COLLOQUIUM MATHEMATICUM

VOL. 72

1997

EXTREME NON-ARENS REGULARITY OF QUOTIENTS OF THE FOURIER ALGEBRA A(G)

 $_{\rm BY}$

ZHIGUO HU (WINDSOR, ONTARIO)

1. Introduction. Let \mathcal{A} be a Banach algebra. As is well known, on the second dual \mathcal{A}^{**} of \mathcal{A} there exist two Banach algebra multiplications extending that of \mathcal{A} (see [1]). When these two multiplications coincide on \mathcal{A}^{**} , the algebra \mathcal{A} is said to be *Arens regular*. Let WAP(\mathcal{A}^{*}) denote the space of all weakly almost periodic functionals on \mathcal{A} . Then the equality WAP(\mathcal{A}^{*}) = \mathcal{A}^{*} is equivalent to the Arens regularity of \mathcal{A} (cf. [21]). Recently, Granirer introduced the concept "extreme non-Arens regularity". \mathcal{A} is called *extremely non-Arens regular* (or *ENAR* for short) if \mathcal{A}^{*} /WAP(\mathcal{A}^{*}) is as big as \mathcal{A}^{*} , namely if \mathcal{A}^{*} /WAP(\mathcal{A}^{*}) contains a closed subspace which has \mathcal{A}^{*} as a continuous linear image (see [13]).

Let G be a locally compact group and A(G) the Fourier algebra of G. Lau proved that if G is amenable then A(G) is Arens regular if and only if G is finite (see [18, Proposition 3.3]). Generally, Forrest showed that if A(G)is Arens regular then G is discrete ([8, Theorem 3.2]). He further showed in [9] that A(G) is not Arens regular if G contains an infinite abelian subgroup. Lately, Granirer investigated the non-Arens regularity of quotients of A(G). Let J be a closed ideal of A(G) with zero set Z(J) = F. Granirer proved that A(G)/J is not Arens regular if there exist $a, b \in G$ such that one of the following conditions holds:

(1) $\operatorname{int}_{aHb}(F) \neq \emptyset$ for some non-discrete subgroup H of G;

(2) G contains \mathbb{R} (or \mathbb{T}) as a closed subgroup and there is a symmetric set $S \subset \mathbb{R}$ (or \mathbb{T}) satisfying $aSb \subseteq F$ ([14, Corollary 8]).

Furthermore, if G is second countable, Granirer showed that A(G)/J is ENAR ([13, Corollaries 6 and 7]). He asked if this is the case when G is not second countable.

In this paper, we attempt to deal with non-second countable groups. Some conditions on G and Z(J) are proposed which guarantee the extreme

¹⁹⁹¹ Mathematics Subject Classification: Primary 22D25, 43A22, 43A30; Secondary 22D15, 43A07, 47D35.

This research is supported by an NSERC-grant.

^[237]

$\mathrm{Z.}~\mathrm{H\,U}$

non-Arens regularity of A(G)/J. In particular, we show that A(G)/J is ENAR if G is any σ -compact non-discrete locally compact group and J is a closed ideal of A(G) such that

(*) Z(J) contains a non-empty intersection B of \aleph many open subsets of G with $\aleph < b(G)$,

where b(G) denotes the smallest cardinality of an open basis at the unit e of G (condition (*) is satisfied if int $Z(J) \neq \emptyset$).

It is worth noting that our discussion on the extreme non-Arens regularity of A(G)/J is primarily based on our understanding of the extreme non-ergodicity of $(A(G)/J)^*$. Let VN(G) be the von Neumann algebra generated by the left regular representation of G. Let $\mathbb{P} = J^{\perp} = \{T \in \mathcal{T}\}$ VN(G): $\langle T, u \rangle = 0$ if $u \in J$. Then \mathbb{P} is linear isometric to $(A(G)/J)^*$. For $x \in G$, let $E_{\mathbb{P}}(x)$ be the norm closure of $\{T \in \mathbb{P} : x \notin \operatorname{supp} T\}$ and let $W_{\mathbb{P}}(x) = \mathbb{C}\delta_x + E_{\mathbb{P}}(x)$. Denote by μ the first ordinal with $|\mu| = b(G)$ and let $X = \{ \alpha : \alpha < \mu \}$. We show that if G is any non-discrete locally compact group and J is a closed ideal of A(G) such that Z(J) satisfies condition (*), then \mathbb{P} is extremely non-ergodic at each $x \in B$, namely $\mathbb{P}/W_{\mathbb{P}}(x)$ has $l^{\infty}(X)$ as a continuous linear image and $\mathrm{TIM}_{\mathbb{P}}(x)$ contains $\mathcal{F}(X)$, where $\operatorname{TIM}_{\mathbb{P}}(x) = \{\phi \in \mathbb{P}^*; \|\phi\| = \langle \phi, \delta_x \rangle = 1 \text{ and } \phi = 0 \text{ on } E_{\mathbb{P}}(x) \}$ and $\mathcal{F}(X) = \{ \phi \in l^{\infty}(X)^* : \|\phi\| = \phi(\mathbf{1}) = 1 \text{ and } \phi(f) = 0 \text{ if } f \in l^{\infty}(X) \text{ and } \}$ $\lim_{\alpha \in X} f(\alpha) = 0$. Moreover, if G is non-metrizable, then $\mathbb{P}/W_{\mathbb{P}}(x)$ contains an isomorphic copy of $l^{\infty}(X)$ for each $x \in B$ (Theorem 3.4 combined with Remark 3.5(iii)). These results extend and improve some of those in [13] and [17].

It is our pleasure to thank Professor E. E. Granirer for his valuable comments and also for providing the preprint of his paper [14].

2. Preliminaries and notations. Let G be a locally compact group with identity e and a fixed left Haar measure $\lambda = dx$, and let $L^2(G)$ be the usual Hilbert space with the inner product $(f,g) = \int_G f(x)\overline{g(x)} dx$, for $f,g \in L^2(G)$.

