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0. Introduction. Let us recall that cov(M) = min{|F| : F ⊂ M,⋃
F = R} (M denotes the σ-ideal of meagre sets). So |X| < cov(M) iff for

every set B ⊂ X × R with Bx ∈ M for each x ∈ X we have
⋃

x∈X Bx 6= R.
If we consider only “nice” families of sections, for example Borel sets B, we
get a wider class of sets X. Let us denote it by Cov(M). We can generalize
this notion to any σ-ideal.

Let J ⊂ P (R) be a proper σ-ideal with a Borel basis. We define

Cov(J ) =
{

X ⊂ R : ∀B⊂R×R,Borel

(
∀x∈RBx ∈ J ⇒

⋃
x∈X

Bx 6= R
)}

.

Let us recall that X is a strong measure zero set iff for every meagre set
F , X + F 6= R. It is known (see [AR]) that X is strong measure zero iff for
every Fσ-set B ⊂ R×R with Bx ∈M for each x ∈ R we have

⋃
x∈X Bx 6= R.

It is easy to see that Cov(M) ⊂ strong measure zero sets (see [R]). Let us
recall that X is strongly meagre iff for every null set F , X + F 6= R. It is
easy to see that Cov(N ) ⊂ strongly meagre sets (see [R]). For non-invariant
σ-ideals it does not make sense to generalize definitions of strong measure
zero sets and strongly meagre sets using the algebraic structure of the real
line. So we can treat Cov(J ) as a natural generalization of strong measure
zero and strongly meagre sets.

We can also define similar classes of sets for some other cardinal coeffi-
cients. We define

Add(J ) =
{

X ⊂ R : ∀B⊂R×R,Borel

(
∀x∈RBx ∈ J ⇒

⋃
x∈X

Bx ∈ J
)}

,

Cof(J ) =
{

X ⊂ R : ∀B⊂R×R,Borel

(
∀x∈RBx ∈ J ⇒ {Bx : x ∈ X}

is not a basis for J
)}

,

1991 Mathematics Subject Classification: Primary 04A15; Secondary 03E50.
The third author was partially supported by the Emmy Noether Institute in Math-

ematics of Bar Ilan University, Israel, and the Alexander von Humboldt Foundation,
Germany when he was visiting FU Berlin.

[207]



208 H. JUDAH ET AL.

Non(J ) = {X ⊂ R : ∀f :X→R,Borel f [X] ∈ J )}.

We have [R]≤ω ⊂ Add(J ) ⊂ Cov(J ) ∩ Non(J ) and Cov(J ) ⊂ Cof(J ).
For J = M or J = N we have Non(J ) ⊂ Cof(J ) (see [PR]).

In [PR] it was shown that all inequalities from Cichoń’s diagram can be
replaced by inclusions of respective classes of sets. For example, we have
Add(N ) ⊂ Add(M). In [R] an example is given, under CH, of a set in
Add(N ) of size continuum. It is known that every Lusin set is in Cov(M)
(see [R]) and every Sierpiński set is in Cov(N ) (see [P]).

In this paper we investigate those classes in the general case. In Sec-
tion 1, under CH, we construct a set of size continuum which is in Cov(J )
and Non(J ) for any CCC σ-ideal. This construction uses a method intro-
duced by Todorčević in [GM]. This also strengthens the result of Todorčević
(unpublished) and the third author (see [R1]) that under MA there is a set
of size continuum which is in Non(N ) ∩Non(M). We also show that there
is a CCC σ-ideal J such that there are no uncountable sets in Add(J ) and
there is a σ-ideal J such that there are no uncountable sets in Cov(J ).

In Section 2, we show under CH that every I-Lusin set is a union of two
sets from Cov(J ) if we have a kind of Fubini’s theorem for the pair of ideals
I,J . We also show that this can be partially reversed.

Throughout this paper we consider only σ-ideals which have a Borel
basis and contain singletons. We say that a σ-ideal has CCC if there is no
uncountable family of disjoint Borel sets which do not belong to the σ-ideal.

1. Very small sets

Theorem 1.1. Assume the Continuum Hypothesis. There is a set X ⊂ R
of size continuum such that for every CCC σ-ideal J ,

(i) X ∈ Cov(J ),
(ii) X ∈ Non(J ),
(iii) for every Borel function f : X → R there is a countable set A ⊂ R

such that f |X\f−1(A) is a Borel isomorphism onto its image.

Lemma 1.2. For every J with CCC and every Borel set B ⊂ R×R such
that Bx ∈ J for each x ∈ R we have {y : R \By is uncountable} ∈ J c.

