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ON A COMBINATORIAL PROBLEM CONNECTED WITH
FACTORIZATIONS

BY

WEIDONG GAO (BEIJING)

0. Let K be an algebraic number field with classgroup G and integer
ring R. For k > 1 and a real number x > 0, let a; = a;(G) be the maximal
number of nonprincipal prime ideals which can divide a squarefree element
of R with at most k distinct factorizations into irreducible elements, and let
Fj(x) be the number of elements o € R (up to associates) having at most
k different factorizations into irreducible elements of R. W. Narkiewicz [8]
derived the asymptotic expression

71+1/|G|(

Fy () ~ cpz(log) log log )",

where ¢, is positive and depends on k and K.

Recently, F. Halter-Koch [6-7] used the characterizations of ax(G) to
study nonunique factorizations.

In [8], Narkiewicz showed that a,(G) depends only on k and G, gave
a combinatorial definition of it and proposed the problem of determining
ax(G) (Problem 1145).

Let G be a finite abelian group (written additively). The Davenport
constant D(G) of G is defined to be the minimal integer d such that for
every sequence of d elements in G there is a nonempty subsequence with
sum zero. Narkiewicz and Sliwa [8-9] derived several properties of a;(G)
involving D(G) and proposed the following conjecture:

CONJECTURE 1. Let G =C,, & ... ®Cy, with1 <ny|...|n,.. Then
a1(G) =ny + ...+ n,, where C,, denotes the cyclic group of order n.

They affirmed Conjecture 1 for G = C%, C & Cy, C3 & C% or CF.

In this paper we derive several properties of ax(G), affirm this conjecture
for a more general case and determine as(C%) and a(C,,) provided that
n is substantially larger than k. The paper is organized in the following
way: In Section 1 we repeat the combinatorial definition of a;(G) due to
Narkiewicz [8] and give some preliminaries on a;(G) and D(G). In Section
2 we derive some new properties of a;(G) and show the following:
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THEOREM 1. Let G =C,, & ... C,, with1 <ny|...|n,, let p be a
prime with 2 < p < 151, and let us adopt the convention C° = Cy. Then
a1(G) = n1 + ... + n, provided that G is of one of the following forms
(m>1):

) 02t3s@02t357n, 0<t<1 0T0<S<1

2 0<t<lor0<s<l,

(1

( ) 2t3sp7
(3) C3,.
(4) CQt ) Cgtpm, 0<t<,

(5) Cotgs @ Cotgsp, 0 <t < 1,

(6) C3xse,

(7) C’4><5S’

B®)CraClaCom, 0 <t <1,

(9) Cr @ Ct @ Cymy, 0 <t < 1,1 >4 and 2™ >n+ 3t + 1,
(10) C3 & Ch @ Cm, 0 <t <1,

(11) C2 & Cf @ Cymy, 0 <t < 1,1 >4, and 3™ > 2n + 8t + 1,
(12) C2 ® Casm,m =1 orm > 4.

In Section 3 we derive some properties of a;(G) and show the following

THEOREM 2. If k> 2 and if

k< —logyn + \/2(log2 n)?2+n 41

then ap(Cyp) = n.

Remark 1. It is proved in [8, Proposition 9] that max{D(G), Y ;_, n;}
< ar(G) < @;(G) for 1 < k < [; therefore if Conjecture 1 is true, then
D(G) <ni+ ...+ n, and the best known estimation (see [3])

D(G) < n, <1 log |G|)

log n,.
would be improved. So it seems very difficult to settle Conjecture 1 in
general.

1. In what follows we always let GG denote a finite abelian group.

For a sequence S = (ay,...,a,,) of elements in G, we use »_ S to denote
the sum E:L a;. By A we denote the empty sequence and adopt the con-
vention that > A = 0. We say S a zero-sum sequence if > S = 0. A subse-
quence T of S is a sequence T' = (a;, , ..., a;,) with {i1,... i} C {1,...,m};
we denote by Ir the index set {iy,...,%;}, and identify two subsequences
Sp and Sy if Ig, = Ig,. We say two subsequences S; and Sy are disjoint
if Is, N Is, = 0 (the empty set) and define multiplication of two disjoint
subsequences by juxtaposition.
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A nonempty sequence B of nonzero elements in G is called a block in G
provided that Y B = 0; we call a block irreducible if it cannot be written
as a product of two blocks.

By a factorization of a block B = (by,...,b;) we shall understand any
surjective map

e:{1,...,k} = {1,...,t}

with a certain positive integer ¢ = t(¢) such that, for j = 1,...,¢, the
sequences B; = (b; : ¢(i) = j) are blocks. If they are all irreducible, we
speak about an irreducible factorization of B. Obviously, we have B =
By ... B;. Two such factorizations ¢ and ¢ are called strongly equivalent if
t(¢) = t(¢) (= t say) and for a suitable permutation 0 the sets {i : (i) = j}
and {¢(i) = 6(j)} coincide for j = 1,...,t. For k > 1, we define By(G) to
be the set consisting of all blocks which have at most k strongly inequivalent
irreducible factorizations, and let a;(G) = max{|B|: B € Bi(G)}.

For a sequence S of elements in G, we use Y (S) to denote the set
consisting of all elements in G which can be expressed as a sum over a
nonempty subsequence of S, i.e.,

S ={>T:rrT TCS},

where T' C § means that T is a subsequence of S.

