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SIDON SETS AND RIESZ SETS FOR SOME

MEASURE ALGEBRAS ON THE DISK

BY

OLIVIER GEBUHRER (STRASBOURG) AND

ALAN L. SCHWARTZ (ST. LOUIS, MISSOURI)

Sidon sets for the disk polynomial measure algebra (the continuous disk
polynomial hypergroup) are described completely in terms of classical Sidon
sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.

1. Introduction. Many of the ideas and methods of classical Fourier
analysis on the circle and the real line have been interesting and fruitful
when studied in other contexts where at least some of the useful structures
from the classical cases persist. Two sorts of examples are when the circle
or line is replaced by a more general group, or when the expansion of a
function in terms of the exponential functions {eikθ}∞k=−∞ is replaced by
expansions in terms of some other system of functions.

A particular case of the latter is the subject of this article. Here we will
direct our attention to functions and measures on the unit disk. The role
that is classically played by the exponential functions is played here by a
system of complex-valued polynomials called the disk polynomials which are
orthogonal on the unit disk. There is actually a continuum of such systems
with a distinct one for each non-negative value of a parameter α. When α is
an integer n, the disk polynomials are essentially the spherical functions of
the Gelfand pair (U(n+2), U(n+1)). In this case the geometric and algebraic
structure of the groups leads in a natural way to a pair of dual convolution
measure algebras (one for measures on the unit disk, and the other for
bivariate sequences). In fact, these measure algebras can be interpolated to
obtain a distinct pair of dual convolution measure algebras for each non-
negative α, even though the algebraic and geometric structures vanish for
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non-integral α. This has proved to be an interesting system in which to do
both harmonic analysis and probability: see, for example, [AT74, Kan76,
Kan85, BG91, BG92, CS92, CS95, HK93].

This article is devoted to two issues. First we define Sidon sets in this
context, and we are able to describe them entirely in terms of the Sidon sets
for the circle (Theorem 1). Second, we prove a version of the F. and M.
Riesz theorem (Theorem 3) which describes a new class of Riesz sets that
includes those discovered earlier by Kanjin [Kan76, Thm. 7].

The question naturally arises of generalizing our results as far as possi-
ble. In particular Sidon sets can be defined on any compact commutative
hypergroup, but there are two striking contrasts between the situation in
a group and in a hypergroup. The first is that in general the Plancherel
measure for a compact commutative hypergroup is not proportional to the
counting measure, and the second is that the dual of a compact commuta-
tive hypergroup is not necessarily a hypergroup. These observations do not
raise difficulties in this article because the dual object of the disk polyno-
mial hypergroup is, in fact, a hypergroup. This observation plays a crucial
role in Lemmas 3.1 and 4.1. In a forthcoming article, we will show that
generalizations of our Sidon set results can be obtained without requiring
that the dual object be a hypergroup or even have a convolution structure
of any kind.

The rest of the article is organized as follows: Section 2 contains the
definitions and notations required to describe the measure algebras D(α)
on the disk, Section 3 contains some properties of these measure algebras,
Section 4 contains the discussion of Sidon sets, and Section 5 is devoted to
Riesz sets.

2. Some measure algebras on the disk

2.1. Definitions and notations. We employ the usual notations of R and
C for the real and complex numbers. We also require the closed and open
unit disks and circle in C given by D = {z ∈ C : |z| ≤ 1}, D

0 = {z ∈ C :
|z| < 1}, and T = {z ∈ C : |z| = 1}. Let N = {1, 2, 3, . . .}, N0 = N ∪ {0},
and N

2
0 = N0 × N0. If n = (n1, n2) ∈ N

2
0 we write ‖n‖ = n1 + n2, and

n1 ∧ n2 = min(n1, n2).

If X is a locally compact Hausdorff space, C(X) denotes the complex-
valued continuous functions on X and C0(X) the members of C(X) which
vanish at ∞; both spaces are given the uniform norm ‖ · ‖∞. M(X) is the
Banach space of complex-valued Borel measures on X endowed with the
total variation norm ‖ · ‖, and M1(X) denotes the probability measures on
X (non-negative members of M(X) with unit total variation).
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Let α be a fixed non-negative real number, and let mα ∈M1(D) be given
by

dmα(x, y) =
α+ 1

π
(1 − x2 − y2)α dx dy,

and let Lp = Lp(D,mα) with the usual norm ‖ · ‖p.

