right| f^{\vee}(t-x) d t \\
& =\int_{x-b / 2}^{\infty} \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(t)\right| \tau_{b / 2} f^{\vee}(t-(x-b / 2)) d t \\
& =\int \sum_{k=N}^{M}\left|\varphi_{k}^{(k)}(t)\right|\left(\tau_{b / 2} f^{\vee}\right)_{\mid \mathbb{R}^{+}}(t-(x-b / 2)) d t
\end{aligned}
$$

and so we obtain (2.7).

Case 3: $x \in(a / 2, b / 2)$. We will prove that for all $M, N \in \mathbb{Z}$,

$$
\begin{align*}
\left|\sum_{k=N}^{M} T_{m, k} f(x)\right| \leq & \left|2 K^{*} f(x)\right|+I^{\vee}\left(\left(\tau_{-b / 2} f\right)_{\mathbb{R}^{+}}\right)(b / 2-x)  \tag{2.8}\\
& +I\left(\left(\tau_{a / 2} f^{\vee}\right)_{\mathbb{R}^{+}}\right)(x-a / 2) .
\end{align*}
$$

Indeed,

$$
\begin{aligned}
\left|\sum_{k=N}^{M} T_{m, k} f(x)\right|= & \left|\left(\int_{-\infty}^{\infty}-\int_{2 x-a}^{\infty}-\int_{-\infty}^{2 x-b}\right) \sum_{k=N}^{M} \varphi_{k}^{(k)}(t) f(x-t) d t\right| \\
\leq & \left|\sum_{k=N}^{M} \varphi_{k}^{(k)}(t) f(x-t) d t\right| \\
& +\left|\int_{2 x-a}^{\infty} \sum_{k=N}^{M} \varphi_{k}^{(k)}(t) f(x-t) d t\right| \\
& +\left|\int_{-\infty}^{2 x-b} \sum_{k=N}^{M} \varphi_{k}^{(k)}(t) f(x-t) d t\right|
\end{aligned}
$$

and as before we obtain (2.8).
Next, we estimate the $L^{p}$-norm of $\sum_{k=N}^{M} T_{m, k} f(x)$. (2.6)-(2.8) imply that

$$
\begin{aligned}
\left\|\sum_{k=N}^{M} T_{m, k} f(x)\right\|_{p}^{p}= & \left(\int_{-\infty}^{a / 2}+\int_{a / 2}^{b / 2}+\int_{b / 2}^{\infty}\right)\left|\sum_{k=N}^{M} T_{m, k} f(x)\right|^{p} d x \\
\leq & \int_{-\infty}^{a / 2}\left|I^{\vee}\left(\left(\tau_{-a / 2} f\right)_{\mid \mathbb{R}^{+}}\right)(a / 2-x)\right|^{p} d x \\
& +\int_{a / 2}^{b / 2}\left[2\left|K^{*} f(x)\right|+\left|I^{\vee}\left(\left(\tau_{-b / 2} f\right)_{\mid \mathbb{R}^{+}}\right)(b / 2-x)\right|\right. \\
& \left.+\left|I\left(\left(\tau_{a / 2} f^{\vee}\right)_{\mid \mathbb{R}^{+}}\right)(x-a / 2)\right|^{p}\right] d x \\
& +\int_{b / 2}^{\infty}\left|I\left(\left(\tau_{b / 2} f^{\vee}\right)_{\mid \mathbb{R}^{+}}\right)(x-b / 2)\right|^{p} d x .
\end{aligned}
$$

With a change of variables and taking account of the boundedness of $I$ and $I^{\vee}$ on $L^{p}\left(\mathbb{R}^{+}\right)$, we conclude that the sum of the first and the last integrals is bounded by $c\|f\|_{p}^{p}$. The boundedness of $K^{*}$ implies that the central term is also bounded by $c\|f\|_{p}^{p}$.