LeEMMA 1 ([9, Proposition 2]). Let B = B;...B, € B(G) and let
Bi,..., B, be irreducible blocks. Then B € Bi(G) if and only if for all
disjoint nonempty subsets X,Y of {1,...,r} we have

Z(ig(Bi)nZ(gBi) — {0},

LEMMA 2 ([9, Proposition 6]). If B=DBj ...B,.€B1(G) and if By,..., B,
are irreducible blocks, then |B1]...|B;| < |G]|.

LEMMA 3 (]9, Proposition 3]). Let B = B;y...B, € Bi(G) and let
By, ..., B, be irreducible blocks. Then |B] < D(G)+r —1.

For a sequence S of elements in G, let fg(S) (resp. fo(S)) denote the
number of zero-sum subsequences T of S with 2| |T| (resp. 21|T|), where
we count fg(.S) including the empty sequence; hence, we have fg(S) > 1.

LEMMA 4. Let p be a prime. Then the following hold.
(i) D(Cn1 ®Cp,) =n1+n2—1 (n1|ng) ([11)).
(i) D(C3,:) = 6p° — 2 ([2]).
(i) D(CE ) =9 x 2t 2 ((3]).
) D@y Cpes) = 1+ S0, (0% = 1) ([10)).

(iv
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(v) If S is a sequence of elements in @le Cpei with |S| > 1 +
Siea(p® — 1), then fu(S) = fo(S) (mod p) ([2], [10])-

LEMMA 5. Let H = Cp, & ... & Cy, with 1 < ny| ... |n;, ni|n, and
DH®C?)=2(n—1)+ D(H). Then D(H & C,) =n—1+ D(H).

Proof. By the definition of Davenport’s constant one can choose a
sequence T' = (a1, ..., apHaeC,)—1) of D(H © Cy,) — 1 elements in H © C,
such that 0 € > (7). Put b; = (a;,0) with 0 € C,, for i = 1,...,D(H &
C,) — 1, and put b; = (0,1) with 0 € H® C,, and 1 € C), for i = D(H &
Cn)y--.sD(H®Cy)+n—2. Clearly, b € H® C2 fori = 1,...,D(H @
Cpn) +n — 2 and the sequence by, ...,bpggc,)+n—2 contains no nonempty
zero-sum subsequence. This implies that

D(H®C,)+n—1<D(HoC?).
Similarly, one can prove that
D(H)+n—1<D(H®C,),
so we have
D(H)+2(n—1)<DH®C,)+n—1<D(H®C?) = D(H)+2(n—1).
This forces that D(H @ C,,) = D(H) +n — 1 as desired.

LEMMA 6. Let H = Cp,, @ ... ® Cy, with 1 < ny| ... |n;, and n;|n.
Suppose that n > D(H) and D(H & C%) = 2(n — 1) + D(H). Then any
sequence S of 2(n — 1) + D(H) elements in H ® C,, contains a nonempty
zero-sum subsequence T with |T| < n.

Proof. Suppose S = (a1,...,a2(n—1)+p(m))- Fori=1,...,2(n—1)+
D(H) we define b; = (a;,1) with 1 € C,. Clearly, b; € H & C2%. Since
D(H @ C?) =2(n — 1) + D(H), the sequence by, ..., ba(n—1)+D(H) contains
a nonempty zero-sum subsequence T'. By the definition of b;, we must have
n||T|. But n > D(H) —1,s0 |T| <2(n—1)+ D(H) < 3n — 1, and this
forces that

|T|=n or |T|=2n.

If |T| = n we are done. Otherwise, |T'| = 2n. By Lemma 5, D(H&C,,) =

n—14+ D(H) <2n — 1, so one can find a nonempty zero-sum subsequence

M of T with |[M| < |T|. Setting W equal to the shorter of M and T — M
(the subsequence with index set I — Ip) completes the proof.

LEMMA 7. Let H = Cp, & ... & Cy, with 1 < ny| ... |n;, and n;|n.
Suppose that n > D(H) and D(H & C?) = 2(n — 1) + D(H). Then any
zero-sum sequence S of elements in H & C,, with |S| > n+ D(H) contains
a zero-sum subsequence T with |S| —n < |T| < |S].
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Proof. We distinguish three cases.
Case 1: |S| > 2(n—1)+D(H). Then the lemma follows from Lemma 6.

Case 2: n+ D(G) < |S| < 2n. By Lemma 5, we have D(H & C,,) =
n — 1+ D(G), thus there exists a zero-sum subsequence W of S with 1 <
|[W| < |S]. Setting T equal to the longer of W and S — W proves the lemma
in this case.

Case 3: 2n+1< S| <2n—3+ D(H). We define

y — {(ai,1) with 1 € Gy ifi=1,...,]9,
*1(0,1) with0e H® C,, and 1€C,, ifi=|S|+1,...,2(n—1)+D(H),

and similarly to the proof of Lemma 6 we find a zero-sum subsequence W
of b1,...,ba(n—1)+p(m) With [W|=n or 2n. Put

J— {1,...,]S|} = Iy if W| =n (not necessarily Iy C {1,...,[S|}),
"\ Iw —{|S|+1,....2(n— 1) + D(H)} if [W| = 2n,

and let T" be the subsequence of S with I = J. Clearly, > T = 0 and
|S| —n < |T| < |S|. This completes the proof.