Let VN(G) denote the von Neumann algebra generated by the left regular representation of G, i.e. the closure of the linear span of $\{\varrho(a) : a \in G\}$ in the weak operator topology, where $[\varrho(a)f](x) = f(a^{-1}x)$, for $x \in G$, $f \in L^2(G)$. Let A(G) denote the subalgebra of $C_0(G)$ (bounded continuous complexvalued functions on G vanishing at infinity) consisting of all functions of the form $f * \tilde{g}$, where $f, g \in L^2(G)$ and $\tilde{g}(x) = \overline{g(x^{-1})}$. Then each $\phi = f * \tilde{g}$ in A(G) can be regarded as an ultraweakly continuous functional on VN(G)defined by $\phi(T) = (Tf, g)$ for $T \in VN(G)$. Furthermore, as shown by P. Eymard in [6, pp. 210 and 218], each ultraweakly continuous functional on VN(G) is of the form $f * \tilde{g}$ with $f, g \in L^2(G)$. Also, A(G) with pointwise multiplication and the norm $\|\phi\| = \sup\{|\phi(T)| : T \in VN(G) \text{ and } \|T\| \leq 1\}$ forms a commutative Banach algebra called the *Fourier algebra* of G.

There is a natural action of A(G) on VN(G) given by

$$\langle u \cdot T, v \rangle = \langle T, uv \rangle, \quad \text{for } u, v \in A(G), \ T \in VN(G).$$

Under this action, VN(G) becomes a Banach A(G)-module. Let $T \in VN(G)$. We say that $x \in G$ is in the *support* of T, denoted by supp T, if $\varrho(x)$ is the ultraweak limit of operators of the form $u \cdot T$, $u \in A(G)$.

An $m \in VN(G)^*$ is called a *topologically invariant mean* on VN(G) if

- (i) $||m|| = \langle m, I \rangle = 1$, where $I = \varrho(e)$ denotes the identity operator,
- (ii) $\langle m, u \cdot T \rangle = \langle m, T \rangle$ for $T \in VN(G)$ and $u \in A(G)$ with ||u|| = u(e) = 1.

Let $\operatorname{TIM}(\widehat{G})$ be the set of topologically invariant means on $\operatorname{VN}(G)$. Denote by $F(\widehat{G})$ the space of all $T \in \operatorname{VN}(G)$ such that m(T) equals a fixed constant d(T) as m runs through $\operatorname{TIM}(\widehat{G})$. Then $F(\widehat{G})$ is a norm closed self-adjoint A(G)-submodule of $\operatorname{VN}(G)$.

The space $\{T \in VN(G) : u \mapsto u \cdot T \text{ is a weakly compact operator of } A(G) \text{ into } VN(G)\}$ is called the *space of weakly almost periodic functionals* on A(G) and denoted by $W(\widehat{G})$. It turns out that $W(\widehat{G})$ is a self-adjoint closed A(G)-submodule of VN(G). Also, it is known that $W(\widehat{G}) \subseteq F(\widehat{G})$ (see [5] and [10]).

Let M(G) denote the algebra of finite regular Borel measures on G with convolution as multiplication. M(G) can be considered as a subspace of VN(G) by virtue of

$$\langle \mu, u \rangle = \int_{G} u \, d\mu, \quad \text{for } u \in A(G).$$

In particular, $\langle \delta_x, u \rangle = u(x), x \in G, u \in A(G)$, where δ_x denotes the point measure at x.

Let \mathbb{P} be a norm closed A(G)-submodule of VN(G) and $x \in G$. Following notations and definitions of Granirer [12], we put

 $\sigma(\mathbb{P}) = \{ z \in G : \delta_z \in \mathbb{P} \},$ $\mathbb{P}_{c} = \text{the norm closure of } \{ T \in \mathbb{P} : \text{supp } T \text{ is compact} \},$ $E_{\mathbb{P}}(x) = \text{the norm closure of } \{ T \in \mathbb{P} : x \notin \text{supp } T \},$ $W_{\mathbb{P}}(x) = \mathbb{C}\delta_x + E_{\mathbb{P}}(x).$

It is shown that $E_{\mathbb{P}}(x)$ is the norm closure of $\{T - u \cdot T : T \in \mathbb{P}, u \in A(G)$ and $||u|| = u(x) = 1\}$ (see Granirer [12, Proposition 1]). Furthermore, if $x \in \sigma(\mathbb{P})$, let $\operatorname{TIM}_{\mathbb{P}}(x)$ denote the set of all topologically invariant means on \mathbb{P} at x, i.e.

 $\mathrm{TIM}_{\mathbb{P}}(x) = \{ \phi \in \mathbb{P}^* : \|\phi\| = \phi(\delta_x) = 1 \text{ and } \phi = 0 \text{ on } E_{\mathbb{P}}(x) \}.$

When $\mathbb{P} = \text{VN}(G)$, $W_{\mathbb{P}}(e) = F(\widehat{G})$ and $\text{TIM}_{\mathbb{P}}(e) = \text{TIM}(\widehat{G})$.

For a closed ideal J of A(G), Z(J) denotes the set $\{x \in G : u(x) = 0 \text{ for all } u \in J\}$. If F is a closed subset of G, let $I(F) = \{u \in A(G) : u = 0 \text{ on } F\}$. F is called a *set of spectral synthesis*, or simply an *s-set*, if I(F) is the only closed ideal I of A(G) with Z(I) = F.

Let E_1 and E_2 be two Banach spaces. We say that E_2 contains an isomorphic (isometric) copy of E_1 if there is a linear mapping $L : E_1 \to E_2$ and some positive constants γ_1, γ_2 ($\gamma_1 = \gamma_2 = 1$) such that $\gamma_1 ||x|| \leq ||Lx|| \leq \gamma_2 ||x||$ for all $x \in E_1$; further, E_2 has E_1 as a quotient if there is a bounded linear mapping from E_2 onto E_1 . Also, for a Banach space Y, we denote by $\mathcal{D}(Y)$ the density character of Y, i.e. the smallest cardinality such that there exists a norm dense subset of Y having that cardinality.

For any set A, |A| denotes the cardinality of A. If μ is an ordinal, then $|\mu|$ denotes the cardinality of the set $\{\alpha : \alpha < \mu\}$. For a locally compact group G with identity e, we denote by b(G) the smallest cardinality of an open basis at e.

