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DEGENERATIONS IN THE MODULE VARIETIES OF
GENERALIZED STANDARD AUSLANDER–REITEN COMPONENTS

BY

GRZEGORZ ZWARA (TORUŃ)

1. Introduction and the main results. Throughout the paper K
denotes a fixed algebraically closed field. By an algebra we mean an asso-
ciative finite-dimensional K-algebra with an identity, and by an A-module a
finite-dimensional (unital) right A-module. We shall denote by modA the
category of A-modules, by ΓA the Auslander–Reiten quiver of A, and by τA
the Auslander–Reiten translation DTr in ΓA.

For an algebra A with basis a1 = 1, . . . , an, we have the structure con-
stants cijk defined by aiaj =

∑
cijkak. The affine variety modA(d) of

d-dimensional A-modules consists of n-tuples m = (m1, . . . ,mn) of
d × d-matrices with coefficients in K such that m1 is the identity matrix
and mimj =

∑
mkcijk holds for all indices i and j. The general linear

group Gld(K) acts on modA(d) by conjugation, and the orbits correspond
to the isomorphism classes of d-dimensional modules (see [15]). We identify
a d-dimensional A-module M with the point of modA(d) corresponding to
it. We denote by O(M) the Gld(K)-orbit of a module M in modA(d). Then
one says that a module N in modA(d) is a degeneration of a module M in
modA(d) if N belongs to the Zariski closure O(M) of O(M) in modA(d),
and we denote this fact by M ≤deg N . Thus ≤deg is a partial order on the
set of isomorphism classes of A-modules of a given dimension. It is not clear
how to characterize ≤deg in terms of representation theory.

There has been important work by S. Abeasis and A. del Fra [1], K. Bon-
gartz [11]–[13], and Ch. Riedtmann [18] connecting ≤deg with other partial
orders ≤ext, ≤virt and ≤ on the isomorphism classes in modA(d). They are
defined in terms of representation theory as follows:

• M ≤ext N :⇔ there are modules Mi, Ui, Vi and short exact sequences
0 → Ui → Mi → Vi → 0 in modA such that M = M1, Mi+1 = Ui ⊕ Vi,
1 ≤ i ≤ s, and N = Ms+1 for some natural number s.

• M ≤virt N :⇔M ⊕X ≤deg N ⊕X for some A-module X.
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• M ≤ N :⇔ [X,M ] ≤ [X,N ] holds for all modules X.

Here and later on we abbreviate dimK HomA(X,Y ) by [X,Y ]. Then for
modules M and N in modA(d) the following implications hold:

M ≤ext N ⇒M ≤deg N ⇒M ≤virt N ⇒M ≤ N

(see [11], [18]). Unfortunately the reverse implications are not true in gen-
eral, and it would be interesting to find out when they are. This is the case
for representations of Dynkin quivers and Kronecker modules [11]. It was
shown recently in [13] that ≤deg and ≤ coincide for representations of ex-
tended Dynkin quivers. For a module M in modA, we shall denote by [M ]
the image of M in the Grothendieck group K0(A) of A. Thus [M ] = [N ] if
and only if M and N have the same simple composition factors including
the multiplicities. Observe that, if M and N have the same dimension and
M ≤ N , then [M ] = [N ].

We are interested in degenerations of modules whose indecomposable
direct summands belong to a connected component C of the Auslander–
Reiten quiver ΓA of an algebra A. Namely, we may ask when M ≤deg N
for M and N from the additive category add(C) of C with [M ] = [N ].
Then the following partial order on the isomorphism classes in add(C) occurs
naturally [25]:

• M ≤C N :⇔ [X,M ] ≤ [X,N ] for all modules X in add(C).
Clearly, for M and N in add(C), M ≤ N implies M ≤C N .

In the representation theory of algebras an important role is played by
generalized standard Auslander–Reiten components. Recall that following
A. Skowroński [22] a connected component C in ΓA is called generalized stan-
dard if rad∞(X,Y ) = 0 for all modules X and Y from C, where rad∞(X,Y )
denotes the intersection of all powers radi(X,Y ), i ≥ 1, of the radical
rad(X,Y ). The Auslander–Reiten quiver ΓA of any algebra A of finite rep-
resentation type is generalized standard. Examples of infinite generalized
standard components are the preprojective components, preinjective com-
ponents, the connected components of tilted algebras, and tubes over tame
tilted algebras and tubular algebras (see [19]). It was shown in [20] that
any generalized standard component without oriented cycles is a glueing
of finitely many preprojective and preinjective components. The structure
of arbitrary generalized standard components is not known. In general we
know only by [22] that if C is a generalized standard component in ΓA, then
all but finitely many τA-orbits in C are periodic. It is known that ≤ext and
≤Γ coincide in the case when Γ is preprojective (preinjective) [11] or a gen-
eralized standard quasi-tube [25]. Moreover, there are generalized standard
components (see [18], [25]) for which ≤ext and ≤deg do not coincide. But
the question whether M ≤Γ N implies M ≤deg N for M and N from the
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additive category of a generalized standard component Γ is still an open
problem. The situation is not even clear in the case of finite representation
type, although it is known that then the orders ≤ and ≤virt coincide [18].
Our first main result is as follows.

Theorem 1. Let A be an algebra, Γ a generalized standard component
in ΓA, and M , N modules in add(Γ ) with [M ] = [N ]. Then M ≤virt N if
and only if M ≤Γ N .

In the study of simply connected algebras of polynomial growth, a nat-
ural generalization of the notion of a tube appeared, called a coil, and then
a more general concept of a multicoil, which is a glueing of a finite number
of coils by directed parts (see [3], [4], [5]). By abuse of language we consider
a directed Auslander–Reiten component as a (trivial) multicoil. One of the
important results proved in [24] (see also [23]) says that a strongly simply
connected algebra A is of polynomial growth if and only if every compo-
nent of ΓA is a generalized standard multicoil. Our second main result is as
follows.

Theorem 2. Let A be an algebra, Γ a generalized standard multicoil in
ΓA, and M , N modules in add(Γ ) with [M ] = [N ]. Then M ≤deg N if and
only if M ≤Γ N .

The paper is organized as follows. In Section 2 we fix the notation,
recall the relevant definitions and facts, and prove some preliminary results
on modules which we apply in our investigations. Section 3 is devoted to the
shape of arbitrary generalized standard components. In Section 4 we prove
some results concerning dimension functions on the generalized standard
components, playing a fundamental role in the proofs of our main results.
Sections 5 and 6 are devoted to the proofs of Theorems 1 and 2, respectively.

For basic background on the topics considered here we refer to [4], [5],
[8], [11], [19], [21], [22]. Main results of the paper were announced at the
Conference on “Tame Algebras and Deformations” in Luminy (18–22 March
1996).

The author would like to Andrzej Skowroński for inspiration, comments
and helpful suggestions during the preparation of the paper.

2. Preliminary results

2.1. Throughout the paper A denotes a fixed finite-dimensional asso-
ciative K-algebra with an identity over an algebraically closed field K. We
denote by modA the category of finite-dimensional right A-modules, by
indA the full subcategory of modA formed by indecomposable modules, by
rad(modA) the Jacobson radical of modA, and by rad∞(modA) the inter-
section of all powers radi(modA), i ≥ 1, of rad(modA). By an A-module
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we mean an object from modA. Further, we denote by ΓA the Auslander–
Reiten quiver of A and by τ = τA and τ− = τ−A the Auslander–Reiten
translations DTr and TrD, respectively. We identify the vertices of ΓA
with the corresponding indecomposable modules. For M in modA we de-
note by [M ] the image of M in the Grothendieck group K0(A). Further, for
X, Y from modA we abbreviate dimK HomA(X,Y ) by [X,Y ]. For a family
F of A-modules, we denote by add(F) the additive category given by F ,
that is, the full subcategory of modA formed by all modules isomorphic to
the direct sums of modules from F . Finally, for a quiver Γ , we denote by
(Γ )0 the set of all vertices of Γ .