Lemma 2.9. For $1<p<\infty$, there exists $c_{p}>0$ such that for all $f \in \mathcal{S}(\mathbb{R})$, for all $a, b \in \mathbb{R}$ with $a<b$, and for all functions $m: \mathbb{R} \rightarrow \mathbb{R}$ such
that $m_{\mid[a, b]}$ is increasing and continuous and $\operatorname{supp} m \subseteq[a, b]$, we have

$$
\left\|\sum_{k=N}^{M} T_{m, k} f\right\|_{p} \leq c_{p}\|m\|_{\infty}\|f\|_{p} \quad \text { and } \quad\left\|T_{m} f\right\|_{p} \leq c_{p}\|m\|_{\infty}\|f\|_{p}
$$

Proof. We can choose a sequence $\left\{m_{n}\right\}_{n \in \mathbb{N}}$ of step functions that converges pointwise to $m$ and such that $\left\|m_{n}\right\|_{\infty} \leq 2\|m\|_{\infty}$. Indeed, if $\left\{a=t_{0}, t_{1}, \ldots, t_{n}=b\right\}$ is a partition of the interval $[a, b]$, we define $m_{n}(x)=$ $\sum_{j=0}^{n-1} \lambda_{j} \chi_{\left(t_{j}, b\right)}(x)$ with $\lambda_{0}=m\left(t_{1}\right)$ and $\lambda_{j}=m\left(t_{j+1}\right)-m\left(t_{j}\right), 1 \leq j \leq n-1$.

Now, we apply Lemma 2.5 to obtain

$$
\begin{aligned}
\left\|\sum_{k=N}^{M} T_{m_{n}, k} f\right\|_{p} & \leq \sum_{j=0}^{n-1}\left|\lambda_{j}\right|\left\|\sum_{k=N}^{M} T_{\chi_{\left(t_{j}, b\right)}, k} f\right\|_{p} \\
& \leq c_{p}\left(\left|m\left(t_{1}\right)\right|+m(b)-m\left(t_{1}\right)\right)\|f\|_{p} \leq 3 c_{p}\|m\|_{\infty}\|f\|_{p}
\end{aligned}
$$

So, the sequence $\left\{m_{n}\right\}$ satisfies the hypothesis of Lemma 2.4 and the assertion follows.

Theorem 2.10. For $1<p<\infty$, there exists $c_{p}>0$ such that for all functions $m$ of bounded variation on $\mathbb{R}$ and for all $f \in \mathcal{S}(\mathbb{R})$ we have $\left\|T_{m} f\right\|_{p} \leq c_{p}\left(\|m\|_{\infty}+V(m)\right)\|f\|_{p}$.

Proof. Lemma 2.4 implies that the theorem follows if we check that $\left\|\sum_{k=N}^{M} T_{m, k} f\right\|_{p} \leq c_{p}\left(\|m\|_{\infty}+V(m)\right)\|f\|_{p}$ for $m$ such that supp $m \subset[a, b]$ for some $a, b \in \mathbb{R}$, with $c_{p}$ depending only on $p$.

Since $m$ is of bounded variation on $[a, b]$ we denote by $V_{[a, t]}$ the variation of $m$ on $[a, t]$ and we can write

$$
m(t)=V_{[a, t]} m-\left(V_{[a, t]} m-m(t)\right) .
$$

Both $V_{[a, t]}$ and $V_{[a, t]} m-m(t)$ are increasing functions on $[a, b]$; each of them can be approximated by a sequence of continuous and increasing functions, with $\left\|\|_{\infty}\right.$ bounded by $V_{[a, b]} m$ and $\left.V_{[a, b]} m+\right\| m \|_{\infty}$ respectively. So the theorem follows from Lemma 2.9.

## REFERENCES

[D-R] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators, Invent. Math. 84 (1986), 541-561.
[G-S-U] T. Godoy, L. Saal and M. Urciuolo, About certain singular kernels $K(x, y)=$ $K_{1}(x-y) K_{2}(x+y)$, Math. Scand. 74 (1994), 98-110.
[G-U] T. Godoy and M. Urciuolo, About the $L^{p}$-boundedness of integral operators with kernels of the form $K_{1}(x-y) K_{2}(x+y)$, Math. Scand., to appear.
[R-S] F. Ricci and P. Sjögren, Two parameter maximal functions in the Heisenberg group, Math Z. 199 (1988), 565-575.
[S] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.

Facultad de Matemática, Astronomía y Física UNC
Ciudad Universitaria
5000 Córdoba, Argentina
E-mail: urciuolo@mate.uncor.edu

Received 10 July 1995;
revised 26 March 1996