Let \mathcal{A} be a Banach algebra. It is well known that there exist two Banach algebra multiplications on \mathcal{A}^{**} extending that of \mathcal{A} . When these two multiplications coincide on \mathcal{A}^{**} , \mathcal{A} is said to be Arens regular. Details of the construction of these multiplications can be found in many places, including the pioneering paper [1], the book [2] and the survey article [4]. $T \in \mathcal{A}^*$ is called weakly almost periodic if the set $\{u \cdot T : u \in \mathcal{A} \text{ and } \|u\| \leq 1\}$ is a relatively weakly compact subset of \mathcal{A}^* , where $u \cdot T \in \mathcal{A}^*$ is defined by $\langle u \cdot T, v \rangle = \langle T, uv \rangle, v \in \mathcal{A}$. The space of all weakly almost periodic functionals on \mathcal{A} is denoted by WAP(\mathcal{A}^*). Then WAP(\mathcal{A}^*) = \mathcal{A}^* if and only if \mathcal{A} is Arens regular ([21]). \mathcal{A} is called extremely non-Arens regular (or ENAR for short) if \mathcal{A}^* /WAP(\mathcal{A}^*) is as big as \mathcal{A}^* , namely if \mathcal{A}^* /WAP(\mathcal{A}^*) contains a closed subspace which has \mathcal{A}^* as a quotient. The definition of ENAR was made by Granirer in [13] where he first investigated the extreme non-Arens regularity for quotients of $\mathcal{A}(G)$.

LEMMA 2.1. Let \mathcal{A} be a Banach algebra and Γ be a set. If $l^{\infty}(\Gamma)$ contains an isomorphic copy of \mathcal{A}^* (in particular, if $\mathcal{D}(\mathcal{A}) \leq |\Gamma|$) and $\mathcal{A}^*/\operatorname{WAP}(\mathcal{A}^*)$ has $l^{\infty}(\Gamma)$ as a quotient, then \mathcal{A} is ENAR.

Proof. Let t be a linear isomorphism of \mathcal{A}^* into $l^{\infty}(\Gamma)$ and r a bounded linear map of $\mathcal{A}^*/\operatorname{WAP}(\mathcal{A}^*)$ onto $l^{\infty}(\Gamma)$. Let $Y = r^{-1}[t(\mathcal{A}^*)]$. Then Y $(\subseteq \mathcal{A}^*/\operatorname{WAP}(\mathcal{A}^*))$ has \mathcal{A}^* as a quotient. Therefore, \mathcal{A} is ENAR. If $\mathcal{D}(\mathcal{A}) \leq |\Gamma|$, then there exists a subset Γ_0 of Γ such that $\mathcal{D}(\mathcal{A}) = |\Gamma_0|$. Let $\{x_{\gamma}\}_{\gamma \in \Gamma_0}$ be norm dense in the unit ball of \mathcal{A} . Define $h: \mathcal{A}^* \to l^{\infty}(\Gamma_0)$ by $(h\Phi)(\gamma) = \langle \Phi, x_{\gamma} \rangle, \ \Phi \in \mathcal{A}^*, \ \gamma \in \Gamma_0$. Then h is a linear isometry of \mathcal{A}^* into $l^{\infty}(\Gamma_0) \subseteq l^{\infty}(\Gamma)$. 3. Extreme non-ergodicity of A(G)-submodules of VN(G). This section is partially motivated by Granirer [12] and [13]. The basic idea used in the proof of our main theorem (Theorem 3.4) is similar to that used in [17]. Let G be a locally compact group with identity e. We begin this section with the following property of A(G)-submodules of VN(G), which is needed in the proof of Theorem 3.4.

PROPOSITION 3.1. Let \mathbb{P} be a norm closed A(G)-submodule of VN(G)and $e \in \sigma(\mathbb{P})$. Then $W_{\mathbb{P}}(e) = F(\widehat{G}) \cap \mathbb{P}$.

Proof. Since $e \in \sigma(\mathbb{P})$, $W_{\mathbb{P}}(e) \subseteq \mathbb{P}$. Let $S = \{u \in A(G) : ||u|| = u(e) = 1\}$. By [12, Proposition 1], $E_{\mathbb{P}}(e)$ equals the norm closure of $\{T - u \cdot T : T \in \mathbb{P} \text{ and } u \in S\}$. So $W_{\mathbb{P}}(e) = \mathbb{C}I + E_{\mathbb{P}}(e) \subseteq F(\widehat{G})$. Therefore, $W_{\mathbb{P}}(e) \subseteq F(\widehat{G}) \cap \mathbb{P}$.

Conversely, let $T \in F(\widehat{G}) \cap \mathbb{P}$. Then there exists a constant a such that m(T) = a for all $m \in \operatorname{TIM}(\widehat{G})$. We now follow an argument of Granirer [14, Proposition 3] to show that $T - aI \in E_{\mathbb{P}}(e)$. If $T - aI \notin E_{\mathbb{P}}(e)$, then, by the Hahn–Banach theorem, there exists a $\phi \in \operatorname{VN}(G)^*$ such that $\langle \phi, T - aI \rangle \neq 0$, but $\langle \phi, \Phi - u \cdot \Phi \rangle = 0$ for all $\Phi \in \mathbb{P}$ and $u \in S$. Note that the pointwise multiplication in A(G) makes S into an abelian semigroup. Let $M \in l^{\infty}(S)^*$ be a translation invariant mean. Define $\psi \in \operatorname{VN}(G)^*$ by

$$\langle \psi, \Phi \rangle = \langle M, \phi(u \cdot \Phi) \rangle, \quad \Phi \in \mathrm{VN}(G).$$

where $\phi(u \cdot \Phi)$ is considered as a bounded function on S (i.e. it is in $l^{\infty}(S)$). It is easy to check that ψ extends ϕ , and $\langle \psi, v \cdot \Phi \rangle = \langle \psi, \Phi \rangle$ for all $\Phi \in \text{VN}(G)$ and $v \in S$. Therefore, ψ is topologically invariant and $\langle \psi, T - aI \rangle \neq 0$. According to Chou [3, Lemma 4.2], there exists an $m_0 \in \text{TIM}(\widehat{G})$ such that $\langle m_0, T - aI \rangle \neq 0$, or $\langle m_0, T \rangle \neq a$. We have thus reached a contradiction. It follows that $T - aI \in E_{\mathbb{P}}(e)$ and hence $T \in W_{\mathbb{P}}(e)$.