The disk polynomials are a family of polynomials in two variables ob-
tained by orthogonalizing 1, z, z, z2, zz, z2, . . . with respect to mα where
α is a fixed non-negative real number. They are given explicitly in terms of
the Jacobi polynomials by

R(α)
n (z) = R(α)

n (x, y) = R(α)
n (reiθ) = ei(n1−n2)θr|n1−n2|R

(α,|n1−n2|)
n1∧n2

(2r2 − 1),

where z = x+ iy = reiθ, n = (n1, n2), and R
(α,β)
n (x) = P

(α,β)
n (x)/P

(α,β)
n (1).

R
(α)
n has degree ‖n‖, and |R

(α)
n (z)| ≤ 1 for all x ∈ D. We define (cf. [Sze67,

§(4.3.3)])

h(α)
n

=
(\

D

|R(α)
n

(z)|
2
dmα(z)

)−1

=
n1 + n2 + α+ 1

α+ 1

(
n1 + α

n1

)(
n2 + α

n2

)
.

Note that if m = (n2, n1), then

(2.1) h(α)
n = h(α)

m and R(α)
m (z) = R

(α)
n (z) = R(α)

n (z).

We also introduce the following Banach spaces of complex-valued functions
on N

2
0:

ℓp =
{
φ : ‖φ‖p =

( ∑

n∈N2

0

|φ(n)|ph(α)
n

)1/p

<∞
}

(1 ≤ p <∞),

ℓ∞ = {φ : ‖φ‖∞ = sup
n∈N2

0

|φ(n)| <∞}.

For α > 0 and µ ∈M(D) define the Fourier–Stieltjes coefficients of µ by

µ̂(n) = µ̂(α)(n) =
\
D

R(α)
n

(z) dµ(z).

If f ∈ L1, define

f̂(n) = f̂ (α)(n) =
\
D

f(z)R(α)
n (z) dmα(z).

Thus, if f is a polynomial in two variables, then supp(f̂) is finite and

f(z) =
∑

n∈N2

0

f̂(n)h(α)
n R(α)

n (z).

Indeed, a Plancherel formula holds: if f ∈ L2, then ‖f‖2 = ‖f̂‖2, or more
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explicitly

(2.2)
\
D

|f |2 dma =
∑

n∈N2

0

|f̂(n)|2h(α)
n .

Consequently, f̂ ∈ C0(N
2
0) since h

(α)
n ≥ 1 for all n. Since L2 is dense in L1,

(2.3) lim
‖n‖→∞

f̂(n) = 0 (f ∈ L1).

2.2. The disk measure algebras D(α). The disk polynomials interest us
because they satisfy two important kinds of formulas. The first type are
product formulas [Koo72]:

R(α)
n (z)R(α)

n (ζ) =
α

α+ 1

\
D

R(α)
n (zζ + (1 − |z|2)1/2(1 − |ζ|2)1/2ξ)

dmα(ξ)

1 − |ξ|2

(α > 0),

R(0)
n

(z)R(0)
n

(ζ) =
1

2π

π\
−π

R(0)
n

(zζ + (1 − |z|2)1/2(1 − |ζ|2)1/2eiθ) dθ

(the second formula is obtained as a limit when α → 0), and the second
type is the linearization formula [Koo78, Cor. 5.2]:

(2.4) R(α)
m (z)R(α)

n (z) =
∑

k∈N2

0

Cα(k,n,m)h
(α)
k
R

(α)
k

(z) (α ≥ 0)

where

(2.5) Cα(k,n,m) =
\
D

R
(α)
k

(z)R(α)
m (z)R(α)

n (z) dmα(z) ≥ 0,

so from orthogonality, it follows that

(2.6) Cα(k,n,m) = 0 unless | ‖m‖ − ‖n‖ | ≤ ‖k‖ ≤ ‖m‖ + ‖n‖.

Now setting z = 1 in (2.4) and then using (2.1) we obtain
∑

k∈N2

0

Cα(k,m,n)h
(α)
k

=
∑

m∈N2

0

Cα(k,m,n)h(α)
m(2.7)

=
∑

n∈N2

0

Cα(k,m,n)h(α)
n

= 1.

These formulas give rise to two Banach algebras. The product formula
gives rise to a product (called a convolution) on M(D). If µ, ν ∈ M(D),
µ ∗α ν is defined by its action on f ∈ C(D):
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D

f d(µ ∗α ν)

=
α

α+ 1

\
D

\
D

\
D

f(zζ + (1 − |z|2)1/2(1 − |ζ|2)1/2ξ)
dmα(ξ)

1 − |ξ|2
dµ(z) dν(ζ),

(α > 0)

and\
D

f d(µ ∗0 ν) =
1

2π

\
D

\
D

π\
−π

f(zζ + (1 − |z|2)1/2(1 − |ζ|2)1/2eiθ) dθ dµ(z) dν(ζ).