P r o o f. Let A = {y : (R2 \ B)y is countable}. By the Mazurkiewicz–
Sierpiński Theorem (see [K]) A is coanalytic. Suppose A 6∈ J . Then by
CCC there is a Borel set E ⊂ A with E 6∈ J (Marczewski, see [K]). Then
the set (R×E)∩ (R2 \B) can be represented as a union of countably many
graphs of Borel functions fn : E → R with (R×E) ∩B =

⋃
n graph(fn)−1

(Lusin–Novikov Theorem, see [K]). By CCC there is x ∈ R such that for
each n, f−1

n (x) ∈ J . But E ⊂
⋃

n f−1
n (x) ∪Bx. Contradiction.
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P r o o f o f T h e o r e m 1.1. We construct an Aronszajn tree A of perfect
trees T ⊂ 2≤ω ordered by reverse inclusion. We write T ≤n T1 iff T |n = T1|n
and T1 is subtree of T . Let Aα be the αth level of A. We will construct the
tree A with the following properties:

∀α∀T,W∈Aα,T 6=W [T ] ∩ [W ] = ∅ and ∀α∀β>α∀T∈Aα∀n∃W∈Aβ
T ≤n W.

The last condition enables us to extend our tree at limit stages. We can
assume additionally that [T ] is meagre in

⋂
T⊂W,W∈A,W 6=T [W ]. Then let

xα ∈
⋃

T∈Aα
[T ] \

⋃
T∈Aα+1

[T ] and let X = {xα : α < ω1}.
Observe that till now we only use ZFC. The tree A is a special Aronszajn

tree (we define An = {T ∈ A : [T ] ∩ Un = ∅ and
⋂

T⊂W,W∈A,W 6=T [W ] ∩ Un

6= ∅}, {Un : n ∈ ω} is a countabe basis; Todorčević). Then X ∈ J for every
J with CCC. To see this observe that since there are only countably many
T in A with [T ] 6∈ J , there is α such that

⋃
T∈Aα

[T ] ∈ J . Observe that all
but countably many elements of X are in

⋃
T∈Aα

[T ].
To have a set X with the properties listed in the theorem under CH we

will choose levels of A satisfying some additional conditions. For even levels
we order all Borel sets Bα on the plane with all sections in a CCC σ-ideal
J . For odd levels we order all Borel functions fα : R → R.

Define T (s) = {t ∈ T : s ⊂ t}. Let α < c.
First we define A′ = {PT,n : T ∈ Aβ , n ∈ ω, β < α} such that T ≤n PT,n

and ∀T,W∈A′,T 6=W [T ] ∩ [W ] = ∅ and ∀W∈A′∀β<α∃T∈Aβ
W ⊂ T .

Even level . By Lemma 1.2 there is y ∈ R such that for each PT,n ∈ A′

and s ∈ 2n the set [PT,n(s)] \ (Bα)y is uncountable and y 6∈
⋃

β<α(Bα)xβ
.

Then we choose a subtree ST,n(s) of PT,n(s) with [ST,n(s)] ⊂ [PT,n(s)] \
(Bα)y. Let Aα = {

⋃
s∈2n ST,n(s) : T ∈ Aβ , n ∈ ω, β < α}.

Odd level . For each PT,n(s), if fα|[PT,n(s)] is countable-to-one then
we choose a subtree ST,n(s) of PT,n(s) such that fα|[ST,n(s)] is a Borel
isomorphism. If fα|[PT,n(s)] is not countable-to-one then we choose ST,n(s)
to be a subtree of PT,n(s) such that |fα[[ST,n(s)]]| = 1 (Lusin–Novikov
Theorem). Additionally we can choose these trees to have disjoint images
for trees for which fα is one-to-one. Let Aα = {

⋃
s∈2n ST,n(s) : T ∈ Aβ , n ∈

ω, β < α}.
Properties (i) and (iii) follow from the construction. Let f : X → Y be

Borel with f [X] = Y . There is a countable A ⊂ Y such that f |X\f−1(A) is
a Borel isomorphism. If Y is not in some CCC σ-ideal then there is a CCC
σ-ideal in B(Y \A). Then we can transport this CCC σ-ideal onto a subset
of X by the Borel isomorphism. Contradiction.

We say that a σ-ideal J with a Borel basis is perfectly dense if it contains
all singletons and for every perfect set P there is a perfect set Q ⊂ P with
Q ∈ J .
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Theorem 1.3. Assume CH. Let {Jα : α < c} be a family of perfectly
dense σ-ideals. Then there is a set X ⊂ R of size continuum which belongs
to every Jα.

P r o o f. The proof is very similar to the proof of Theorem 1.1.

Corollary 1.4. Assume CH. Let J be a perfectly dense σ-ideal. Then
there is a set X ⊂ R of size continuum such that X ∈ Non(J ).