In the following, G is always a non-discrete locally compact group. Recall that b(G) denotes the smallest cardinality of an open basis at e. Let μ be the initial ordinal with $|\mu| = b(G)$ and let $X = \{\alpha : \alpha \text{ is an ordinal and } \alpha < \mu\}$. Let $l^{\infty}(X)$ be the Banach space of all bounded complex-valued functions on X with the supremum norm and c(X) the subspace of $l^{\infty}(X)$ consisting of all $f \in l^{\infty}(X)$ such that $\lim_{\alpha \in X} f(\alpha)$ exists. In [16], we defined a subset of $l^{\infty}(X)^*$ as follows

$$\mathcal{F}(X) = \{ \phi \in l^{\infty}(X)^* : \|\phi\| = \phi(\mathbf{1}) = 1 \text{ and } \phi(f) = 0 \text{ if } \lim_{\alpha \in X} f(\alpha) = 0 \}.$$

It is shown that $|\mathcal{F}(X)| = 2^{2^{|X|}}$ (see [16, Proposition 3.3]). If Y is a Banach space and $K \subseteq Y^*$, we say that K contains $\mathcal{F}(X)$ if there is an onto bounded linear map $t: Y \to l^{\infty}(X)$ such that $t^*: l^{\infty}(X)^* \to Y^*$ satisfies $t^*(\mathcal{F}(X)) \subseteq$ K (it is easily seen that t^* is a $w^* \cdot w^*$ continuous norm isomorphism into). Z. HU

DEFINITION 3.2. Let $\aleph > 0$ be a cardinal. A non-empty subset B of G is called a G_{\aleph} -set if B is an intersection of \aleph many open subsets of G.

THEOREM 3.3. Let G be a non-discrete locally compact group. Let \mathbb{P} and \mathbb{Q} be A(G)-submodules of VN(G) such that \mathbb{P} is w^* -closed, \mathbb{Q} is norm closed, $\mathbb{P}_c \subseteq \mathbb{Q} \subseteq \mathbb{P}$, and $\sigma(\mathbb{P}) = F$. Assume that

(*) F contains a G_{\aleph} -set B with $\aleph < b(G)$,

and $e \in B$. Then $\mathbb{Q}/W_{\mathbb{Q}}(e)$ has $l^{\infty}(X)$ as a quotient.

If G is further assumed to be non-metrizable, then $\mathbb{Q}/W_{\mathbb{Q}}(e)$ contains an isomorphic copy of $l^{\infty}(X)$.

Proof. By the definition, B is a non-empty intersection of \aleph many open subsets of G. If G is metrizable, then B is open and $e \in B \subseteq int(F)$. By Granirer [13, Corollary 7], $\mathbb{Q}/W_{\mathbb{Q}}(e)$ has l^{∞} as a quotient.

We now assume that G is non-metrizable. By the injectivity of $l^{\infty}(X)$ (see [19, p. 105]), we only need to show that $\mathbb{Q}/W_{\mathbb{Q}}(e)$ contains an isomorphic copy of $l^{\infty}(X)$. We may also assume that \aleph is infinite and ν is the initial ordinal satisfying $|\nu| = \aleph$. Then $\nu < \mu$.

Suppose first that G is compactly generated. Let $(N_{\alpha})_{0<\alpha\leq\mu}$ be the decreasing net of compact normal subgroups of G as in [16, Proposition 4.3]. According to the construction of $(N_{\alpha})_{0<\alpha\leq\mu}$, this net can be chosen so that $N_{\nu} \subseteq B \subseteq F$ (see [16]). Let λ_{α} be the normalized Haar measure of N_{α} . Let $Q_0 = \lambda_1$ and $Q_{\alpha} = \lambda_{\alpha+1} - \lambda_{\alpha}$ ($0 < \alpha < \mu$). Then $(Q_{\alpha})_{\alpha<\mu}$ is an orthogonal net of projections in VN(G) (see [16]). For each $\nu \leq \alpha < \mu$, $Q_{\alpha} \in \mathbb{P}$ (since $\mathbb{P} = ({}^{\perp}\mathbb{P})^{\perp}$ and $\langle Q_{\alpha}, u \rangle = \int_{G} u \, d(\lambda_{\alpha+1} - \lambda_{\alpha}) = 0$ if $u \in A(G)$ and u = 0 on F). Also, $\operatorname{supp} Q_{\alpha}(\subseteq N_{\alpha})$ is compact. Therefore, $Q_{\alpha} \in \mathbb{P}_{c} \subseteq \mathbb{Q}$ for all $\nu \leq \alpha < \mu$. If $f \in l^{\infty}(X)$, let $\sum_{\alpha < \mu} f(\alpha)Q_{\nu+\alpha}$ denote the w^* -limit of $\{\sum_{\alpha \in \Lambda} f(\alpha)Q_{\nu+\alpha} : \Lambda \subset X \text{ is finite}\}$ in VN(G). Then $\sum_{\alpha < \mu} f(\alpha)Q_{\nu+\alpha} \in \mathbb{P}$ (since \mathbb{P} is w^* -closed) and $\operatorname{supp}[\sum_{\alpha < \mu} f(\alpha)Q_{\nu+\alpha}]$ ($\subseteq N_{\nu}$) is compact. So $\sum_{\alpha < \mu} f(\alpha)Q_{\nu+\alpha} \in \mathbb{P}_{c} \subseteq \mathbb{Q}$ for all $f \in l^{\infty}(X)$. Define $\tau : l^{\infty}(X) \to \mathbb{Q}$ by

$$\tau(f) = \sum_{\alpha < \mu} f(\alpha) Q_{\nu + \alpha}, \quad f \in l^{\infty}(X)$$

By [17, Lemmas 4.4 and 4.5], τ is a linear isometry of $l^{\infty}(X)$ into \mathbb{Q} and $\tau(c(X)) \subseteq F(\widehat{G}) \cap \mathbb{Q} = W_{\mathbb{Q}}(e)$ (Proposition 3.1 above). For $f \in l^{\infty}(X)$, define $\widetilde{f} \in l^{\infty}(X)$ by

$$\widetilde{f}(\alpha) = \begin{cases} 0 & \text{if } \alpha < \nu, \\ f(\beta) & \text{if } \alpha = \nu + \beta. \end{cases}$$