Thus, if µ, ν ∈ M(D), and α ≥ 0, (µ ∗α ν )̂ = µ̂ν̂. We denote this Banach
algebra of measures D(α). Each f ∈ L1 can be identified with σf ∈ M(D)
by setting σf = f dmα. With this identification L1 is a closed ideal in D(α),
and if f, g ∈ L1, h ∈ L∞, and µ ∈M(D) we have

‖f ∗α g‖1 ≤ ‖f‖1 · ‖g‖1, ‖f ∗α h‖∞ ≤ ‖f‖1 · ‖h‖∞,

‖µ ∗α f‖1 ≤ ‖µ‖ · ‖f‖1.

R e m a r k. M1(D) is a semigroup with respect to ∗α provided α ≥ 0;
this property cannot be extended to α < 0 (see [BH95, p. 142]).

The second convolution is most conveniently defined on ℓ1. If φ,ψ ∈ ℓ1,
define

(2.8) (φ ⋆α ψ)(k) =
∑

m,n∈N2

0

φ(m)h(α)
n ψ(n)h(α)

n Cα(k,m,n).

A consequence of this is

(2.9)
[ ∑

n∈N2

0

φ(n)h(α)
n R(α)

n

]
·
[ ∑

m∈N2

0

ψ(m)h(α)
m R(α)

m

]

=
∑

k∈N2

0

(φ ⋆α ψ)(k)h
(α)
k
R

(α)
k
.

R e m a r k. A convolution can also be defined on M(N2
0) by the formula

(µ ⋆α ν)({k}) =
∑

m,n∈N2

0

µ({m})ν({n})Cα(k,m,n);

D(α) and (M(N2
0), ⋆α) form a pair of dual Banach measure algebras; indeed,

this is one of the rare situations when both structures are hypergroups.

It is now possible to define Sidon sets and Riesz sets in this context. A
subset E of N

2
0 will be called a D(α)-Sidon set (or simply a Sidon set if

there is no ambiguity) if there is a constant BE such that

‖f̂‖1 ≤ BE‖f‖∞
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for every polynomial f such that supp(f̂) ⊂ E. E is a D(α)-Riesz set if
whenever µ ∈M(D) with supp(µ̂) ⊂ E then µ is absolutely continuous with
respect to mα.

3. Some properties of D(α). We begin with a technical result based
on the classical version in Edward book [Edw67, Ex. 2.19]. A similar result
holds in compact abelian groups [Rud62, §2.6.8].

Lemma 3.1. If E is a finite subset of N
2
0 and ε > 0, there is a polynomial

f such that (i) 0 ≤ f̂(n) ≤ 1 for all n ∈ N
2
0, (ii) f̂(n) = 1 for all n ∈ E,

and (iii) ‖f‖1 ≤ 1 + ε. In particular , it is possible to choose polynomials

FN , N ∈ N, such that (i) 0 ≤ F̂N (n) ≤ 1 for all n ∈ N
2
0, (ii) F̂N (n) = 1 if

‖n‖ ≤ N , and (iii) ‖FN‖1 ≤ 2.

R e m a r k. It is not difficult to show that {FN}N∈N0
is a polynomial

approximate identity analogous to the Fejér kernel of classical Fourier anal-
ysis. Indeed, if KN denotes the Fejér kernel, the functions FN = K2N −KN

have the properties listed in the lemma.

P r o o f. Let r = max{n : n ∈ E}, let N be a positive integer, and let

Ap =
∑

‖n‖≤p h
(α)
n . Define

u = A−1
N

∑

‖k‖≤N

h
(α)
k
R

(α)
k
, v =

∑

‖m‖≤N+r

h(α)
m R(α)

m ,

and f = u · v, so if f̂(n) is computed by (2.9) and (2.8), (i) becomes an
immediate consequence of (2.5) and (2.7). Now if ‖k‖ ≤ N and ‖n‖ ≤ r,
then ‖n + k‖ ≤ N + r, so (2.7) yields (ii). Let ε > 0, then the Schwarz
inequality and the Plancherel formula (2.2) yield ‖f‖1 ≤ ‖u‖2 · ‖v‖2 ≤
(AN+r/AN )1/2 which is bounded by 1 + ε if N is sufficiently large.