2.2. Following [18], for M , N from modA, we set M ≤ N if and
only if [X,M ] ≤ [X,N ] for all A-modules X. The fact that ≤ is a partial
order on the isomorphism classes of A-modules follows from a result by
M. Auslander (see [6], [10]). M. Auslander and I. Reiten have shown in
[7] that, if [M ] = [N ], then for all nonprojective A-modules X and all
noninjective modules Y the following formulas hold:

[X,M ]− [M, τX] = [X,N ]− [N, τX],
[M,Y ]− [τ−Y,M ] = [N,Y ]− [τ−Y,N ].

Hence, if [M ] = [N ], then M ≤ N if and only if [M,X] ≤ [N,X] for all
A-modules X.

2.3. Let M and N be A-modules with [M ] = [N ] and

Σ : 0 → D → E → F → 0

an exact sequence in modA. Following [18] we define the additive functions
δM,N , δ′M,N , δΣ and δ′Σ on A-modules X as follows:

δM,N (X) = [N,X]− [M,X], δ′M,N (X) = [X,N ]− [X,M ],

δΣ(X) = δE,D⊕F (X) = [D ⊕ F,X]− [E,X],
δ′Σ(X) = δ′E,D⊕F (X) = [X,D ⊕ F ]− [X,E].

From the Auslander–Reiten formulas (2.2) we get the following very useful
equalities:

δM,N (X) = δ′M,N (τ−X), δM,N (τX) = δ′M,N (X)
and

δΣ(X) = δ′Σ(τ−X), δΣ(τX) = δ′Σ(X)

for all A-modules X. Observe also that δM,N (I) = 0 for any injective
A-module I, and δ′M,N (P ) = 0 for any projective A-module P . In particular,
we see that the following conditions are equivalent:

(1) M ≤ N ,
(2) δM,N (X) ≥ 0 for all X ∈ indA,
(3) δ′M,N (X) ≥ 0 for all X ∈ indA.
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2.4. For an A-moduleM and an indecomposable A-module Z, we denote
by µ(M,Z) the multiplicity of Z as a direct summand of M . For a noninjec-
tive indecomposable A-module U we denote by Σ(U) an Auslander–Reiten
sequence

Σ(U) : 0 → U → E(U) → τ−U → 0.
We need the following lemmas.

Lemma 2.5. Let M , N be A-modules with [M ] = [N ] and U an indecom-
posable A-module. Then

(i) If U is noninjective, then δΣ(U)(M) = µ(M,U) and

µ(N,U)− µ(M,U) = δ′M,N (U)− δ′M,N (E(U)) + δ′M,N (τ−U).

(ii) If U is injective, then [U,M ]− [U/soc(U),M ] = µ(M,U) and

µ(N,U)− µ(M,U) = δ′M,N (U)− δ′M,N (U/soc(U)).

(iii) If U is nonprojective, then δ′Σ(τU)(M) = µ(M,U) and

µ(N,U)− µ(M,U) = δM,N (U)− δM,N (E(τU)) + δM,N (τU).

(iv) If U is projective, then [M,U ]− [M, rad U ] = µ(M,U) and

µ(N,U)− µ(M,U) = δM,N (U)− δM,N (rad U).

P r o o f. (i) The Auslander–Reiten sequence Σ(U) induces an exact se-
quence

0 → HomA(τ−U,M) → HomA(E(U),M) → rad(U,M) → 0,

and hence we get

δΣ(U)(M) = [U ⊕ τ−U,M ]− [E(U),M ]

= [U,M ]− dimK rad(U,M) = µ(M,U).

Similarly we have

[U ⊕ τ−U,N ]− [E(U), N ] = µ(N,U)

and consequently

µ(N,U)− µ(M,U)
= ([U ⊕ τ−U,N ]− [U ⊕ τ−U,M ])− ([E(U), N ]− [E(U),M ])

= δ′M,N (U)− δ′M,N (E(U)) + δ′M,N (τ−U).

(ii) Since HomA(U/soc(U),M) ' rad(U,M) as K-vector spaces, we have

[U,M ]− [U/soc(U),M ] = µ(M,U).

Similarly we have

[U,N ]− [U/soc(U), N ] = µ(N,U)

and consequently
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µ(N,U)− µ(M,U)
= ([U,N ]− [U,M ])− ([U/soc(U), N ]− [U/soc(U),M ])

= δ′M,N (U)− δ′M,N (U/soc(U)).

We obtain (iii) and (iv) by duality.

Lemma 2.6. Let Γ be a generalized standard component of ΓA, M and N
be two modules in add(Γ ) with [M ] = [N ] and assume that there are modules
Ui, Vi in Γ for all i ≥ 1 such that all Vi are pairwise nonisomorphic. Then

(i) If there exists in Γ a sectional path V1 → V2 → V3 → . . . and meshes

Ui
↗ ↘

Vi Ui+1

↘ ↗
Vi+1

for all i ≥ 1, then

[V1,M ]− [U1,M ] =
∑
i≥1

µ(M,Vi)

and
δ′M,N (V1)− δ′M,N (U1) =

∑
i≥1

(µ(N,Vi)− µ(M,Vi)).

(ii) If there exists in Γ a sectional path . . .→ V3 → V2 → V1 and meshes

Ui
↗ ↘

Ui+1 Vi
↘ ↗

Vi+1

for all i ≥ 1, then

[M,V1]− [M,U1] =
∑
i≥1

µ(M,Vi)

and
δM,N (V1)− δM,N (U1) =

∑
i≥1

(µ(N,Vi)− µ(M,Vi)).

P r o o f. (i) By assumption there are irreducible maps h1 : V1 → U1

and fi : Vi→Vi+1 for all i≥1. By induction we define irreducible maps
gi : Ui→Ui+1 and hi+1 : Vi+1→Ui+1 for all i≥ 1 as follows. Assume that
a map hi : Vi → Ui is defined for some i ≥ 1. Then

[
fi

hi

]
: Vi → Vi+1 ⊕ Ui

is a left minimal almost split morphism. Thus there exist irreducible maps
hi+1 : Vi+1 → Ui+1 and gi : Ui → Ui+1 such that [hi+1,−gi] ◦

[
fi

hi

]
= 0, so
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gihi = hi+1fi. Hence we have maps fi, gi, hi such that gihi = hi+1fi for all
i≥1. Since Γ is generalized standard, for all indecomposable modules X and
Y in Γ , any nonzero morphism in rad(X,Y ) is a linear combination of the
composites of irreducible morphisms between indecomposable modules in Γ .
Clearly, in order to prove the formula [V1,M ] − [U1,M ] =

∑
i≥1 µ(M,Vi),

we may assume that M is an indecomposable module in Γ . First, observe
that the induced map HomA(h1,M) : HomA(U1,M) → HomA(V1,M) is
a monomorphism. Indeed, take a nonzero map w in HomA(U1,M). Then
there exists r ≥ 0 such that w ∈ radr(U1,M)\radr+1(U1,M). Applying now
the dual of Corollary 1.6 in [16] we see that h1 : V1 → U1 is of infinite right
degree, and consequently wh1 ∈ radr+1(V1,M) \ radr+2(V1,M). In partic-
ular, wh1 6= 0 and we are done. Further, we know that any irreducible map
Vi →W with W indecomposable is of the form αfi +ϕ, ϕ ∈ rad2(Vi, Vi+1),
or αhi + ψ, ψ ∈ rad2(Vi, Ui), for some 0 6= α ∈ K. Hence, if M 6' Vi,
for any i ≥ 1, then using the equalities gihi = hi+1fi we see that the map
HomA(h1,M) is an isomorphism. Then

[V1,M ]− [U1,M ] = 0 =
∑
i≥1

µ(M,Vi).