Then $\tau(f) = \sum_{\alpha < \mu} \widetilde{f}(\alpha) Q_{\alpha}$. By [17, Lemma 5.8], $\|\widetilde{f} + c(X)\| = \|\tau(f) + c(X)\|$

 $F(\widehat{G})$. Also, notice that $||f + c(X)|| = ||\widetilde{f} + c(X)||$. It follows that

$$\begin{aligned} \|\widetilde{f} + c(X)\| &= \|\tau(f) + F(\widehat{G})\| \\ &\leq \|\tau(f) + W_{\mathbb{Q}}(e)\| \quad \text{(by Proposition 3.1)} \\ &\leq \|f + c(X)\| \quad \text{(since } \tau(c(X)) \subseteq W_{\mathbb{Q}}(e)) \\ &= \|\widetilde{f} + c(X)\|, \end{aligned}$$

i.e. $\|\tau(f) + W_{\mathbb{Q}}(e)\| = \|f + c(X)\|$ for all $f \in l^{\infty}(X)$. Therefore, $\mathbb{Q}/W_{\mathbb{Q}}(e)$ contains an isometric copy of $l^{\infty}(X)/c(X)$. But $l^{\infty}(X)$ can be isomorphically embedded into $l^{\infty}(X)/c(X)$ ([17, Lemma 3.2]). Consequently, $\mathbb{Q}/W_{\mathbb{Q}}(e)$ contains an isomorphic copy of $l^{\infty}(X)$.

Generally, let G_0 be a compactly generated open subgroup of G. We may assume that $B \subseteq G_0$ (since we may assume that the closure of B is compact). Now G_0 is also non-metrizable with $b(G_0) = b(G)$. Let $r : A(G) \to A(G_0)$ be the restriction map. Then r^* is isometric (see Eymard [6]). Granirer showed that $r^*[\text{TIM}(\widehat{G})] = \text{TIM}(\widehat{G}_0)$ (see [10]) and hence $r^*[F(\widehat{G}_0)] \subseteq F(\widehat{G})$. Let $\mathbb{Q}_0 = \{T \in \text{VN}(G_0) : \text{supp} T \subseteq \overline{B}\}$. Then \mathbb{Q}_0 is a w^* -closed $A(G_0)$ submodule of $\text{VN}(G_0)$ with $\sigma(\mathbb{Q}_0) = \overline{B}$. Let $\tau : l^{\infty}(X) \to \mathbb{Q}_0$ be the same linear isometry as in the previous paragraph. We claim that $r^* \circ \tau[l^{\infty}(X)] \subseteq$ \mathbb{Q} . In fact, let $f \in l^{\infty}(X)$, then $\text{supp}[r^* \circ \tau(f)] \ (\subseteq \text{supp}[\tau(f)] \subseteq N_{\nu})$ is compact and $r^* \circ \tau(f) \in \mathbb{P} = (^{\perp}\mathbb{P})^{\perp}$ (by the definitions of r and τ , $\langle r^* \circ \tau(f), u \rangle = \langle \tau(f), r(u) \rangle = 0$ if $u \in ^{\perp}\mathbb{P}$). Therefore, $r^* \circ \tau(f) \in \mathbb{P}_c \subseteq \mathbb{Q}$. Also, since $r^*[\tau(c(X))] \subseteq r^*[F(\widehat{G}_0)] \subseteq F(\widehat{G})$, we have $r^* \circ \tau(c(X)) \subseteq F(\widehat{G}) \cap$ $\mathbb{Q} = W_{\mathbb{Q}}(e)$ (Proposition 3.1). Consequently,

$$\begin{split} \|f + c(X)\| &= \|f + c(X)\| \\ &= \|\tau(f) + F(\widehat{G}_0)\| \qquad \text{(by [17, Lemma 5.8])} \\ &= \|r^*[\tau(f)] + F(\widehat{G})\| \qquad \text{(by [17, Lemma 5.9])} \\ &\leq \|r^*[\tau(f)] + W_{\mathbb{Q}}(e)\| \qquad \text{(by Proposition 3.1)} \\ &\leq \|f + c(X)\| \qquad \qquad \text{(since } r^* \circ \tau(c(X)) \subseteq W_{\mathbb{Q}}(e)), \end{split}$$

i.e. $||r^*[\tau(f)] + W_{\mathbb{Q}}(e)|| = ||f + c(X)||$ for all $f \in l^{\infty}(X)$. It follows that $\mathbb{Q}/W_{\mathbb{Q}}(e)$ contains an isometric copy of $l^{\infty}(X)/c(X)$ and hence it contains an isomorphic copy of $l^{\infty}(X)$ (by [17, Lemma 3.2]).

The main result of this section is Theorem 3.4. The crux of its proof is actually contained in the proof of Theorem 3.3.

THEOREM 3.4. With assumptions on \mathbb{P} and \mathbb{Q} as in Theorem 3.3, if

(*) F contains a G_{\aleph} -set B with $\aleph < b(G)$,

then $\mathbb{Q}/W_{\mathbb{Q}}(x)$ has $l^{\infty}(X)$ as a quotient for all $x \in B$.

Furthermore, if G is non-metrizable, then $\mathbb{Q}/W_{\mathbb{Q}}(x)$ contains an isomorphic copy of $l^{\infty}(X)$ for all $x \in B$.

Proof. Let $x \in B$ and $y = x^{-1}$. Let L_y be the left translation on A(G) by y (i.e. $u \mapsto_y u, u \in A(G)$). Then L_y^* is a $w^* \cdot w^*$ continuous linear isometry of VN(G) onto itself. Define $\mathbb{P}' = L_y^*(\mathbb{P}), \mathbb{Q}' = L_y^*(\mathbb{Q}), F' = {}_yF$ and $B' = {}_yB$. Then \mathbb{P}' and \mathbb{Q}' are A(G)-submodules of VN(G) such that \mathbb{P}' is w^* -closed and \mathbb{Q}' is norm closed.