P r o o f. Observe that for each Borel function f : R → R, {f−1(B) :
B ∈ J } is a perfectly dense σ-ideal. So the family of all Borel functions
gives us a family of perfectly dense σ-ideals of size continuum. Thus we can
apply Theorem 1.3.

R e m a r k 1.5. It is easy to see that if a σ-ideal with a Borel basis is not
perfectly dense, i.e. its restriction to a perfect set is the σ-ideal of countable
sets, then there are no uncountable sets in Non(J ).

Corollary 1.6. Assume CH. Let J be a σ-ideal such that for every
Borel set B on the plane with all sections in J the family {A :

⋃
x∈A Bx

∈ J } is perfectly dense. Then there is a set X of size continuum such that
X ∈ Add(J ).

Observe that the idealsN andM satisfy the assumption of Corollary 1.6.
However, not every CCC σ-ideal satisfies the conclusion of Corollary 1.6.
This shows that in Theorem 1.1 we cannot get additivity for all CCC σ-
ideals.

Fact 1.7. Add(M×N ) = [R2]≤ω.

P r o o f. In [CP] it is shown that there is a Borel set in (R2)2 with all
sections in M×N such that their union over any uncountable set is not in
M×N .

Fact 1.8. There is a σ-ideal J in 2ω and a Borel set B ⊂ 2ω × 2ω with
Bx ∈ J for each x ∈ 2ω and

⋃
x∈X Bx = 2ω for each uncountable X ⊂ 2ω.

So Cov(J ) = [2ω]≤ω.

P r o o f. Let f : 2ω → (2ω)ω be a homeomorphism. Let pn : (2ω)ω → 2ω

be the projection onto the nth coordinate and let fn = pnf . Let B =
2ω × 2ω \

⋃
n∈ω graph(fn)−1. Then the union of any countable family of

sections of B does not cover the Cantor set and the union of any uncountable
family of sections does.

R e m a r k 1.9. The fact above shows that we cannot show Theorem 1.1
for an arbitrary σ-ideal. Note that in the proof we use the property from
Lemma 1.2: for every Borel set B ⊂ R×R such that Bx ∈ J for each x ∈ X
we have {y : ∃D⊂R D is perfect and y 6∈

⋃
x∈D Bx} ∈ J c.
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It easy to see that X ∈ J for each CCC σ-ideal J iff there is no CCC
σ-ideal in B(X). Uncountable examples of sets with this property were
known in ZFC; for example, a selector from the constituents of a non-Borel
coanalytic set (see [M]). We will see that such a set can be mapped contin-
uously onto the reals so it does not belong to Non(J ) for any J .

Fact 1.10. Assume CH. There is a selector from the constituents of a
coanalytic set which can be mapped continuously onto the reals.

P r o o f. Let A be a non-Borel coanalytic set. Set C = A × R. Let
C =

⋃
α<ω1

Bα be a partition into Borel constituents. Let R = {yα : α <
ω1}. Define (xα, yα) ∈ C \

⋃
{Bγ : ∃β<α(xβ , yβ) ∈ Bγ}. Since (

⋃
{Bγ :

∃β<α(xβ , yβ) ∈ Bγ})yα is Borel, (C \
⋃
{Bγ : ∃β<α(xβ , yβ) ∈ Bγ})yα 6= ∅.

Then any selector X from {Bα : α < ω1} containing {(xα, yα) : α < ω1}
has pr2(X) = R.

In particular, the set from Fact 1.10 is not strong measure zero.

2. J -Lusin sets. We say that X is a J -Lusin set if X is uncountable
and for each G ∈ J , X ∩G is countable.

It is known that M-Lusin ⊂ Cov(M) and N -Lusin ⊂ Cov(N ) (see
[R], [P]).

Observe that J -Lusin ∩ Non(J ) = ∅. We will investigate relationships
between J -Lusin sets and Cov(J ) and Cof(J ). We will see that to have a
J -Lusin set which is in Cov(J ) we need a kind of Fubini’s theorem for J .

The next fact was suggested to the authors by J. Pawlikowski.

Fact 2.1. Let A = {((x, y), (z, w)) ∈ (R2)2 : w ∈ G + x}, where G is a
Borel comeagre null set. Then ∀(x,y)∈R2A(x,y) ∈M×N and ∀(z,w)∈R2A(z,w)

∈ (M×N )c.

P r o o f. Easy.

Corollary 2.2. Cov(M×N ) ⊂M×N .

P r o o f. Let X ∈ Cov(M×N ). For the set A from Fact 2.1 there is
(z, w) ∈ R with X ∩A(z,w) = ∅ so X ∈M×N .

So no M×N -Lusin set is in Cov(M×N ). The result above and the
facts that Cov(N ) ⊂ Non(M) and Cov(M) ⊂ Non(N ) can be generalized
as follows.