Assume M = Vj for some j ≥ 1. Then we get

HomA(V1,M) = im HomA(h1,M) +Kfj−1 . . . f1

where, in case j = 1, f0 is the identity map V1 → V1. Moreover, by [9],
fj−1 . . . f1 does not belong to im HomA(h1,M), because τ−Vi = Ui+1 6' Vi+2

for any i ≥ 1. Therefore, we get

[V1,M ]− [U1,M ] = 1 = µ(M,Vj) =
∑
i≥1

µ(M,Vi)

because the modules V1, V2, . . . are pairwise nonisomorphic. Moreover, we
have

δ′M,N (V1)− δ′M,N (U1) = ([V1, N ]− [U1, N ])− ([V1,M ]− [U1,M ])

=
∑
i≥1

µ(N,Vi)−
∑
i≥1

µ(M,Vi)

=
∑
i≥1

(µ(N,Vi)− µ(M,Vi)).

The proof of (ii) is dual.

2.7. Let Γ be a connected component of ΓA. For modules M and N in
add(Γ ) we set

M ≤Γ N ⇔ [X,M ] ≤ [X,N ] for all modules X ∈ add(Γ ).

Clearly, M≤N implies M≤Γ N . By [25],≤Γ is a partial order on the iso-
morphism classes of modules in add(Γ ) having the same dimension vectors.
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Corollary. Let M and N be two modules in add(Γ ) such that [M ] =
[N ]. Then M ' N if and only if M ≤Γ N and N ≤Γ M .

Moreover , if M and N belong to add(Γ ) and [M ] = [N ] then the follow-
ing conditions are equivalent (see (2.3)):

(1) M ≤Γ N .
(2) δM,N (X) ≥ 0 for all modules X in Γ .
(3) δ′M,N (X) ≥ 0 for all modules X in Γ .

2.8. Following I. Assem and A. Skowroński ([3], [4]) a translation quiver
C is said to be a coil if there exists a sequence of translation quivers Γ0, Γ1, . . .
. . . , Γm = C such that Γ0 is a stable tube and, for each 0 ≤ i < m, Γi+1 is
obtained from Γi by an admissible operation of type (ad 1), (ad 1∗), (ad 2),
(ad 2∗), (ad 3) or (ad 3∗). A coil C is said to be proper [4, (3.3)] if each of
its vertices belongs to an oriented cycle in C. Finally, a translation quiver
Γ is said to be a multicoil if Γ contains a full translation subquiver Γ ′ such
that Γ ′ is a disjoint union of (proper) coils and no vertex in Γ \ Γ ′ belongs
to an oriented cycle of Γ . For more details on coils and multicoils we refer
the reader to [4].

We end this section with the following lemma.

Lemma 2.9. Let C be a proper coil. Then there exist in C pairwise dif-
ferent vertices Ui, i ≥ 1, and pairwise different vertices Vj , j ≥ 0, such that
any oriented cycle in C contains some vertex Ui, and one of the following
conditions is satisfied :

(i) In C there are meshes

V0 U1

↘ ↗
V1

and

Ui
↗ ↘

Vi Ui+1

↘ ↗
Vi+1

for i ≥ 1.

(ii) In C there are meshes

U1 V0

↘ ↗
V1

and

Ui
↗ ↘

Ui+1 Vi
↘ ↗

Vi+1

for i ≥ 1.

P r o o f. First, we prove the existence of modules Ui and Vj satisfying
one of the conditions (i) or (ii). If C is a stable tube, U1 → U2 → U3 → . . .
an infinite sectional path in C with U1 lying on the mouth, and Vj = τUj+1

for all j ≥ 0, then clearly the condition (i) is satisfied. Assume that C is not
a stable tube. Then C is obtained from a coil C′ by an admissible operation.
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Assume that this operation is one of the types (ad 1), (ad 2) or (ad 3). Then
C admits a full translation subquiver of the form

X ′
s τ−X ′

s

↘ ↗ ↘
X ′
s+1 τ−X ′

s+1

↘ ↗ ↘
X ′
s+2

. . .
↘. . .

where s = 0 or X ′
s−1 is injective (see [4]). Then, for Ui = τ−X ′

s+i−1, i ≥ 1,
and Vj = X ′

s+j , j ≥ 0, the condition (i) is satisfied. Dually, if C is obtained
from C′ by an admissible operation of type (ad 1∗), (ad 2∗) or (ad 3∗), then
there are Ui and Vj satisfying (ii). Assume now that we have in C vertices
Ui, i ≥ 1, and Vj , j ≥ 0, satisfying (i). We claim that any oriented cycle
in C contains at least one vertex Ui. First, observe that for each vertex X
in C, there exists exactly one infinite sectional path in C with source X.
Moreover, if two infinite sectional paths

X = X1 → X2 → X3 → . . . and Y = Y1 → Y2 → Y3 → . . .

have a common vertex Xk = Z = Yl, then Xk+i = Yl+i for any i ≥ 1. If
this is the case, we say that X is equivalent to Y . This divides the set of
all vertices of C into (disjoint) equivalence classes A1, A2, . . . , Ap. We may
assume that, for each 1 ≤ i ≤ p, any arrow in C with source in Ai has a
target in Ai or Ai+1 (where Ap+1 = A1). Observe then that each oriented
cycle in C has at least one vertex from any set Ak, 1 ≤ k ≤ p. Moreover, by
the property (i), if it contains a vertex from the set Ak containing U1, then
it contains a vertex Ui, for some i ≥ 1. This shows our claim. The proof is
similar if the modules Ui and Vj satisfy the condition (ii).

3. Shape of generalized standard components

3.1. We shall recall some definitions introduced in [17]. Let (Γ, τ) be a
translation quiver. A vertex x of Γ is said to be left stable if τnx is defined
for all n ≥ 0, right stable if τnX is defined for all n ≤ 0, and stable if it
is both left and right stable. We denote by lΓ (rΓ , sΓ ) a full translation
subquiver of Γ consisting all left stable (respectively, right stable, stable)
vertices of Γ . The connected components of lΓ (rΓ , sΓ ) are called left stable
(respectively, right stable, stable) components of Γ .

A connected full subquiver ∆ of Γ is said to be a section in Γ if it has
the following properties:

(S1) There is no oriented cycle in ∆.
(S2) The subquiver ∆ meets each τ -orbit in Γ exactly once.
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(S3) Each path in Γ with end-points in ∆ lies completely in ∆.

Observe that for any section ∆ in Γ and an integer n, if τnδ is defined
for all δ ∈ ∆, then the quiver τn∆, with the set of vertices (τn∆)0 = {τnδ :
δ ∈ ∆0} and arrows τnx→ τny for all arrows x→ y in ∆, is also a section
in Γ .

Let ∆ be a section in Γ . If ∆ consists of left stable vertices, then we
denote by L(∆) the full subquiver of Γ with the set of vertices

L(∆)0 =
⋃
n≥0

(τn∆)0 = {τnδ : n ≥ 0, δ ∈ ∆}.