Also, B' is a G_{\aleph} -set with $e \in B' \subseteq F'$ and $F' = \sigma(\mathbb{P}')$. It is easy to check that $[\mathbb{P}']_c = L_y^*(\mathbb{P}_c)$ and hence $[\mathbb{P}']_c \subseteq \mathbb{Q}' \subseteq \mathbb{P}'$. But $L_y^*[W_{\mathbb{Q}}(x)]$ $= W_{\mathbf{Q}'}(e)$. Therefore, $\mathbb{Q}/W_{\mathbb{Q}}(x)$ is linear isometric to $\mathbb{Q}'/W_{\mathbb{Q}'}(e)$. It follows that $\mathbb{Q}/W_{\mathbb{Q}}(x)$ has $l^{\infty}(X)$ as a quotient (or contains an isomorphic copy of $l^{\infty}(X)$ when G is non-metrizable) because so does $\mathbb{Q}'/W_{\mathbb{Q}'}(e)$ (by Theorem 3.3).

Remark 3.5. (i) Theorem 3.3 improves [17, Theorem 6.9]. In [17], we only considered the case when $\mathbb{P} = \{T \in \text{VN}(G) : \text{supp } T \subseteq F\}$ and $\mathbb{Q} = \{T \in \text{UCB}(\widehat{G}) : \text{supp } T \subseteq F\}$ for some closed subset F of G satisfying condition (*), where $\text{UCB}(\widehat{G})$ is the norm closure of $\{T \in \text{VN}(G) : \text{supp } T \text{ is compact}\}.$

(ii) Note that if $\mathcal{D}(A(G)) = b(G)$ (e.g. if G is non-discrete and σ compact) then VN(G) is isometric to a subspace of $l^{\infty}(X)$. Hence the assertion " $\mathbb{Q}/W_{\mathbb{Q}}(x)$ has $l^{\infty}(X)$ as a quotient" means that the space $\mathbb{Q}/W_{\mathbb{Q}}(x)$ is as big as it can be.

(iii) Let G be non-metrizable and let π : VN(G) $\rightarrow l^{\infty}(X)$ be the bounded onto linear mapping as in [17, Theorem 5.1]. With the assumptions of Theorem 3.3, if we define $\pi' : \mathbb{Q} \rightarrow l^{\infty}(X)$ by

$$\pi'(T)(\alpha) = \pi(T)(\nu + \alpha), \quad T \in \mathbb{Q}, \ \alpha \in X,$$

where ν is the first ordinal with $|\nu| = \aleph$ (we may assume that \aleph is infinite), then it can be seen that π' is onto, $(\pi')^*$ is a linear isometry into, $\pi'(W_{\mathbb{Q}}(e)) \subseteq c(X)$ and $(\pi')^*(\mathcal{F}(X)) \subseteq \mathrm{TIM}_{\mathbb{Q}}(e)$. Also, $L_y^{**}(\mathrm{TIM}_{\mathbb{Q}'}(e)) =$ $\mathrm{TIM}_{\mathbb{Q}}(y^{-1})$, where L_y is the left translation on A(G) by y and $\mathbb{Q}' = L_y^*(\mathbb{Q})$. Therefore, we can add to the conclusion of Theorem 3.4 that $\mathrm{TIM}_{\mathbb{Q}}(x)$ contains $\mathcal{F}(X)$ for all $x \in B$ (this is also true if G is metrizable and non-discrete, see the following (iv)). In this situation, we have $|\mathrm{TIM}_{\mathbb{Q}}(x)| = 2^{2^{b(G)}}$ because $|\mathcal{F}(X)| = 2^{2^{b(G)}} = |\mathrm{TIM}(\widehat{G})|$ (see [16]) and $|\mathrm{TIM}_{\mathbb{Q}}(x)| \leq |\mathrm{TIM}(\widehat{G})|$ (see [14, Corollary 4]).

(iv) Granirer in [12]–[14] investigated operators in $\mathrm{PM}_p(G)$ $(1 with thin support. In particular, under the same assumptions on <math>\mathbb{P}$ and \mathbb{Q} as in our Theorem 3.4, he showed that $|\mathrm{TIM}_{\mathbb{Q}}(x)| \geq 2^{\mathfrak{c}}$ if there exist $a, b \in G$ such that one of the following two conditions is satisfied:

(1) \mathbb{R} (or \mathbb{T}) is a closed subgroup of G and there is a symmetric set $S \subset \mathbb{R}$ (or \mathbb{T}) such that $x \in aSb \subseteq F$;

(2) $x \in int_{aHb}(F)$ for some non-discrete subgroup of G

(see [14, Theorems 6 and 7]). Furthermore, if F is first countable, then it is proved that $\mathbb{Q}/W_{\mathbb{Q}}(x)$ has l^{∞} as a quotient and $\operatorname{TIM}_{\mathbb{Q}}(x)$ contains $\mathcal{F}(\mathbb{N})$ (see Granirer [13, Corollaries 6 and 7]). In this case, Granirer called \mathbb{Q} extremely non-ergodic at $x \in \sigma(\mathbb{Q}) = F$. Notice that if G is metrizable, then condition (*) of Theorem 3.4 implies that $B \subseteq \operatorname{int}(F)$; if G is non-metrizable and Fsatisfies (*), then condition (2) holds for all $x \in B$ but F is not first countable at each $x \in B$. Therefore, Theorem 3.4 combined with the above (iii) extends Granirer's results on extreme non-ergodicity of \mathbb{Q} to non-metrizable $\sigma(\mathbb{Q})$ with l^{∞} replaced by $l^{\infty}(X)$ and condition (2) by condition (*).

Recall that a Banach space Y is said to have the weak Radon–Nikodym property (or WRNP for short) if every Y-valued measure ξ on a finite complete measure space (S, Σ, η) which is η -continuous and of σ -finite variation has a Pettis-integrable derivative $f: S \to Y$ (i.e. $\xi(E) = P - \int_E f \, d\eta$ for each $E \in \Sigma$). See [20] for more information on the WRNP. It is known that if Y has the WRNP then Y does not contain any isomorphic copy of l^{∞} ([20, Proposition 4]). So, our isomorphic embedding results yield the following

COROLLARY 3.6. Let G be a non-discrete locally compact group. Then

(i) VN(G) does not have the WRNP;

(ii) \mathbb{Q} and $\mathbb{Q}/W_{\mathbb{Q}}(x)$ do not have the WRNP if G is non-metrizable and \mathbb{Q} and x are the same as in Theorem 3.4.