We say two nonempty sequences S = (ay,...,ay,) and T = (by,...,by)
of elements in C,, with the same size m are similar (written S ~ T') if there
exist an integer ¢ coprime to n and a permutation ¢ of 1,...,m such that
a; = cby(y for i =1,...,m. Clearly, ~ is an equivalence relation. For any
x € C,, we denote by |z|,, the minimal nonnegative inverse image of = under
the natural homomorphism from the additive group of integers onto C,.

LEMMA 8 ([1], [4]). Let S = (a1, ...,an—k) be a sequence of n—k elements
in Cp, with n > 2. Suppose that 0 ¢ > (S) and suppose that k < n/4 + 1.
Then
S~ (1,...,1,1)1,...,(1}]@,1),
——
n—2k+1
with all x; #0 .

2. In this section we derive some properties of a;(G) and prove Theo-
rem 1.

PROPOSITION 1. Let G = @le Cpei with p an odd prime, let B =
B;...B, € B1(G) and let By,...,B, be irreducible blocks. Suppose that

exactly t of |Bi|,...,|B.| are odd. Then |B| < D(G)+t— 1.
Proof. Without loss of generality, we assume that |Bi|,...,|B;| are
odd and that |Bi1],...,|By| are even. Let D; C B; with |D;| = |B;|— 1 for

1=1,...,t,and put S = D;...DyB¢y1 ... B,.. By the choice of Dy,..., D;
and the hypothesis of the proposition, all zero-sum subsequences of S consist
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of all products of the form B;, ... B;, with! > 0and t+1 <1 < ... <74 <.
This gives

_(r—t r—t r—t r—t\ ¢
fE(S)_< 0 >+< ) >+< 5 >+...+<T_t>_2
and fo(S) = 0. But pt2, therefore fg(S) # fo(S) (mod p). Now it follows
from Lemma 4(v) that |B| —t = |S] < Zle(pei —1) = D(G) — 1, that is,
|B| < D(G) +t—1.

PROPOSITION 2. Let H = Cp, ® ... ® Cy, be a finite abelian group
with 1 < ny|...|ng, and let G = H & Chy with ny|n. Suppose that (i)
m > 4 and n > D(H), and (ii) D(H & C?) = 2(n — 1) + D(H). Then
a1(G) < a1(H & C,,) +nm —n; moreover, if ai(H®Cp) =n+ni+...4+mn
then a1 (G) =nm+ny +...+ny.

Remark 2. From Lemma 4(ii)—(iv) we see that there exists a large
class of pairs of (H,n) satisfying conditions (i) and (ii) of Proposition 2.

LEMMA 9. Let s, r, a, b be positive integers such that a > 2, 2a < b and
(r—1)0b>s>ar. Letl,z1,...,x; be positive integers satisfying

(@)1=,
(i) z1 + ...+ x;, = s,
(iii) a < xy,...,2; < b.
Suppose r1 = ny,...,xr; = ng are such that the product x1 ...x; attains its

minimal possible value. Then (a) there is at most one i such that a # n; # b;
and we may assume (b) | =r.

Proof. (a) If there are 7,5 with 1 < ¢ # j < such that a < n;,n; <
b, without loss of generality, we assume that a < n; < n; < b. Then
(n; —1)(nj + 1) < nyn;, therefore if we take x; = n; —1,2; = n; + 1 and
xr = ng for k # 4,7, then 1 ...x; < ni...n;, a contradiction. This proves
(a).

(b) Let [ be the smallest integer satisfying [ > r and the hypothesis of the
lemma. If [ > r + 1, then since s < (r — 1)b, there are at most r — 2 distinct
indices i such that n; = b, so by (a), there are at least two indices i and j
such that n; = n; = a; without loss of generality, we assume n;_1 = n; = a.
Now let z; =n; fori=1,...,l—2and set ;_1 = n;_1+n; = 2a < b. Then
x1...x1—1 < ny...ng, a contradiction. This proves (b) and completes the
proof.

Proof of Proposition 2. Lett =a1(G)—nm—ny —...—n; > 0.
It is sufficient to prove that there exists a block in By (H & C),) of length not
less than nq +...+n;+n-+t. To do this we consider a block A = A4;... A, €
Bi(G) with |A| = a1(G) = nm +ny + ... + n; + t, where A;,..., A, are
irreducible blocks.
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By rearranging the indices we may assume that

A= (CLl, <o Omndng 4. 4ng+t—r bla o 7b7‘)
with b; € A; fori=1,...,r.
We assert that
(1) r<mni+...+n.

Assume r > njy +...+n;. Since it is well known that D(H) > ny +...+
n; — 1+ 1 (see for example [2]), we have n > D(H) >ny +...+n; — 1+ 1.
Now by Lemma 9,

|A1| ... |Ar]| > (nm4ny 4+ ...+ g+t —2r)2"

mn+t—mng —... —mng)2mttm
(m—1)n—10+1)2"...2™
(m—1)n—-1014+1)2n1)...(2n;)

mnny ...n; = |G|

~~ I~

vV IV IV V IV

this contradicts Lemma 2 and proves (1).