If ∆ consists of right stable vertices, then we denote by R(∆) the full sub-
quiver of Γ with the set of vertices

R(∆)0 =
⋃
n≤0

(τn∆)0 = {τnδ : n ≤ 0, δ ∈ ∆}.

Immediately from the above definition, the arrows in L(∆) are of the form
τnx → τny, τn+1y → τnx for any n ≥ 0 and arrows x → y in ∆. Dually,
the arrows in R(∆) are of the form τnx→ τny, τny → τn−1x for any n ≤ 0
and arrows x→ y in ∆.

A translation subquiver L(∆) (R(∆)) of Γ is called a proper left part in Γ
(respectively, a proper right part in Γ ) if ∆ is finite and the subquiver L(∆)
(respectively, R(∆)) is closed under predecessors (respectively, successors)
in Γ . Of course, if L(∆) (R(∆)) is a proper left (respectively, right) part in
Γ , then for any N ≥ 0, L(τN∆) (respectively, R(τ−N∆)) is also a proper
left (respectively, right) part in Γ and it is a cofinite subquiver of L(∆)
(respectively, R(∆)).

3.2. Let T (X) be a translation quiver
X•

ϕX ↗ ↘ ψX
• •

ϕ2X↗ ↘ ↗ ↘ ψ2X
• • ϕψX •

ϕ3X ↗ ↘ ↗ ↘ ↗ ↘ ψ3X
• • • •

. .
. . . . . .

. . . . . .
. . . . . .

. . . .

with the set of vertices

T (X)0 = {ϕiψjX : i, j ≥ 0}
and arrows

ϕi+1ψjX → ϕiψjX, ϕiψjX → ϕiψj+1X,

where τ(ϕiψj+1X) = ϕi+1ψjX for all i, j ≥ 0. For convenience we set
ϕiψ0X = ϕiX, ϕ0ψjX = ψjX, ϕ0ψ0X = X.
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For p, q > 0 let T (X, p, q) be the quiver obtained from T (X) by iden-
tifying the vertices ϕi+pψjX and ϕiψj+qX for all i, j ≥ 0. Observe that
{ϕiψjX : i ≥ 0, 0 ≤ j < q} is a complete set of pairwise different vertices in
T (X, p, q).

X•
ϕX ↗ ↘ ψX
• •

↗ ↘ ↗ ↘
• ϕψX

. .
. ↗ ↘ . . .

ϕpX ↗ . .
. . . . ↘ ψq−1X

• •
ϕp+1X↗ ↘ ↗ ↘ ↗ ↘

• • ϕpψX ϕψq−1X • • ψqX=ϕpX

↗ ↘ ↗ ↘ ↗ ↘ ↗
• •

. .
. ↗ ↘ . . . . .

. ↗ ϕψqX=ϕp+1X

. .
. . . . . .

.

A subquiver of a translation quiver Γ is called a proper subtube if it is of
the form T (X, p, q) and for any i, j ≥ 0 there is a mesh in Γ

ϕiψjX
↗ ↘

ϕi+1ψjX ϕiψj+1X
↘ ↗
ϕi+1ψj+1X

We can see that if T (X, p, q) is a proper subtube in Γ and Y = ϕkψlX, then
T (Y, p, q) (where ϕiψjY = ϕi+kψj+lX) is a cofinite subquiver of T (X, p, q)
and it is a proper subtube in Γ .

Lemma 3.3. Let Γ be a connected component of ΓA and Γ ′ be a left
stable component in Γ without τ -periodic modules and consisting of finitely
many τ -orbits. Then there exists a subquiver C of Γ ′ such that C is a proper
left part or a proper subtube in Γ and the following conditions are satisfied :

(i) For any Y in Γ ′ there is an integer N such that τnY belongs to C for
all n ≥ N .

(ii) For any Y in Γ ′ there is an integer N ′ such that τnY does not belong
to C for all n ≤ N ′.

P r o o f. Let Y be any module in Γ ′. Since Y, τY, τ2Y, . . . are pairwise
nonisomorphic and there are at most finitely many projective modules in
Γ , there is m ≥ 0 such that for n ≥ m the vertex τnY has no immediate
projective predecessor.

Now, let Z be an immediate predecessor of τkY , for some k ≥ 0, such
that Z does not belong to Γ ′. Then Z is not left stable and consequently
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there is l ≥ 0 such that τ lZ 6= 0 is an immediate projective predecessor of
τk+lY . Thus k + l < m, and so k < m. Hence, for n ≥ m, the immediate
predecessors of τnY belong to Γ ′.

Let S be any complete set of representatives of the τ -orbits in Γ ′. Since
S is a finite set, there is N ≥ 0 such that for all n ≥ N and Z ∈ S the
immediate predecessors of τnZ belong to Γ ′.

Assume that Γ ′ does not contain an oriented cycle. By [17, Theorem 3.4]
there exists a section ∆ in Γ ′. By the condition (S2) in the definition of a
section, ∆0 is a complete set of representatives of τ -orbits in Γ ′, so ∆0 is
finite. Thus there is N ≥ 0 such that L(τN∆) has no immediate predecessor
which does not belong to Γ ′. Since τN∆ is also a section in Γ ′, we may
assume that N = 0. Hence L(∆) is closed under predecessors in Γ . This
implies that L(∆) is a proper left part in Γ and of course the conditions (i)
and (ii) are satisfied for C = L(∆).

Assume now that Γ ′ contains an oriented cycle. By [17, Section 2] there
exists a sectional path in Γ ′ : . . .→ Xk+1 → Xk → . . .→ X1 and numbers
r > s > 0 such that {X1, . . . , Xs} is a complete set of representatives of
τ -orbits in Γ ′ and for all a ≥ 0, 1 ≤ b < s, Xas+b = τarXb (so Xc+s = τ rXc

for all c ≥ 1) and Γ ′ contains a full subquiver of the form

Xs+1=τ
rX1 τr−1X1 τ2X1 τX1 X1• • · · · • • •
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

Xs+2=τ
rX2• • τr−1X2 • τX2 •X2

↗ ↘ ↗ ↘ . . . . .
. ↗ ↘ ↗

• • τr−1X3 •X3

↗ ↘ ↗ ↘ . . . . .
. ↗

. .
. . . . . .

. . . . . .
. . . . . .

.

. . . . .
.

. . . ↘ ↗
•Xs+1

↘ ↗
•Xs+2

↗
. .

.

where the vertices τ rXi andXi+s coincide for all i ≥ 1. By the remark at the
beginning of our proof, there exists N ≥ 0 such that for any n ≥ N and 1 ≤
i ≤ s the immediate predecessors of τnXi belong to Γ ′. Let Yi = τNXi for
all i ≥ 1. The sectional path . . .→ Yk+1 → Yk → . . .→ Y1 satisfies the same
conditions as the sectional path . . .→ Xk+1 → Xk → . . .→ X1, so without
loss of generality we may assume that N = 0. Let X = τ rX1 = Xs+1,
p = r − s, q = r. We set, for i, j ≥ 0, ϕiψjX = τ r−jXi+j+1. It is easy to
see that for i, j ≥ 0 we have ϕi+pψjX = ϕiψj+qX, and therefore T (X, p, q)
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is a subquiver of Γ ′. Since {ϕiψjX : i ≥ 0, 0 ≤ j < q} is a complete set
of pairwise nonisomorphic modules of T (X, p, q), for any i, j ≥ 0 there are
numbers k ≥ 0, 0 ≤ l < q such that ϕiψjX = ϕkψlX = τ r−lXk+l+1. Thus
T (X, p, q)0 ⊆ {τnXi : n ≥ 0, 1 ≤ i ≤ s}. By the above remarks, ϕiψj+1X
has no immediate predecessors which do not belong to Γ ′. This implies that
for any i, j ≥ 0 we have in Γ a mesh

ϕiψjX
↗ ↘

ϕi+1ψjX ϕiψj+1X
↘ ↗
ϕi+1ψj+1X

and T (X, p, q) is a full subquiver of Γ ′. Therefore T (X, p, q) is a full sub-
quiver of Γ and moreover, T (X, p, q) is a proper subtube of Γ . For any
a ≥ 0, 0 ≤ b < r, 1 ≤ c < s we have also

τar+bXr+c = τ bXr+c+as = τ r−(r−b)X(c+as+b−1)+(r−b)+1

= ϕ(c+as+b−1)ψ(r−b)X.