In the following, we consider M(T) to be a subspace of M(D) and we
introduce M(D0) = {µ ∈ M(D) : |µ|(T) = 0}. Moreover, if µ ∈ M(T),
n ∈ N0, and k ∈ Z then µ̂(n + k, n) = Fµ(k) =

T
T
e−ikθ dµ(eiθ).

Several important and useful properties of D(α) are scattered through
[Kan76]; we include them inside the following lemma for convenience.

Lemma 3.2. (i) If α > 0 and µ, ν ∈ M(D0) then µ ∗α ν is absolutely

continuous with respect to mα.

(ii) If µ, ν, λ ∈ M(D0) then µ ∗0 ν ∗0 λ is absolutely continuous with

respect to m0.

(iii) If µ ∈M(D0), then lim‖n‖→∞ µ̂(n) = 0.
(iv) If µ ∈M(D), then there is a unique decomposition µ = µ0 +µT with

µ0 ∈M(D0) and µT ∈M(T), and limn→∞ µ̂(n+ k, n) = FµT(k).
(v) If µ, ν ∈ M(T), then µ ∗α ν = µ ∗ ν where ∗ denotes the classical

convolution for M(T).
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R e m a r k. If α = 0, then (i) actually fails since δz ∗0 δζ is a unit mass
uniformly distributed on the circle with center zζ and radius (1−|z|2)1/2(1−
|ζ|2)1/2. Nevertheless, (ii) is an adequate substitute, for instance, Kanjin’s
results about the maximal ideal spaces and idempotents [Kan76, Thms. 3
and 4] for D(α) can be extended to α = 0.

P r o o f. See [Kan76, Lem. 2] for (i); to obtain (ii), first define

F (z, ζ; θ) = zζ + (1 − |z|2)1/2(1 − |ζ|2)1/2eiθ,

G(z, ζ, w; θ, φ) = F (F (z, ζ; θ), w;φ),

so that for each f ∈ C(D),\
D

f d(δz ∗0 δζ ∗0 δw) = (2π)−2
π\
−π

π\
−π

f(G(z, ζ, w; θ, φ)) dθ dφ.

Now suppose, for the moment, that z, ζ, w ∈ [0, 1) are fixed, then the map-
ping

(θ, φ) 7→ g(θ, φ) = (ℜG(z, ζ, w; θ, φ),ℑG(z, ζ, w; θ, φ))

from S = [−π, π] × [−π, π] to D has Jacobian

J(θ, φ) = (1 − z2)1/2(1 − ζ2)1/2(1 − w2)1/2(1 − |F (z, ζ; θ)|2)1/2

× (w sin(φ− θ) − zζ(1 − w2)1/2(1 − |F (z, ζ; θ)|2)−1/2 sin θ)

which vanishes only on a finite set of curves in S. Thus if J(θ, φ) 6= 0 there
is a closed disk U , containing (θ, φ), on which g is injective. Thus there is
h ∈ C(D) such that

T
U
f(g(θ, φ)) dθ dφ =

T
D
f(z)h(z) dm0(z). Now a tedious

but elementary argument can be used to show that there is a non-negative
function Ez,ζ,w on D such that

(3.1)
\
D

f d(δz ∗0 δζ ∗0 δw) =
\
D

fEz,ζ,w dm0,

whence δz ∗0 δζ ∗0 δw ∈ L1. Now for general z, ζ, w ∈ D
0, choose α, β, γ ∈ T

such that αz, βζ, γw ∈ [0, 1), so that δz ∗0 δζ ∗0 δw = δ αβγ ∗0 δαz ∗0 δβζ ∗0 δγw

is in L1, thus (3.1) is valid for all z, ζ, w ∈ D
0, so finally if µ, ν, λ ∈M(D0),

then \
D

f d(µ ∗0 ν ∗0 λ) =
\
D

\
D

\
D

f(ξ)Ez,ζ,w(ξ) dm0(ξ) dµ(z) dν(ζ) dλ(w),

hence µ ∗0 ν ∗0 λ ∈ L1, which establishes (ii).
Now if µ ∈ M(D0) and α ≥ 0, then µ ∗α µ ∗α µ ∈ L1 so by (2.3),

lim‖n‖→∞(µ̂(n))3 = 0, and (iii) is proved. Parts (iv) and (v) are obvious.