It is well known that there exists a homomorphism ¢ from H & C,,,,, onto
H & C,, with ker ¢ = Cy,, (up to isomorphism).

For a sequence S = (s1,...,$,) of elements of H @ C,,.,,, let p(.S) denote
the sequence (¢(s1),...,9(sy)) of elements of H & C),. Since nm + nq +
oot +t—r >nm = (m—2)n+ 2n and n > D(H), by Lemmas 6
and 7 one can find m — 1 disjoint nonempty subsequences Bi,..., B;_1
of (a1,..., Gmntni+.. +ny+t—r) With Y @(B;) =0 for i =1,...,m — 1, and
|B;| <mnfori=1,...,m— 2. Therefore

ZBi € kerp =C,,

fori=1,...,m—1.

Since A = A; ... A, is the unique irreducible factorization of A and b; €
A; for i =1,...,r, the sequence _ By,...,> . B,,_1 contains no nonempty
zero-sum subsequence, and it follows from Lemma 8 that > B; = ... =
> B,,—1 = a (say) and a generates Cy,.

Let A;y,...,A;, (v>0) be all irreducible blocks contained in A — By —
... — By,—2. Since A € B1(G), it follows that A;,,...,A;, are disjoint, so
one can write

A_Bl_--~_Bm—2:Ail-HAiuB/-

Then B’ contains no nonempty zero-sum subsequence and

ZB’:ZA—ZBI—...—ZBm_Q—ZAil—...—ZAiv:2a.

Now we split the proof into steps.
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Step 1: ¢(B1),...,9(Bm—2) and p(A;,),...,0(A;,) are irreducible
blocks in H®C,,. If for some i with 1 < i < m—2,¢(B;) is not an irreducible

block in H&C,,, then there exist two disjoint nonempty subsequences B;, B

of B; such that " o(B!) => ¢(B/) =0 (in H®C,,) and B; = B.B!'. Then
> Bl e Cp, Y. B! € Cp,, and the sequence Y By,...,>. B;—1,>, B., > BY,
> Bit1,---,» Bm—1 contains a nonempty zero-sum subsequence. This con-
tradicts b; € A; for i = 1,...,r and proves ¢(B1),...,p(Bm—2) are irre-
ducible blocks.

If for some j, ¢(A;,) is not an irreducible block in H@®C,,, then there exist
two disjoint nonempty subsequences A;j,A;’j of A;; such that ) gp(Agj) =
> (A7) =0(in H&Cy) and A;; = A; A} It follows from A € B (G) that
> Bi,..., Y . Bm_2,> Agj contains no nonempty zero-sum subsequence, so
by Lemma 8, ZA;J_ = a, and therefore, ZB/Angl ...Bh_3 = 0. This
clearly contradicts A = Ay ... A, € B1(G) and completes the proof of this
step.

Step 2t ¢(B1)p(A4i,)...p(A;,) € Bi(H @ C,,). Assume otherwise.
Then there exist B] C By, A; C A;,,..., A} C A;, such that ) ¢(B]) =
>op(Af .. Af)) and A;; # Aj # A for at least one j with 1 < j < w.
Therefore, > By — > A} ... A; € Cy, 50 Y (B1 — B))A] ... A; € Cp.
Noting that m > 4,> By = a and ) B’ = 2a, it follows from Lemma 8 that
the sequence ) (By — By)A] ... Ai,,> Ba,...,> Bpn_2,) B’ contains a
nonempty zero-sum subsequence. Clearly, such a subsequence must contain
the term ) (By — B})A], ... A; , contrary to A € B(G).

Step 3: We distinguish two cases.
Case 1: |B’| <2n. Then
lp(B1)e(Aiy) - p(Ai,)| = |B1di, ... A, |
=|A| = |B'| = |B2| — ... — |Bm—2]
>JAl—=2n—(m—=3nm>n+ny+...+n;+t,
as desired.

Case 2: |B’| > 2n. Then |B’| > n+ D(H). By Lemma 7, there exists
a subsequence T' of B’ such that > o(T) = 0 and |B'|—n < |T| < |B’|. Put
W =B’ —T. Then

1 <|W]|<n.

Since a generates C,, and B’ contains no nonempty zero-sum subsequence,
>>T'=fawithl < f<m-1 If3<f<m-—1,let A,,,...,A,, beall
irreducible blocks which meet 7' (i.e. 14, NIz # 0 fori=1,...,h). Since
>TBy...Bp—y =) TBy...Bp_sy1 =0, it follows from A = A;... A, €
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B (G) that By...By—f = Ay, ... Ay, —T = By...By,,_¢41. This contra-
dicts the disjointness of By, ..., B,,_2. Hence

ZT:aor 2a.

But YT+ > W =2a and > W # 0, so we must have ). T = > W = a.
Let T' be a nonempty subsequence of T with Y ¢(7”) = 0. Then by using
the same method one can prove that 7" = a. This forces that 7/ = T
and implies that

©(T) is an irreducible block in H & C,,.
We assert that
P(T)p(Aiy) .- p(Ai,) € Bi(H @ C).