Corollary 2.3. Let I and J be σ-ideals. Assume that there there is a
Borel set B on the plane such that all its vertical sections are in J and all
its horizontal sections are in Ic. Then Cov(J ) ⊂ Non(I).

P r o o f. From the proof of Corollary 2.2 we have Cov(J ) ⊂ I. Observe
that Cov(J ) is closed under Borel images.
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Corollary 2.3 can be partially reversed. We say that a pair (I,J ) has
the Fubini property if for every Borel set B ⊂ R× R with Bx ∈ J for each
x ∈ R we have {y : By ∈ I} 6∈ J .

Theorem 2.4. Assume CH. Every I-Lusin set is the union of two sets
Y, Z such that for each J , if the pair (I,J ) has the Fubini property then
Y, Z ∈ Cov(J ).

P r o o f. Let {Bα : α < ω1} be a family of all Borel sets on the plane
such that there is a σ-ideal J with (Bα)x ∈ J for each x ∈ R and with
(I,J ) having the Fubini property. Let L be an I-Lusin set.

We define sequences yα, zα, Aα, Cα such that yα, zα ∈ R and Aα, Cα are
countable subsets of L. Let

Dα =
⋃

x∈∪β<α(Aβ∪Cβ)

(Bα)x.

Then Dα ∈ J . So there is yα 6∈ Dα such that (Bα)yα ∈ I. Define Cα =
(Bα)y ∩ L. Let D′

α = Dα ∪
⋃

x∈Cα
Bx and let zα 6∈ D′

α with (Bα)zα ∈ I.
Define Aα = (Bα)zα ∩ L. Then Y =

⋃
α<ω1

Aα and Z = L \ Y have the
required properties.

Theorem 2.5. If a pair (I,J ) has the Fubini property then I-Lusin
⊂ Cof(J ).

P r o o f. Let L ∈ I-Lusin and let B ⊂ R2 be a Borel set with all sections
in J . Let y ∈ R be such that By ∈ I. Then L ∩ By is countable. Let
z ∈

⋃
x∈L∩By Bx. Then no Bx for x ∈ L covers {y, z}.

If it is consistent that there is a measurable cardinal then the following
is consistent:

(∗) Martin’s Axiom holds and there exists κ < c such that P (κ) contains
a proper uniform ω1-saturated, κ-additive ideal K.

Assume (∗). We can treat κ as a subset of R. We can define L = {B ∈
B(R) : B ∩ κ ∈ K}. Then κ ∈ Cov(J ) for each CCC σ-ideal and κ 6∈ L.
Observe that L is CCC.

We can construct such a set of size c. We say that X is a generalized
J -Lusin set if |X| = c and for each B ∈ J , |B∩X| < c. In [FJ] the authors
showed that under (∗) a generalized L-Lusin set satisfies many definitions
of smallness. The following facts generalize some of them.

Theorem 2.6. Assume (∗). Then there is a generalized L-Lusin set X
such that for each CCC σ-ideal J , X ∈ Cov(J ).

P r o o f. We order all Borel sets Bα on the plane with all sections in a
CCC σ-ideal J , and all Borel sets Dα from L. On each stage we choose
xα, yα. Let yα 6∈

⋃
β≤α(Bα)xβ

∪
⋃

x∈κ(Bα)x. Observe that (Bα)yα ∈ L



VERY SMALL SETS 213

because (Bα)yα ∩ κ = ∅. Let xα 6∈
⋃

β≤α(Dβ ∪ (Bβ)yβ ). Let X = {xα : α <
c} Then yα 6∈

⋃
x∈X(Bα)x.

Theorem 2.7. Assume (∗). For each CCC σ-ideal J with add(J ) = c
and each generalized L-Lusin set X , X ∈ Add(J ).

P r o o f. Let B ⊂ R2 be such that Bx ∈ J for each x ∈ R. Let C be
a Borel set such that

⋃
x∈κ Bx ⊂ C ∈ J . Let D = {x : Bx ⊂ C}. Since

D is coanalytic, by CCC there are Borel sets E,F such that F ∈ L and
E\F ⊂ D ⊂ E∪F (Marczewski, see [K]). We have κ ⊂ D so R\(E∪F ) ∈ L.
Thus |X ∩ (R \ (E \ F ))| < c. So

⋃
x∈X Bx ⊂ C ∪

⋃
x∈X∩(R\(E\F )) Bx ∈ J .

The authors would like to thank Janusz Pawlikowski for fruitful remarks.
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[CP] J. Cicho ń and J. Pawl ikowsk i, On ideals of subsets of the plane and on Cohen
reals, J. Symbolic Logic 51 (1986), 560–569.
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