4. D(α)-Sidon sets. If E is a subset of N
2
0, we shall say that f ∈ L1

is an E-function if f̂(n) = 0 for every n 6∈ E. A polynomial which is an
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E-function is called an E-polynomial. We denote by ℓp(E) (resp. C0(E))
the functions in ℓp (resp. C0(N

2
0)) which are supported on E. Thus E is a

D(α)-Sidon set if there is a constant BE such that for every E-polynomial f ,

(4.1) ‖f̂‖1 ≤ BE‖f‖∞.

Lemma 4.1. Let E ⊂ N
2
0. Then the following are equivalent :

(a) E is a D(α)-Sidon set.

(b) If f is a bounded E-function, then ‖f̂‖1 <∞.

(c) If f is a continuous E-function, then ‖f̂‖1 <∞.

(d) To each bounded function φ on E there corresponds a measure µ ∈
M(D) such that µ̂(n) = φ(n) for every n ∈ E.

(e) To every φ ∈ C0(E) corresponds a function f ∈ L1 such that f̂(n) =
φ(n) for every n ∈ E.

P r o o f. The proof is an adaptation of [Edw67, §15.1.4]. We illustrate
this with two of the arguments.

(a)⇒(b). Assume E is a D(α)-Sidon set with constant BE , and let f
be a bounded E-function. Then with FN as in Lemma 3.1, FN ∗ f is an

E-polynomial and we have
∑

‖n‖≤N |f̂(n)|h
(α)
n ≤ ‖F̂N f̂‖1 = ‖(FN ∗ f )̂ ‖1 ≤

BE‖FN ∗ f‖∞ ≤ BE‖FN‖1‖f‖∞ ≤ 2BE‖f‖∞. Thus, since N is arbitrary,

‖f̂‖1 ≤ 2BE‖f‖∞.
(e)⇒(a). By the open mapping theorem, to each φ ∈ C0(E) corresponds

an f ∈ L1 such that f̂ = φ on E and ‖f‖1 ≤ B‖φ‖∞. Let g be an
E-polynomial, and define φ(n) = |ĝ(n)|/ĝ(n) if ĝ(n) 6= 0 and φ(n) = 0

otherwise. Then φ ∈ C0(E) and ‖φ‖∞ ≤ 1, so there is f ∈ L1 such that f̂ =

φ on E and ‖f‖1 ≤ B, so ‖ĝ‖1 =
∑

n∈E |ĝ(n)|h
(α)
n =

∑
n∈E f̂(n)ĝ(n)h

(α)
n =

(f ∗α g)̂ (1) ≤ ‖f‖1‖g‖∞ ≤ B‖g‖∞.

We also need the following criterion for T-Sidon sets (that is, Sidon sets
for classical Fourier analysis on T); see [Edw67, §15.1.5].

Lemma 4.2. Let E ⊂ Z. Then E is a T-Sidon set if and only if there is

a number η > 0 such that for each φ : E → {−1, 1} there is µ ∈M(T) such

that supn∈E |φ(n) −Fµ(n)| ≤ 1 − η.

Let #(E) denote the cardinality of the set E ⊂ N
2
0, let dk = {(n+k, n) :

n ∈ N0}, and let E∞ = {k : E ∩ dk 6= ∅}.

Theorem 1. Let α ≥ 0. Then E ⊂ N
2
0 is a D(α)-Sidon set if and only if

(i) for all |k| sufficiently large #(E ∩ dk) ≤ 1, and (ii) E∞ is a T-Sidon set.

P r o o f. The following observation is the key: by Lemma 3.2(iv) and the
remark preceding the lemma, any µ ∈ M(D) may be uniquely decomposed
into µ = µ0 + µT where µ0 ∈ M(D0) and µT ∈ M(T). Moreover, µ̂T(m,n)
depends only on m− n as m+ n→ ∞.
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Assume E is a D(α)-Sidon set. Therefore, arguing by way of contradic-
tion if (i) failed for E, it would be possible to exhibit µT ∈M(T) such that
for some strictly increasing sequence {kj}

∞
j=0, FµT(kj) would take values

close to +1 and −1 for each sufficiently large j. This is absurd.

When finitely many points are added to or deleted from a Sidon set, the
result is still a Sidon set, so assume E = {(nk + k, nk) : k ∈ E∞}. We must
show E∞ is a T-Sidon set. Choose φ∞ : E∞ → {−1, 1} and let φ be any
function on N

2
0 with values in {−1, 1} and which satisfies φ(nk + k, nk) =

φ∞(k) for every k ∈ E∞. By Lemma 4.1 there is µ ∈ M(D) such that
µ̂ = φ on E. For k large enough, we will get |FµT(k) − φ∞(k)| ≤ 1/2. It is
trivial to extend this to finitely more values of k, so E∞ is a T-Sidon set by
Lemma 4.2 with η = 1/2.