Assume to the contrary that there exist 7" C T, A C A;,,..., Aj C A;,
such that - o(T"A4] ... A} ) = 0 and A;; # Aj # A for some 1 < j < w.
Then ) T'Aj ... A; € C,,. Notice that the sequence ) By,...,>  Bpn_2,
W, T'AL ... A} must contain a nonempty zero-sum subsequence and
such a subsequence must contain the term ) 7"Aj ... Aj . This clearly
contradicts A = A;...A, € Bi(G) and proves the assertion. Now the
theorem follows from |o(T)p(A;,)...p(Ai,)| =nm+ny + ...+ n +1t —
|B1|—...— |Bm—2| = [W| >n+ni+...4+mn;+t. This completes the proof.

PROPOSITION 3. If D(C2) = 3n — 2, then

(i) a1(Cp ® Cay) < a1(C?) + n;

(i) a1(Cp @ C3,) < a1(C) + 2m;

(iii) a1(C3,) < a1(C?) + 2n, and

(iv) a1(C3,) < a1(C?) + 4n.

Proof. Put H =C, ® C,, and G = Cj;, ® C,,,,. It is well known that
there exists a homomorphism ¢ from G onto H such that ker p = C; & (),
(up to isomorphism). We use the same notation A = A; ... A, € B1(G), ¢,
©(S) as in the proof of Proposition 2.

(i)k=1,1=n,m=2. Let t = a1(C,, ® Cs,,) — 3n. Clearly, it is
sufficient to prove that there exists a block in B;(C2) of length not less
than 2n + ¢. If ¢ = 0, then the proposition follows from Remark 1, so we
may assume that ¢ > 1, and r > 3 follows from Lemma 3. We assert that

max{|A],...,|A:|]} > 2n+t.

Otherwise by Lemma 9 we get |A1]...|A4.| > 2n+t)n > 2n? = |C,, ® Cay|;
this contradicts Lemma 2 and proves the assertion. So we may assume that

|A.| > 2n +t.

By using Lemmas 7 and 4(i) one can find a subsequence B; of A, such
that > ¢(B1) = 0 and |A,.| — n < |B1| < |A,|. Put Bo = A, — B;. Then
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dYp(B2) =0. So ) By € Cq,). By € Co, and clearly Y B1=>_ By=1.
It is easy to prove that ¢(B1),¢(B2), (A1),...,o(A,_1) are all irreducible
blocks in C2, and similarly to the proof of Proposition 2 one can get
©(B1)p(A1) ... p(A,—1) € B1(C?). Now (i) follows from |p(B1)p(Ay)...
o o(Ars1)| > 2n 4+t

(i) k = 1,1 = n,m = 3. Let t = a1(C,, ® Cs,) — 4n. Similarly
to (i) we may assume that ¢ > 1 and by Lemma 3 we have r > 3, and
similarly to (i) we get max{|A44|,...,|A,|} > 3n +t, so we may assume
that |A,.| > 3n + t. By using Lemmas 4(i), 6, and 7 we get three disjoint
subsequences By, Bg, B3 of A, such that > ¢(B1) =Y ¢(B2) = > p(Bs) =
0 and ‘Bl| <n, |Ar—Bl| —n < |BQ| < |AT—B1|, and B3 = AT—Bl — B .
Clearly, >’ By = > By =) Bs =a (say) and a = 1 or 2. Now (ii) follows
in a similar way to (i).

(iii) k =n, l =m = 2. Let t = a1(C3,) — 4n. If t = 0, then (iii) follows
from Remark 1, so we may assume that ¢ > 1. Clearly, it is sufficient to
prove that there exists a block in B;(C?) of length not less than 2n + t.

Since a;(C3,) > 4n + 1, by Lemmas 3 and 4(i) we have r > 3. If
max{|A1|,...,|4;|} < 3n, then by Lemma 9 we have |A;|...|4,| > 2(n +
2 —2)(3n — 1) > 4n? = |C3,|. This contradicts Lemma 2, so we may
assume that |A,| > 3n, and by using Lemmas 6 and 7 we find three disjoint
subsequences By, Ba, Bs of A, such that > ¢(B1) =Y ¢(B2) = > ¢(Bs) =
0 and |Bl‘ <n, |A7« — Bl| —n < |B2| < ‘AT — Bl‘, and B3 = Ar — By — Bs.
Noticing that D(C3) = 3 we can prove (iii) similarly to (i).

(iv) k =n,l = m = 3. Let t = a1(Cs,) — 6n. Similarly to (iii)
we may assume that ¢ > 1, and r > 3 follows from Lemmas 3 and 4(i).
Furthermore, we may assume n > 3 for otherwise (iv) reduces to (iii). If

max {|A1],...,|A:|} < 5n, then by Lemma 9 we have |A4]...|4,| > 2(n +
2 —2)(5n — 1) > 9n? = |C3,|. This contradicts Lemma 2 and proves that
max {|A1],...,|4,|} > 5n. Now (iv) follows in a similar way to (iii) upon

noting that D(C%) = 5. This completes the proof.
COROLLARY 1. If a1(C?) = 2n and D(C2) = 3n — 2, then
(i) a (C’ ® Csp) = 3n;

( ) n D an) = 4TL
(iii) al(C'Qn) =4n, and
(iv) a1(C3,,) = 6n.

Proof. This follows from Remark 1 and Proposition 3.