Proof. By [17, Theorem 5.1], VN(G) contains an isometric copy of $l^{\infty}(X)$. Also, according to Theorems 3.3–3.4 and their proofs, \mathbb{Q} and $\mathbb{Q}/W_{\mathbb{Q}}(x)$ contain an isomorphic copy of $l^{\infty}(X)$ if G is non-metrizable and \mathbb{Q} and x are the same as in Theorem 3.4. Consequently, all the spaces considered in Corollary 3.6 contain an isomorphic copy of l^{∞} . It follows that they do not have the WRNP. \blacksquare

R e m a r k 3.7. (a) Corollary 3.6(i) is included in Granirer [11, Theorem 5(a)], where he showed that if G in non-discrete then any nonzero ideal of $A_p(G)$ contains an isomorphic copy of l^1 and hence $PM_p(G)$ does not have the WRNP.

(b) A particular case of Granirer [12, Theorem 1], namely p = 2, implies that \mathbb{P} does not have the WRNP if G is amenable as a discrete group, \mathbb{P} is a w^* -closed A(G)-submodule of VN(G) and $\sigma(\mathbb{P})$ contains some compact perfect metrizable set.

4. Extreme non-Arens regularity of quotients of A(G). Let G be a locally compact group. For a closed ideal J of A(G), let $\mathcal{A} = A(G)/J$ and

let $q: A(G) \to \mathcal{A}$ be the quotient map. Then \mathcal{A} is a commutative Banach algebra and $q^*: \mathcal{A}^* \to \mathrm{VN}(G)$ is a linear isometry of \mathcal{A}^* onto $J^{\perp} = \{T \in \mathrm{VN}(G): \langle T, u \rangle = 0$ for all $u \in J\}$. In the following, we will identify \mathcal{A}^* with J^{\perp} . It is easily seen that $\mathrm{WAP}(\mathcal{A}^*) = W(\widehat{G}) \cap J^{\perp} \subseteq F(\widehat{G}) \cap J^{\perp}$.

Granirer in [14, Corollary 8] showed that if F = Z(J) satisfies (1) or (2) of Remark 3.4(iv) then A(G)/J is not Arens regular. If G is further assumed to be second countable, then A(G)/J is extremely non-Arens regular (ENAR) (see Granirer [13, Corollaries 6 and 7]). Granirer asked if this is the case when G is not second countable (see [14]). In this section, we will propose some conditions on G and Z(J) which guarantee that A(G)/J is ENAR.

Let μ be the first ordinal satisfying $|\mu| = b(G)$ and let $X = \{\alpha : \alpha < \mu\}$. Also, recall that for a Banach space Y, $\mathcal{D}(Y)$ denotes the density character of Y, i.e. the smallest cardinality of a norm dense subset of Y.

THEOREM 4.1. Let G be a non-discrete locally compact group with $\mathcal{D}(A(G)) = b(G)$. If J is is a closed ideal of A(G) such that

(*) Z(J) contains a G_{\aleph} -set with $\aleph < b(G)$,

then A(G)/J is ENAR.

Proof. Let $\mathcal{A} = A(G)/J$. Then $\mathcal{D}(\mathcal{A}) \leq \mathcal{D}(A(G)) = b(G) = |X|$. By Lemma 2.1, we only need to show that $\mathcal{A}^*/\operatorname{WAP}(\mathcal{A}^*)$ has $l^{\infty}(X)$ as a quotient.

For $x \in G$, let L_x be the left translation on A(G) by x. Then L_x is an isometric algebra isomorphism of A(G) and $Z(L_x(J)) = {}_{x^{-1}}Z(J)$. So we may assume that $e \in B \subseteq Z(J)$ for some G_{\aleph} -set B.

Let $\mathbb{P} = J^{\perp}$. Then \mathbb{P} is a w^* -closed A(G)-submodule of VN(G) with $\sigma(\mathbb{P}) = Z(J)$. By Theorem 3.3, $\mathbb{P}/W_{\mathbb{P}}(e)$ has $l^{\infty}(X)$ as a quotient. But $\mathcal{A}^* = J^{\perp} = \mathbb{P}$ and $WAP(\mathcal{A}^*) \subseteq F(\widehat{G}) \cap \mathbb{P} = W_{\mathbb{P}}(e)$ (Proposition 3.1). It follows that the quotient Banach space $\mathcal{A}^*/WAP(\mathcal{A}^*)$ has $l^{\infty}(X)$ as a quotient. \blacksquare

In Theorem 4.1, if $int(Z(J)) \neq \emptyset$, then condition (*) is automatically satisfied. In particular, we have

COROLLARY 4.2. Let G be a non-discrete locally compact group with $\mathcal{D}(A(G)) = b(G)$. Then A(G) is ENAR.

COROLLARY 4.3. Let G be a σ -compact non-discrete locally compact group. Let J be a closed ideal of A(G) such that Z(J) satisfies condition (*). Then A(G)/J is ENAR.

In particular, A(G) is ENAR for any σ -compact non-discrete locally compact group G.

Proof. According to Theorem 4.1, it suffices to prove that $\mathcal{D}(A(G)) = b(G)$.

If G is metrizable, then G is second countable (since G is σ -compact) and hence A(G) is norm separable. In this situation, $\mathcal{D}(A(G)) = \aleph_0 = b(G)$.

If G is non-metrizable, from [16, Lemma 5.2] we deduce that there exist b(G) many elements in A(G) such that the distance between any two of them is 2. So, $\mathcal{D}(A(G)) \geq b(G)$. On the other hand, $\mathcal{D}(L^2(G)) \leq b(G)$ because G is σ -compact. Therefore, $\mathcal{D}(A(G)) \leq b(G)$.

Recall that, for a closed subset F of G, I(F) denotes the closed ideal of A(G) consisting of all $u \in A(G)$ such that u = 0 on F. When F = H is a closed subgroup of G, we have the following

COROLLARY 4.4. Let G be a locally compact group and H a σ -compact non-discrete closed subgroup of G. Then A(G)/I(H) is ENAR.