Thus for any numbers n ≥ 0 and r+1 ≤ k ≤ r+ s the vertex τnXk belongs
to T (X, p, q). Since {Xr+1, . . . , Xr+s} is a complete set of representatives of
the τ -orbits in Γ ′, the condition (i) for C = T (X, p, q) holds. The condition
(2) also holds, because T (X, p, q)0 ⊆ {τnXi : n ≥ 0, 1 ≤ i ≤ s} and the
vertices X1, . . . , Xs belong to pairwise different τ -orbits. This finishes the
proof of our lemma.

Dually we obtain the following

Lemma 3.4. Let Γ be a connected component of ΓA and Γ ′ be a right
stable component in Γ without τ -periodic modules and consisting of finitely
many τ -orbits. Then there exists a subquiver C of Γ ′ such that C is a proper
right part or a proper subtube in Γ and the following conditions are satisfied :

(i) For any Y in Γ ′ there is an integer N such that τnY belongs to C
for all n ≤ N .

(ii) For any Y in Γ ′ there is an integer N ′ such that τnY does not belong
to C for all n ≥ N ′.

Lemma 3.5. Let Γ be a connected component of ΓA and Γ ′ be an infinite
stable component in Γ containing a τ -periodic module. Then Γ ′ consists of
τ -periodic modules and there exists a proper subtube in Γ which is a cofinite
subquiver of Γ ′.

P r o o f. Since Γ ′ is a connected and locally finite quiver containing a
τ -periodic module and consisting of τ -stable modules, each vertex in Γ ′ is
τ -periodic. By the Happel–Preiser–Ringel theorem [14], Γ ′ is then a stable
tube of rank r, for some r ≥ 1. Thus there is a sectional path . . .→ Xk+1 →
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Xk → . . . → X1 in Γ such that (Γ ′)0 = {τ jXi : i ≥ 1, 0 ≤ j < r}. Let Y
in Γ be an immediate predecessor or successor of a module from Γ ′, such
that Y does not belong to Γ ′. Since Γ is locally finite, Y belongs to the τ -
orbit with projective and injective modules. There are at most finitely many
vertices Y in Γ which belong to the τ -orbit with projective and injective
modules. Thus there exists N ≥ 1 such that for any n ≥ N and integer j,
the immediate predecessors and successors of τ jXn in Γ belong to Γ ′. Let
X=XN and, for any i, j≥0, set ϕiψjX=τ−jXN+i+j . Then T (X, r, r) is a
proper subtube in Γ . Since the vertices of Γ ′ \ T (X, r, r) belong to the set
{τ jXi : 1 ≤ i < N + r, 0 ≤ j < r}, T (X, r, r) is a cofinite subquiver of Γ ′.

Theorem 3.6. Let Γ be a generalized standard component of ΓA and
S be a finite subset of vertices of Γ . Then there exists a finite family Γi,
i ∈ I, of pairwise disjoint translation subquivers in Γ such that

(i) Γ \
⋃
i∈I Γi is finite and contains S.

(ii) Each Γi is a proper left part of Γ , a proper right part of Γ , or a
proper subtube of Γ .

P r o o f. Let {Γ ′′1 , . . . , Γ ′′s } ({Γ ′′s+1, . . . , Γ
′′
t }) be a complete set of left

stable (respectively, right stable) components of Γ without τ -periodic mod-
ules. Let {Γ ′′t+1, . . . , Γ

′′
h } be a complete set of infinite stable components of

Γ containing a τ -periodic module. By [22, Theorem 2.3], Γ admits at most
finitely many nonperiodic τ -orbits. Thus, for any 1 ≤ k ≤ t, the component
Γ ′′k consists of finitely many τ -orbits. For any 1 ≤ k ≤ h, let Γ ′k be a sub-
quiver of Γ ′′k which satisfies the conditions of one of Lemmas 3.3, 3.4 or 3.5,
respectively. We set I = {1, . . . , h}. Since Γ contains at most finitely many
stable components, all but finitely many τ -periodic modules in Γ belong to⋃
t<k≤h Γ

′′
k . By Lemma 3.5, at most finitely many τ -periodic modules do

not belong to
⋃
t<k≤h Γ

′
k ⊆

⋃
k∈I Γ

′
k. If X is a left stable and nonperiodic

vertex in Γ , then X belongs to Γ ′′k for some 1 ≤ k ≤ s. By Lemma 3.3(i)
there is a number N1 such that τnX belongs to Γ ′k for all n ≥ N1. Dually,
if X is a right stable and nonperiodic vertex in Γ , then X belongs to Γ ′′k
for some s < k ≤ t and there is a number N2 such that τnX belongs to
Γ ′k for all n ≤ N2. Therefore, for any nonperiodic τ -orbit, all but finitely
many of its modules belong to

⋃
1≤k≤t Γ

′
k ⊆

⋃
k∈I Γ

′
k. Since Γ contains at

most finitely many nonperiodic τ -orbits, all but finitely many nonperiodic
modules belong to

⋃
k∈I Γ

′
k. Thus Γ \

⋃
k∈I Γ

′
k consists of at most finitely

many vertices.
We claim that, for any i, j ∈ I, if i 6= j then Γ ′i ∩ Γ ′j contains at most

finitely many vertices. The components Γk for t<k≤h are pairwise disjoint
and since they contain only τ -periodic modules, they are disjoint from Γ ′′l for
all 1 ≤ l ≤ t. Hence Γ ′k∩Γ ′l = ∅ for all t < k ≤ h and l ∈ I\{k}. Further, the
left stable components Γ ′′1 , . . . , Γ

′′
s are pairwise disjoint, which implies that
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Γ ′1, . . . , Γ
′
s are pairwise disjoint. Dually Γ ′s+1, . . . , Γ

′
t are pairwise disjoint.

It remains to consider the case when 1 ≤ k ≤ s and s < l ≤ t. If X is a
common vertex of Γ ′k and Γ ′l then X is a stable module. By Lemmas 3.3(ii)
and 3.4(ii), each τ -orbit contains at most finitely many vertices belonging
to Γ ′k ∩Γ ′l . Since there are at most finitely many nonperiodic τ -orbits in Γ ,
Γ ′k ∩ Γ ′l is a finite quiver.

For any k ∈ I let Sk be the set of all vertices of Γ ′k which belong to S or
belong to Γ ′l for some l ∈ I \ {k}. By the above considerations Sk is a finite
set. If Γ ′k = T (X, p, q) then there exists N ≥ 0 such that ϕi+NψjX 6∈ Sk for
any i, j ≥ 0. In this case, we set Γk = T (Y, p, q), where Y = ϕNX. Then
Γk is a proper subtube in Γ and Γ ′k \ Γk is a finite quiver. If Γ ′k = L(∆)
is a proper left part in Γ then there exists N ≥ 0 such that L(τN∆) does
not contain vertices from Sk. In this case, we set Γk = L(τN∆). Then Γk
is a proper left part in Γ and Γ ′k \ Γk is a finite quiver. We proceed dually
if Γ ′k = R(∆) is a proper right part in Γ . Hence,

Γ \
⋃
k∈I

Γk ⊆
(
Γ \

⋃
k∈I

Γ ′k

)
∪

⋃
k∈I

(Γ ′k \ Γk)

is a finite quiver. Of course, the subquivers Γk are pairwise disjoint and do
not contain any vertices from S. This finishes our proof.