LEMMA 10 ([2, Theorem (2.8)]). Let p be a prime, H a finite abelian
p-group, and let S be a sequence of D(H) — 2 elements in H. Suppose that
fe(S) — fo(S) #0 (mod p). Then all elements not in > (S) are contained
in a fixed proper coset of a subgroup of H.
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P. van Emde Boas ([2, Theorem (2.8)]) stated the conclusion of Lemma
10 for the case fg(S) =1 and fo(S) = 0, but his method does work for the
general case. For covenience, we repeat the proof here.

Proof of Lemma 10. In the proof we shall use mutiplicative nota-
tion for H, and in all other cases in this paper, additive notation will be
used.

Let H = Cper @ ... ® Cper with 1 < e; < ... < e, and suppose S =
(91,---,9k), where k = D(H) —2 = -k — 1+ Zlepei. Put N(S,g) :=
Neven — Nodd where Neyen(odd) is the number of solutions of the equation

my M2

gl 92 . glznk:ga mi:Oa]-a

with Z _, m; even (odd).
We denote by Fj, the p-element field. We multiply out the product

(1-g1)(1=g2)... (1= gx)
in the group ring F,[H]. Then
k
(2) H (1—g:) Z N(S,9)g
i=1 geH

If g" =1 (g € H), then it is well known that the following equalities
hold in F,[H]:

(3) (1-g)"" =0,
(4) (1—g" ' => ¢
v=0

(5) (1—gp" 2 ng -1,

Let z1,...,x, be a basis for H where z; has order p®. Then g; =
x{“...x{fi’", 0< fi; <p% —1,i=1,...,k, j=1,...,r. Now, we have
k k
[0 -9 =T[a-af" . .afn)
i=1 i=1

1-—(1—-1—z)f .. (1=1 =)

I

s
I
—

Il
i :w

Z fis (U= 25) + hi(1 = 25)? + aij (1 - z5)°),
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where hij = %(fm - 1)fij and Q5 € Fp[H]. Now from (3) and £ = —1 +
Soi_1(p® — 1) we derive that
k

k r
[T =00 =D (Fi (1 = a5) + hiz(1 = 2;)%),

i=1 i=1j=1
and it follows from (3)—(5) that

k r p%i—1 ‘ r pi—1 r p%i—1
© o= =cll X o+ a( X et ) 1 X =
i=1 =1 j=0 i=1 v=1 ];1 v=0
j#i

where ¢; € F),.

() | m)

For every g € H, write g = = . Then from (6) we derive

that
k

[Ta=9)=> (co+eci(nile) + 1) +... +er(r(g) +1))g.
i=1 g€H
This together with (2) implies
N(S,g) = Zcin(g) + Z Ci-
i=1 i=0
Now by the hypothesis of the lemma we have
D i =N(S,1) = fe(S) = fo(S) #0 (in F).
i=0

It follows that all elements g not in ) (S) satisfy the equation

T T
Zcm(g) = - Zci # 0,
i=1 i=0
and this equation defines a proper coset. This completes the proof.

LEMMA 11. Let p be an odd prime, and let A= A;... A, € Bl(Cg) with
A1,..., A, irreducible blocks. Suppose that |A| =2p+t and t > 1. Then at
least 4+t of |A1],...,|Ay| are odd.

Proof. Suppose that exactly [ of |A4],...,|A,| are odd. Then ! > 2+¢
follows from Proposition 1 and Lemma 4(iv).

Assume the conclusion of the lemma is false. Then [ = 2+t follows from
the obvious fact [ = 2p+t =t (mod 2). Without loss of generality, we may
assume that |Aq],...,|A24¢| are odd and that |Asy¢l,...,|A,| are even. We
next show that

pllAyl.
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We fix a; € A; for i =1,...,2 +t, take any x € A1 — (a;1), and set
S = (Al - (CLl,SU))(Az - (ag)) e (A2+t - (a2+t))A3+t .. .AT.
Clearly, fe(S) =2""%7", fo(S) =0, |S| =2p—3 = D(C?) -2, and

{—a1,—a1 —ag,...,—ay —astt, —x,—T — ag,...,—T — Qg4 } N Z(S) =0.

Now it follows from Lemma 10 that there exist a subgroup H of Cg and an
element g € C’i — H such that

{—a1,—ay —ag,...,—ay — agy¢,—x,—x —as,... —xr —ass} C g+ H.
This implies that z —ay = (—a1) — (—z) € H,a2 = (—a1) — (—a1 — a2) €
H, so we have H = (as). Since x was arbitrary, any element of A; is in
a1 +H =g+ H. Now |Ai|(g+ H) =0 (in C3/H) follows from ) A; = 0;
but g + H # 0 (in C?/H), hence, p||A;|. Similarly, one can prove that
pl|Asl,. .- p||Asye]. This yields [A] > Ay +...+]Asye > (2+0)p > 2p+1,
a contradiction. This completes the proof.

LEMMA 12. Let p be a prime with 2 < p < 151. Then a1(C}) = 2p.

Proof. We may assume that p > 5; for p < 3 see [9].

Assume to the contrary that a;(C7) # 2p. Then one can find a block
A=A.. A ¢ Bl(C'g) with |A| = 2p +t and t > 1, where Ay,..., A,
are irreducible blocks. Suppose exactly [ of |Ai],...,|A4,| are odd. Then
| > 4+t follows from Lemma 11.