For the converse assume E = {(nk + k, nk) : k ∈ E∞} and let φ be a
bounded function on E and φ∞(k) = φ(nk + k, nk); E∞ is a T-Sidon set, so
that there is µ ∈M(T) with Fµ = φ∞ on E∞, so µ̂ = φ on E.

As a consequence of Theorem 1, knowledge about T-Sidon sets yields
knowledge about D(α)-Sidon sets. See [Rud62, §5.75 and §5.76] with Γ = Z,
and [Edw67, §15.2].

5. D(α)-Riesz sets. These are sets which generalize the classical F.
and M. Riesz Theorem; see Rudin [Rud62, §8.2.1] where a more detailed
discussion and additional references are found. The following two results
list a necessary condition and a sufficient condition for D(α)-Riesz sets.
Theorem 3 is stronger than the earlier one of Kanjin [Kan76, Thm. 7], and
it is based on his proof.

Theorem 2. If E is a D(α)-Riesz set then Ec ∩ dk is an infinite set for

every k.

P r o o f. If Ec ∩ dk is finite for some k, let

p(z) =
∑

n∈Ec∩dk

h(α)
n R(α)

n (z)

and let

dµ(z) =
1

2π
eikθdθ − p(z) dmα(z) (z = reiθ).

Then supp(µ̂) ⊂ E ∩ dk ⊂ E, but µ is not absolutely continuous since
|µ|(T) = 1.

Theorem 3. Suppose {φ(k)}∞k=0 is a non-negative sequence such that

(5.1) lim sup
k→∞

((log k)/k)φ(k) = 0.
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Then the following are D(α)-Riesz sets:

R1(φ) = {(n + k, n) : n ≤ φ(k)} ∪ {(n, n + k) : n ≤ φ(k)},

R2(φ) = {(m,n) : m ≤ φ(n) or n ≤ φ(m)}.

P r o o f. Assume φ satisfies (5.1) and that µ ∈ M(D) with supp(µ̂) ⊂
R1(φ). Stirling’s formula yields the bound

h
(α)
n+k,n|R

(α)
n+k,n(z)| = h

(α)
n,n+k|R

(α)
n,n+k(z)| < Ckn+α+1rk (n ≤ k).

The same bound holds for n ≤ φ(k) since φ(k) ≤ k if k is sufficiently large.
Thus

∞∑

k=2

φ(k)∑

n=0

h
(α)
n+k,n|R

(α)
n+k,n(z)|<C

∞∑

k=2

φ(k)∑

n=0

kn+α+1rk =C
∞∑

k=2

kα+1rk k
φ(k)+1−1

k − 1

≤ 2C
∞∑

k=2

kφ(k)+α+1rk.

This converges for each r < 1 by the root test provided

lim sup
k→∞

kφ(k)/k ≤ 1,

which will be the case if (5.1) holds. It follows that
∑

n∈N2

0

µ̂(n)R
(α)
n con-

verges to a continuous function f on compact subsets of D
0. Finally, with

FN as in Lemma 3.1, Fatou’s lemma yields\
D

|f | dmα =
\
D

lim
N→∞

|FN ∗α µ| dmα ≤ lim inf
N→∞

\
D

|FN ∗α µ| dmα

= lim inf
N→∞

‖FN ∗α µ‖1 ≤ 2‖µ‖,

so f ∈ L1 and dµ = f dmα and thus R1(φ) is a Riesz set.

Let φ satisfy (5.1). In the light of the definition of lim sup and the fact
that any subset of a Riesz set is obviously a Riesz set, there is no loss of
generality in assuming that φ is an unbounded non-decreasing function. We
show that R2(φ) ⊂ R1(ψ) where

lim sup
k→∞

((log k)/k)ψ(k) = 0.

Since φ satisfies (5.1) there is n0 such that φ(2n) ≤ n for n ≥ n0. Hence
if n ≥ n0, then n ≤ 1

2φ
−1(n), so if n0 ≤ n ≤ φ(m), we have 1

2φ
−1(n) + n ≤

φ−1(n) ≤ m, whence

n ≤ φ(2(m− n)) for n ≥ n0.

Thus n ≤ ψ(m − n) where ψ(k) = n0 + φ(2k), so R2(φ) ⊂ R1(ψ) as
required.
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