Proof. This follows from Corollary 4.3 because A(G)/I(H) is isometrically algebra-isomorphic to A(H) (see [9, Lemma 3.8]).

For any non-discrete locally compact group G, let G_0 be a compactly generated open subgroup of G. Since $A(G_0)$ can be isometrically embedded into A(G), $\mathcal{D}(A(G)) \geq \mathcal{D}(A(G_0))$. From the proof of Corollary 4.3 we see that $\mathcal{D}(A(G_0)) = b(G_0) = b(G)$. Therefore, $\mathcal{D}(A(G)) \geq b(G)$ for any locally compact group G. It is natural to ask whether Theorem 4.1 holds when $\mathcal{D}(A(G)) > b(G)$. We will see that the answer to this question is positive for some closed ideals of A(G), such as those ideals J with Z(J) being a compact *s*-set. In this case, $J = I(Z(J)) = \{u \in A(G) : u = 0 \text{ on } Z(J)\}$.

THEOREM 4.5. Let G be a non-discrete locally compact group and J a closed ideal of A(G). If Z(J) is an s-set satisfying condition (*) and is contained in some σ -compact open subgroup G_0 of G, then A(G)/J is ENAR.

Proof. Let $\mathcal{A} = A(G)/J$. An analogous argument to the proof of Theorem 4.1 yields that $\mathcal{A}^*/\operatorname{WAP}(\mathcal{A}^*)$ has $l^{\infty}(X)$ as a quotient. So, to complete the present proof, it suffices to establish a linear isometry of J^{\perp} into $l^{\infty}(X)$ (by Lemma 2.1).

Let $r: A(G) \to A(G_0)$ be the restriction map and let $t: A(G_0) \to A(G)$ be the extension map defined by $tv = \vartheta$, where $\vartheta = v$ on G_0 and 0 outside G_0 . Then t is a linear isometry of $A(G_0)$ into A(G) and $||r|| \le 1$ (see [6]). Notice that $\mathcal{D}(A(G_0)) = b(G_0) = b(G) = |X|$ (see the proof of Corollary 4.3). Let $\{u_\alpha\}_{\alpha \in X}$ be norm dense in the unit ball of $A(G_0)$. Define $A: J^{\perp} \to l^{\infty}(X)$ by

$$\Lambda(T)(\alpha) = \langle T, tu_{\alpha} \rangle, \quad T \in J^{\perp}, \ \alpha \in X.$$

For each $u \in A(G)$, $u - t(ru) \in J$ because u - t(ru) = 0 on $G_0 \supseteq Z(J)$ and Z(J) is an s-set. Then

$$\langle T, u \rangle = \langle T, t(ru) \rangle$$
, for all $T \in J^{\perp}$ and $u \in A(G)$.

Z. HU

It follows that $||\Lambda(T)|| = ||T||$ for all $T \in J^{\perp}$, i.e. Λ is a linear isometry of J^{\perp} into $l^{\infty}(X)$.

COROLLARY 4.6. Let G be a non-discrete locally compact group and J a closed ideal of A(G). If Z(J) is a compact s-set satisfying condition (*), then A(G)/J is ENAR.

Proof. Since Z(J) is compact, there exists a compactly generated open subgroup G_0 of G such that $Z(J) \subseteq G_0$ (see [15, (5.14)]). It follows from Theorem 4.5 that A(G)/J is ENAR.

Remark 4.7. Let d(G) denote the smallest cardinality of a covering of G by compact sets. It can be seen that $d(G) \leq b(G)$ implies $\mathcal{D}(A(G)) = b(G)$. Therefore, 4.1 and 4.2 remain true if $\mathcal{D}(A(G)) = b(G)$ is replaced by $d(G) \leq b(G)$. Also, 4.3, 4.4, and 4.5 hold true if the σ -compactness of M is replaced by $d(M) \leq b(M)$, where M = G, H, and G_0 , respectively.

REFERENCES

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973.
- C. Chou, Topological invariant means on the von Neumann algebra VN(G), Trans. Amer. Math. Soc. 273 (1982), 207–229.
- J. Duncan and S. A. R. Hosseinium, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh 84A (1979), 309–325.
- [5] C. Dunkl and D. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501–514.
- [6] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236.
- B. Forrest, Amenability and bounded approximate identities in ideals of A(G), Illinois J. Math. 34 (1990), 1–25.
- [8] —, Arens regularity and discrete groups, Pacific J. Math. 151 (1991), 217–227.
- [9] —, Arens regularity and the $A_p(G)$ algebras, Proc. Amer. Math. Soc. 119 (1993), 595–598.
- [10] E. E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371-382.
- [11] —, On some properties of the Banach algebras $A_p(G)$ for locally compact groups, Proc. Amer. Math. Soc. 95 (1985), 375–381.
- [12] —, On convolution operators with small support which are far from being convolution by a bounded measure, Colloq. Math. 67 (1994), 33–60; Erratum, 69 (1995), 155.
- [13] —, Day points for quotients of the Fourier algebra A(G), extreme nonergodicity of their duals and extreme non-Arens regularity, Illinois J. Math., to appear.
- [14] —, On the set of topologically invariant means on an algebra of convolution operators on $L^p(G)$, Proc. Amer. Math. Soc., to appear.

- [15] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, New York, 1979.
- [16] Z. Hu, On the set of topologically invariant means on the von Neumann algebra VN(G), Illinois J. Math. 39 (1995), 463–490.
- [17] —, The von Neumann algebra VN(G) of a locally compact group and quotients of its subspaces, preprint.
- [18] A. T. Lau, The second conjugate of the Fourier algebra of a locally compact group, Trans. Amer. Math. Soc. 267 (1981), 53–63.
- [19] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, 1977.
- [20] K. Musiał, The weak Radon-Nikodym property in Banach spaces, Studia Math. 54 (1979), 151–173.
- [21] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. 15 (1965), 84–104.
- [22] A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math. 143 (1990), 377–399.

Department of Mathematics and Statistics University of Windsor Windsor, Ontario Canada N9B 3P4 E-mail: zhiguohu@uwindsor.ca

Received 25 January 1996