If p=>5,then 2 x5+t=|A >3l >3(4+1t) > 10+ ¢, a contradiction.
Hence, 7 < p < 151 and it follows from | > 4 + ¢ > 5 that |A]...|A,| >
3*(2p + 1 —12) = 162(p — 5.5) > p?, a contradiction to Lemma 2. This
completes the proof.

LEMMA 13. a1 (C2) =2 x 5°.

Proof. We proceed by induction on s. If s = 1, then the assertion
follows from Lemma 12.

Taking s > 2 we assume that the lemma is true for s — 1. Assume
to the contrary that a;(C2.) # 2 x 5°. Then one can find a block A =
Aj.. A, € B1(CZ) with |[A| = 2 x 5%+t and t > 1, where Aj,..., A,

are irreducible blocks. By Proposition 1, at least three of |A4],...,|A.|
are odd. If max{|A1|,...,]4.|} < 9 x 571, then by Lemma 9 we have
|A1] .. JAR] > 3% (5571 —1)(9x 57t —1) > (5°)? = |CZ.|. This contradicts

Lemma 2 and shows that max{|A;|,...,|A.|} > 9 x 5571, Note D(C2) =9
and similarly to the proof of Proposition 3 one can derive a contradiction.
So we complete the proof.

Proof of Theorem 1. Obviously, (1)—(7) follow from Corollary 1,
Lemma 12, Lemma 13, Lemma 4 and Proposition 2. So to prove the theorem
we only need to consider (8)—(12).
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(8) We only consider the case of t=1; one can deal with the case of t=0
similarly. Assume to the contrary that a,(C3 & Cy & Com) # 2n+442™.
Then one can find a block A= A;... A, € Bi(C} & C} & Com) with |A] =
2n +4 + 2™ 4+t and ¢t > 1, where Aq,..., A, are irreducible blocks. It
follows from Lemma 3 that » > n + 3 and this implies that |A4]...]|A.| >
2nT2(2m 4 1) > |CF & Cy @ Cam|, a contradiction to Lemma 2.

(9) follows from Proposition 2, Lemma 4 and the conclusion of (8).

(10) As in (8) we only consider the case of ¢ = 1. Assume to the contrary
that a1(Cy ® Cy @ C3m) # 3n+ 9 + 3™. Then one can find a block A =
A1.. A, € Bi(CY ® Cy ® Cym) with |A] = 3n+9+3"+¢and t > 1,
where Aq,..., A, are irreducible blocks. It follows from Proposition 1 that
at least m + 3 of |A4],...,|A4,| are odd. This implies that |A1]...|4,| >
3T3(3m + 1) > |CF @ Cy & C3m|, a contradiction to Lemma 2.

(11) follows from Proposition 2, Lemma 4 and the conclusion of (10).

(12) The proof is similar to that of (10) and we omit it here. Now the
proof is complete.

3. In this section we consider a;(G) with k > 2.

PROPOSITION 4. Let B € By(G) — B1(G), and let B = [[;" By, ,i =
1,2, be the two strongly inequivalent irreducible factorizations of B, where
Bij, 1<:<2, 1< 5 <ry, are all irreducible blocks. Then

|B| < max{ry,m2} + D(G) — 1.

Proof. Suppose ry > ry and B = (by,...,b;). Put E; = IBIJ- for
j=1,...,r and F; = IB2j for j =1,...,70. We have By, = (b; : 1 € Ej)
and BQJ. = (bz NS F])

For j =1,...,72, we define D, to be the set {i : E;NF; #0,1 <4 <r}.
We assert that

Dy,...,D,, has a system of distinct representatives.

Deny the assertion; by Hall’s Theorem ([5], p. 45) there exists a nonempty

subset {i1,...,4;} of {1,...,r2} such that
‘Dil U...UDit‘ < t.

Suppose D;, U...UD;, ={f1,..., fm}. Then m < t. By the definition

of Dj, 1 <j < ry, we have
Fi, U...UF, gEfl U...UEfm.

Set £ = (Efl U...UEfm) — (le U...UFZ‘t) and By = (bz 11 € E)

Clearly, By is a block or the empty sequence, and we have
B=DBBy, ...Bs, ] Bu.
Zf1ssfm
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This implies that B can be factored into a product of at least ry —m +¢ >
r1 irreducible blocks. Obviously, such an irreducible factorization is not
strongly equivalent to B = H;lzl By, or B = Hgil By, a contradiction to
B € B5(G). This proves the assertion.

Let {s1,...,8.,} be a system of distinct representatives of Dy,...,D,,.
Then F;NE,, # 0, j=1,...,ry. Take u; € E; for i =1,...,r; so that
us; € F;NE, for j =1,...,r0. Put M = {1,... .k} — {u1,...,u, }.
Clearly, no nonempty subset of M can be expressed as a union of some F;
or as a union of some F;. This implies that for any nonempty subset W
of M, the sequence (b; : i € W) is not a block, so |[M| < D(G) — 1 and
|B| = |M|+r1 <7 + D(G) — 1. This completes the proof.

COROLLARY 2. a2(C%) = 2n.

Proof. Since it is proved in [9] that a;(C¥) = 2n, we have a3(C3) >
a1(C%) = 2n.

To prove the upper bound we consider any B € B2 (C%) and show that
|B| < 2n.