4. Dimension functions on generalized standard components

Lemma 4.1. Let Γ be a generalized standard component of ΓA, T (X, p, q)
be a proper subtube in Γ and assume that M and N are two modules in
add(Γ \ T (X, p, q)) with [M ] = [N ]. Then

(i) [ψqX] > [X] (the vector [ψqX]− [X] is nonzero and has nonnegative
coordinates).

(ii) There is a number n such that δM,N (ϕiψjX) = n for all i ≥ 1 and
j ≥ 0.

P r o o f.(i) Since T (X, p, q) is a proper subtube in Γ , there are Auslander–
Reiten sequences

0 → ϕi+1ψjX → ϕiψjX ⊕ ϕi+1ψj+1X → ϕiψj+1X → 0

for all i, j ≥ 0. Applying now [2, Corollary 2.2] we get exact sequences

0 → ϕrpX → ϕrpψqX ⊕X → ψqX → 0

for all r ≥ 1. Since ϕrpX = ψrqX, ϕrpψqX = ψ(r+1)qX, it follows that
[ψ(r+1)qX] − [ψrqX] = [ψqX] − [X] for all r ≥ 1. By induction we obtain
[ψrqX] = r([ψqX]−[X])+[X]. Thus [ψqX] ≥ [X]. But the equality [ψqX] =
[X] implies that the pairwise nonisomorphic modulesX,ψqX,ψ2qX, . . . have
the same dimension vectors, which is false by [22, Corollary 2.7]. Hence
[ψqX] > [X].
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(ii) There exists a sectional path

ϕiψj+1X → ϕiψj+2X → ϕiψj+3X → . . .

and the meshes
ϕi−1ψj+sX
↗ ↘

ϕiψj+sX ϕi−1ψj+1+sX
↘ ↗
ϕiψj+1+sX

for all s ≥ 1. By Lemma 2.6(i) we obtain

δ′M,N (ϕiψj+1X)− δ′M,N (ϕi−1ψj+1X)

=
∑
s≥1

(µ(N,ϕiψj+sX)− µ(M,ϕiψj+sX)) = 0,

because T (X, p, q) does not contain any direct summands of M ⊕N . Thus
δM,N (τ(ϕiψj+1X)) = δM,N (τ(ϕi−1ψj+1X)), which implies

δM,N (ϕi+1ψjX) = δM,N (ϕiψjX) for all i ≥ 1, j ≥ 0.

For any numbers i ≥ 1 and j ≥ 0 there exists also a sectional path

. . .→ ϕi+2ψj+1X → ϕi+1ψj+1X → ϕiψj+1X

and the meshes
ϕi+sψjX
↗ ↘

ϕi+s+1ψjX ϕi+sψj+1X
↘ ↗

ϕi+s+1ψj+1X

for all s ≥ 0.

In a similar way, by Lemma 2.6(ii), we obtain

δM,N (ϕiψj+1X) = δM,N (ϕiψjX) for all i ≥ 1, j ≥ 0.

Therefore, there exists a number n such that δM,N (ϕiψjX) = n for all i ≥ 1
and j ≥ 0.

Now we prove a statement which is a generalization of [25, Lemma 5.2].

Proposition 4.2. Let Γ be a generalized standard component of ΓA
and assume that M and N are two modules in add(Γ ) with [M ] = [N ] and
M ≤Γ N . Then δM,N (X) = 0 and δ′M,N (X) = 0 for all but finitely many
modules X in Γ and all modules X in ΓA \ Γ .

P r o o f. Let S be the set of all indecomposable direct summands of
M ⊕N . Let {Γk}k∈I be the family of subquivers of Γ satisfying the condi-
tions of Theorem 3.6 for the set S.
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Let J be the subset of I formed by all k such that Γk = T (Xk, pk, qk) is
a proper subtube in Γ . We set Sk = {Xk, ψXk, . . . , ψ

qk−1Xk} for all k ∈ J .
Then Sk is the set of all vertices of T (Xk, pk, qk) \ T (ϕXk, pk, qk). Let

F ′ =
(
Γ \

⋃
k∈I

Γk

)
0
∪

⋃
k∈J

Sk and F = {W ∈ F ′ : δM,N (W ) > 0}.

By Theorem 3.6, the sets F ′ and F are finite. Moreover, F has no injective
modules, so for any X ∈ F we have an Auslander–Reiten sequence

Σ(X) : 0 → X → E(X) → τ−X → 0.

Let

N ′ =
( ⊕
X∈F

E(X)δM,N (X)
)
⊕N, M ′ =

( ⊕
X∈F

(X ⊕ τ−X)δM,N (X)
)
⊕M.

Then the modules M ′, N ′ belong to add(Γ ), [M ′] = [N ′] and δM ′,N ′ =
δM,N −

∑
X∈F (δM,N (X) · δΣ(X)). By Lemma 2.5(i)

δM ′,N ′(Y ) = δM,N (Y )−
∑
X∈F

(δM,N (X) · µ(Y,X)).

Hence, δM ′N ′(Y ) = 0 for Y ∈ F and δM ′,N ′(Y ) = δM,N (Y ) for the remain-
ing Y ∈ ΓA. Consequently, we obtain M ′ ≤Γ N ′. By definition of F we
have δM ′,N ′(X) = 0 for all X ∈ F ′. Observe that if δM,N (X) = 0 then
δM ′,N ′(X) = 0 for any X in ΓA. Let k be any element in I \ J , X be any
module in Γk and Y be any indecomposable direct summand of M ⊕N . Of
course Y does not belong to Γk. Assume that Γk is a proper left part in Γ .
Then Y is not a predecessor of X in Γ . Since Γ is generalized standard, we
have [Y,X] = 0, and hence

δM,N (X) = [N,X]− [M,X] = 0− 0 = 0.

Assume now that Γk is a proper right part in Γ . Then τ−X belongs to
Γk, and Y is not a successor of τ−X in Γ . Since Γ is generalized standard,
[τ−X,Y ] = 0, and we get

δM,N (X) = δ′M,N (τ−X) = [τ−X,N ]− [τ−X,M ] = 0− 0 = 0.

Hence δM,N (X) = 0, which implies that δM ′,N ′(X) = 0 for any X in Γk,
where k ∈ I \ J .

Let k belong to J and X be any module in T (ϕXk, pk, qk). Then X 6∈ F
and δM ′,N ′(X) = δM,N (X). By Lemma 4.1(ii) there exist numbers nk, for
all k ∈ J , such that δM ′,N ′(X) = δM,N (X) = nk for all X ∈ T (ϕXk, pk, qk).
Since M ≤Γ N , we get nk ≥ 0. Further, by the above considerations,
δM ′,N ′(X) = 0 for any X in (Γ \

⋃
k∈J T (ϕXk, pk, qk))0 = F ′∪

⋃
k∈I\J(Γk)0.