If B € B1(C%), the estimate is trivial.

If B € By(C%) — B1(C%), suppose B = [[:*, B;,,i = 1,2, are the two
strongly inequivalent irreducible factorizations of B, where B; ,1 < i <
2,1 < j < r;, are irreducible blocks. We assume without loss of generality
that r; > ro. It follows from Proposition 4 that D(C%) +r; —1 > |B| =
Z;lzl |B1,| > 2rq, thus, r1 < D(C3) — 1, and |B| < 2(D(C3) — 1) = 2n by
Lemma 4(iv). This completes the proof.

LEMMA 14. Let B € By(G) — Bi—1(G) with k > 2, and let B =
H;:1 Bi,,i = 1,...,k, be the k strongly inequivalent irreducible factoriza-
tions of B, where B;;,1 <1i < k,1 < j <r; are irreducible blocks. Suppose
that r1 = max{ry,...,rx} > k. Then there exists a subset X of {1,...,71}
such that [[..x B1, € B1(G) and | X|>r; —k+ 1.

Proof. Clearly, for any ¢ = 2,...,k there exists an f = f(i) such that
Ip,, #Ip,, foranyt=1,...,r;. PutY = Us<icp{f (D)} Then [Y] < k—1.
Set X = {1,...,m} =Y. Clearly, [[.cx B1, € B1(G) and |X| >r; —k+1.
This completes the proof.

LEMMA 15. Let G be a finite abelian group of order n, let B € By(G) —
By—1(G) with k > 2, and let B = H;:1 Bi;,i=1,...,k, be the k strongly
inequivalent irreducible factorizations of B, where B;,,1 <i <k, 1 < j <y,
are irreducible blocks. Then

jex

jEX

max{ri,...,rt} < k—1+log,n.

Proof. Without loss of generality, assume that ry = max{ry,...,r;}
> k. By using Lemma 14 one can find a subset X of {1,...,r1} such
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that [[;cx Bi; € Bi(G) and [X| > 1 —k+ 1. Now [[,cx[By[ < n
follows from Lemma 2. Note that all [By;| > 2, we have ]X{7 < log, n, and
r1 < k — 1+ log, n follows. This completes the proof.

Proof of Theorem 2. Assume to the contrary that ay(C,) # n.
Since ai(Cy) > ag—1(Cp) > ... > a1(Cy,) = n, we have a(C,,) = n+1+t for
some t > 0. Let B € By(C,,) with | B| = n+1+t. Since a1(C),) = n, we must
have B € By, (Cp) = By—1(Cy) for some 2 <m < k. Let B =[[;_, B;;,1 <
1 < m, be the m strongly inequivalent irreducible factorizations of B, where
Bij, 1<¢<m,1 <5 <, are irreducible blocks.

Suppose B = (b1,...,bs). Put E;, = IBz-j fori =1,...,m and j =
1,...,r. For j = 1,...,7r, we define D; to be the set {t : By, U Ey, #
0,1 <t < ry}. Similarly to the proof of Proposition 4 one can show that
Dy,...,D,, has a system of distinct representatives. Therefore one can find
an ry-subset of {1,...,s} which meets all £y, and all E,;. Hence, one can
find an (ry 4+ 73 4 ... 4+ ri)-subset I of {1,...,s} such that I N E;; # ( for
i=1,....mand j =1,...,7. Put J = {1,...,s} — I and let T be the
subsequence of B with I = J. Clearly, T' contains no nonempty zero-sum
subsequence. Put [ = n — |T'|. Notice that

l=n—|T|=n—|J|=n—(n+1+t—|I|)<|I|-1
=r+4+ri+...+rm—1<(m—-1)r -1
<(m-—1)(m—1+1logyn)—1 (by Lemma 15)
<(k—1)(k—1+logyn) <n/4 (by the hypothesis of the theorem),

so by using Lemma 8 we see that, T' contains an (n — 2l 4+ 1)-subsequence

which is similar to the sequence (1,...,1). Therefore, B contains an
——
n—20+1
(n — 20+ 1)-subsequence which is similar to the sequence (1, ...,1); without
———
n—20+1

loss of generality, we may assume that
B= (1,...,1,:p1,...,xt+21).
N——
n—20+1
If |z;|, > 21, since (1,...,1, ;) is an irreducible block and
——
n—|x;|n

(n—2l+1

>>n_2z+1>n/2+1>k
n— |Zi|n

(from the hypothesis of the theorem), we must have B ¢ By (C,,), a contra-
diction. Hence,
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1< |ogln <20—1

fori =1,...,t+2l, and so 2 < |z, + |z2|n < 4l — 2 < n — 2, hence,
2 <l|x1 4+ 22| = |T1|n + 22| <n—2.

If |z1 + 22|, > 21, since (1,...,1,21,22) is an irreducible block and
———

n—|ri+z2|n

< n—20+1

n— |$l ‘1‘1'2’71

)2n—2l+1>k,

we have B ¢ Bj(G), a contradiction. Hence, |z1|, + |x2]n = |21 + 22| <
2l — 1. Continuing the same process we finally get

but

20+t 20+t
Z|$i’n:’2xi <20-1;
i=1 =1 "

21+t

D lwiln =20+t > 2,

=1

a contradiction. This completes the proof.
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