We claim that nk = 0 for any k ∈ J . Observe that for any Y in Γ , if
δM ′,N ′(Y ) > 0, then the mesh starting at Y is contained in a proper sub-
tube Γk, for some k ∈ J . Let X be a module in Γ \

⋃
k∈J Γk. Then the
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mesh starting at X is not contained in Γk for any k ∈ J . The same is
true for the meshes starting at Y , where Y is an immediate predecessor
of X or Y = τX, if X is not projective. Thus δM ′,N ′(Y ) = 0 if Y = X
or Y is an immediate predecessor of X or Y = τX. By Lemma 2.5(iii)
and (iv), µ(N ′, X) − µ(M ′, X) = 0. Assume now that X belongs to Γk
for some k ∈ J , so X = ϕiψjXk for some i, j ≥ 0. We shall compute
`X = µ(N ′, X) − µ(M ′, X). Put p = pk and q = qk. Assume that j ≥ 1.
Since Γk is a proper subtube in Γ , there is an Auslander–Reiten sequence

0 → ϕi+1ψj−1Xk → ϕiψj−1Xk ⊕ ϕi+1ψjXk → ϕiψjXk → 0.

By Lemma 2.5(iii) we get

`X = δM ′,N ′(ϕi+1ψj−1Xk)− δM ′,N ′(ϕi+1ψjXk)

− δM ′,N ′(ϕiψj−1Xk) + δM ′,N ′(ϕiψjXk)

= nk − nk − δM ′,N ′(ϕiψj−1Xk) + δM ′,N ′(ϕiψjXk)

= δM ′,N ′(ϕiψjXk)− δM ′,N ′(ϕiψj−1Xk).

If, moreover, i ≥ 1, which is equivalent to X ∈ T (ϕψXk, p, q), then `X =
nk − nk = 0.

Assume now that X ∈ T (Xk, p, q) \ T (ϕψXk, p, q), so

X ∈ {Xk, ϕXk, ϕ
2Xk, . . . , ϕ

pXk = ψqXk, ψ
q−1Xk, . . . ψXk}.

If X = ψjXk for 1 ≤ j ≤ q − 1, then

`X = δM ′,N ′(ψjXk)− δM ′,N ′(ψj−1Xk) = 0− 0 = 0,

because the modules ψjXk and ψj−1Xk belong to Sk ⊆ F ′. If X = ψqXk,
then

`X = δM ′,N ′(ψqXk)− δM ′,N ′(ψq−1Xk) = nk − 0 = nk.

Let now X=ϕiXk for some 0≤ i≤p− 1. We claim that `X = δM ′,N ′(ϕiXk)
− δM ′,N ′(ϕi+1Xk). Assume that X is projective. Then rad(X) = ϕi+1Xk

⊕E and no indecomposable direct summand of E belongs to Γk. Then any
indecomposable direct summand Y of E is injective or the mesh starting
at Y is not contained in Γ`, for any ` ∈ J . Thus δM ′,N ′(Y ) = 0, and
consequently δM ′,N ′(E) = 0. By Lemma 2.5(iv) we have

`X = δM ′,N ′(ϕiXk)− δM ′,N ′(ϕi+1Xk)− δM ′,N ′(E)

= δM ′,N ′(ϕiXk)− δM ′,N ′(ϕi+1Xk).

Assume that X is not projective. Then there is an Auslander–Reiten se-
quence

0 → τ(ϕiXk) → E ⊕ ϕi+1Xk → ϕiXk → 0.
The indecomposable direct summands of E and τ(ϕiXk) do not belong to
the quiver T (ϕXk, pk, qk). As above, we get δM ′,N ′(E) = 0 and
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δM ′,N ′(τ(ϕiXk)) = 0. By Lemma 2.5(iii) we obtain

`X = δM ′,N ′(ϕiXk)− δM ′,N ′(ϕi+1Xk)− δM ′,N ′(E) + δM ′,N ′(τ(ϕiXk))

= δM ′,N ′(ϕiXk)− δM ′,N ′(ϕi+1Xk).

If X = ϕiXk, where 1 ≤ i ≤ p− 1, then `X = nk −nk = 0. But, if X = Xk,
then `X = 0− nk = −nk, because Xk ∈ F ′. Thus

M ′ =
⊕
k∈J

(Xk)nk ⊕W and N ′ =
⊕
k∈J

(ψqkXk)nk ⊕W,

where W is the greatest common direct summand of M ′ and N ′. By Lem-
ma 4.1(i), [ψqkXk]− [Xk] > 0. Since 0 = [N ′]− [M ′] =

∑
k∈J nk([ψ

qkXk]−
[Xk]) and nk ≥ 0, we have nk = 0 for all k ∈ J . Thus δM ′,N ′(X) = 0 for
all X in Γ . This implies that M ′ ≤Γ N ′ and N ′ ≤Γ M ′. Consequently,
M ′ = N ′. Hence δM,N (X) = δM ′,N ′(X) = 0 for all indecomposable modules
X which do not belong to F ′. Since F ′ ⊆ Γ0, δ′M,N (X) = δM,N (τX) and
F is a finite set, we have δM,N (X) = 0 and δ′M,N (X) = 0 for all but finitely
many X in Γ and all X in ΓA \ Γ . This finishes our proof.

The following proposition shows the convexity of the degenerations of
modules from the additive categories of generalized standard components.

Proposition 4.3. Let A be an algebra, and Γ a generalized standard
component in ΓA. Assume that M,N, V are A-modules such that [M ] =
[V ] = [N ], M ≤deg V ≤deg N and N belongs to add(Γ ). Then V belongs to
add(Γ ).

P r o o f. By Proposition 4.2, δM,N (X) = 0 for all X in ΓA \ Γ . This
implies δM,V (X) = 0 for all X in ΓA \ Γ . Applying Lemma 2.5, we get
µ(V,X) = µ(V,X)− µ(M,X) = 0 for all X in ΓA \ Γ . Hence V belongs to
add(Γ ).

5. Proof of Theorem 1. Let M , N be modules in add(Γ ) with [M ] =
[N ]. Clearly, M ≤virt N implies M ≤Γ N . Assume that δM,N (X) ≥ 0 for
all modules X in Γ . By Proposition 4.2, δM,N (X) = 0 for all X in ΓA \ Γ .
This implies M ≤ N . We shall prove that M ≤virt N applying arguments
similar to those in [18, Section 2]. We set F = {X ∈ ΓA : δM,N (X) > 0}. By
Proposition 4.2, F is a finite subset of Γ without injective modules. There
exist Auslander–Reiten sequences

Σ(X) : 0 → X → E(X) → τ−X → 0

for all X ∈ F . Thus we have the exact sequence

Σ : 0 → U →W ⊕M → V ⊕M → 0

where U =
⊕

X∈F X
δ(X), W =

⊕
X∈F E(X)δ(X), V =

⊕
X∈F (τ−X)δ(X),

and δ = δM,N . Therefore W ⊕M ≤deg U ⊕ V ⊕M . Take any X in ΓA.
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Then [M ⊕ U ⊕ V ] = [N ⊕W ] and

δM⊕U⊕V,N⊕W (X) = δM,N (X)−
∑
Y ∈F

δM,N (Y ) · δΣ(Y )(X).

By Lemma 2.5(i), we have δΣ(Y )(X) = µ(X,Y ). Hence δM⊕U⊕V,N⊕W (X) =
δM,N (X) − δM,N (X) · 1 = 0 for any X in F and δM⊕U⊕V,N⊕W (X) =
δM,N (X) = 0 for any indecomposable module X 6∈ F . Of course, the equali-
ties δM⊕U⊕V,N⊕W (X) = 0, for anyX in ΓA, imply thatM⊕U⊕V = N⊕W .
Thus M⊕W ≤deg N⊕W . Consequently, by definition of the relation ≤virt,
we infer that M ≤virt N . This finishes the proof.

6. Proof of Theorem 2. In the proof of Theorem 2 we shall use the
following fact.

Lemma 6.1. Let Γ be a generalized standard component of ΓA. As-
sume that for all modules M , N in add(Γ ) with [M ] = [N ] and M <Γ N ,
there exist modules M ′, N ′ in add(Γ ) such that [M ′] = [N ′], M ′ <deg N

′,
δM ′,N ′(X) ≤ δM,N (X) for any X in Γ , and one of the following conditions
holds:

(i) N ′ = N1 ⊕N2 ⊕N3, where δM,N (N1) = 0, δ′M,N (N2) = 0 and N3 is
a direct summand of N.

(ii) M ′ = M1 ⊕M2 ⊕M3, where δM,N (M1) = 0, δ′M,N (M2) = 0 and M3

is a direct summand of M.

Then the partial orders ≤Γ and ≤deg coincide on the category of modules
of a fixed dimension vector in add(Γ ).

P r o o f. Clearly, M ≤deg N implies M ≤Γ N . In our proof of the reverse
implication, we proceed by induction on

∑
X∈Γ0

δM,N (X) ≥ 0. Observe
that by Proposition 4.2, this sum is finite. If

∑
X∈Γ0

δM,N (X) = 0 then
δM,N (X) = 0 for all X ∈ Γ0, and so M ≤Γ N and N ≤Γ M . Hence,
M ' N , and this implies M ≤deg N .

Assume that
∑
X∈Γ0

δM,N (X) > 0. Then M <Γ N , and by our as-
sumptions, there exist modules M ′, N ′ ∈ add(Γ ) such that [M ′] = [N ′],
M ′ <deg N ′ and δM ′,N ′(X) ≤ δM,N (X) for any X in Γ . Assume that
N ′ = N1 ⊕ N2 ⊕ N3, where δM,N (N1) = δ′M,N (N2) = 0 and N = N3 ⊕ N4

for some module N4 in add(Γ ). Observe that [M ⊕N1 ⊕N2] = [N4 ⊕M ′]
and δM⊕N1⊕N2,N4⊕M ′ = δM,N − δM ′,N ′ . Thus M ⊕N1 ⊕N2 ≤Γ N4 ⊕M ′.
Moreover,∑
X∈Γ0

δM⊕N1⊕N2,N4⊕M ′(X) =
∑
X∈Γ0

(δM,N (X)−δM ′,N ′(X)) <
∑
X∈Γ0

δM,N (X),

because otherwise δM ′,N ′(X) = 0 for any X in Γ , which implies M ′ ≤Γ N ′,
N ′ ≤Γ M ′, and consequently M ′ ' N ′, a contradiction with M ′ <deg N

′.
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Therefore, by our inductive assumption, M ⊕N1⊕N2 ≤deg N4⊕M ′. Since
N4⊕M ′ ≤deg N4⊕N ′, we have M ⊕N1⊕N2 ≤deg N4⊕N ′ = N ⊕N1⊕N2.
The equality δ′M,N (N2) = 0 implies [N2,M ⊕N1] = [N2, N ⊕N1]. Then by
the cancellation theorem for degenerations proved in [10, Corollary 2.5], we
have M ⊕N1 ≤deg N ⊕N1. The equality δM,N (N1) = 0 implies [M,N1] =
[N,N1]. Applying now the dual cancellation theorem for degenerations, we
obtain the required relation M ≤deg N .

In a similar way we get M ≤deg N in the case when condition (ii) holds.

6.2. P r o o f o f T h e o r e m 2. Assume that M <Γ N for some modules
M , N in add(Γ ) with [M ] = [N ]. It suffices to find an exact sequence
0 → U →M ′ → V → 0 such that the modules M ′ and N ′ = U ⊕ V satisfy
the conditions of Lemma 6.1. By Proposition 4.2 the set

F = {X ∈ Γ0 : δM,N (X) > 0}
is finite, nonempty and without injective modules.

Assume first that there is no cycle X0 → X1 → . . . → Xc = X0 in Γ
consisting of modules from F . Then there is a module X in F such that
any immediate predecessor Y of X in Γ does not belong to F . Since X is
not injective, there exists an Auslander–Reiten sequence

Σ(X) : 0 → X → E(X) → τ−X → 0.

We claim that Σ(X) is the required sequence. By Lemma 2.5(i),

δE(X),X⊕τ−X(Y ) = δΣ(X)(Y ) = µ(Y,X) ≤ δM,N (Y ).

Let Z be any indecomposable direct summand of E(X). Then δ′M,N (Z) = 0,
since Z is either projective or τZ is an immediate predecessor of X and
δ′M,N (Z) = δM,N (τZ) = 0. We set M1 = M3 = 0 and M2 = E(X). We see
that the condition (ii) in Lemma 6.1 is satisfied, and we are done.

Assume now that there is a cycle X0 → X1 → . . . → Xc = X0, where
X0, X1, . . . , Xc−1 are modules in F . By definition of a multicoil there is a
full translation subquiver C of Γ such that C is a proper coil and the cycle
X0 → X1 → . . . → Xc = X0 is contained in C. Without loss of generality
we may assume by Lemma 2.9 that there exist in C pairwise nonisomorphic
modules Ui, for all i ≥ 1, and modules Vi, for all i ≥ 0, such that Ua = Xb

for some a ≥ 1 and 0 ≤ b < c and there are Auslander–Reiten sequences

Σ(U1) : 0 → U1 → V1 → V0 → 0,
Σ(Ui+1) : 0 → Ui+1 → Ui ⊕ Vi+1 → Vi → 0, for all i ≥ 1.

Since Ua = Xb, we have δM,N (Ua) > 0, and so the set I = {i ≥ 1 :
δM,N (Ui) > 0} is nonempty. Since U1, U2, . . . are pairwise nonisomorphic,
the set I is finite, by Proposition 4.2. Thus there are numbers 0 ≤ l < k such
that δM,N (Ui) > 0 for any l < i ≤ k, δM,N (Uk+1) = 0 and δM,N (Ul) = 0
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provided l > 0. We set U0 = 0. Then we have Auslander–Reiten sequences

Σ(Ui) : 0 → Ui → Ui−1 ⊕ Vi → Vi−1 → 0 for any l < i ≤ k.

Applying now [2, Corollary (2.2)] we get an exact sequence

Σ : 0 → Uk → Ul ⊕ Vk → Vl → 0.

We claim that Σ is the required sequence. It is easy to see that

δUl⊕Vk,Uk⊕Vl
= δΣ =

k∑
i=l+1

δΣ(Ui).

By Lemma 2.5(i) we have δΣ(X) =
∑k
i=l+1 µ(X,Ui). Thus δΣ(Ui) = 1 for

all l < i ≤ k and δΣ(X) = 0 for the remaining indecomposable modules X.
Therefore δUl⊕Vk,Uk⊕Vl

= δΣ ≤ δM,N .
Observe that δ′M,N (Vk) = δM,N (τVk) = δM,N (Uk+1) = 0. Hence, condi-

tion (ii) in Lemma 6.1 is satisfied, if we set M1 = Ul, M2 = Vk, M3 = 0.
This finishes our proof.
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[2] I. Assem and A. Skowro ń sk i,Minimal representation-infinite coil algebras, Manu-
scripta Math. 67 (1990), 305–331.

[3] —, —, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992),
31–61.

[4] —, —, Multicoil algebras, in: Representations of Algebras, CMS Conf. Proc. 14
(1993), 29–68.
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