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Introduction. Let f : R → R be continuous and such that the difference
function ∆hf(x) = f(x + h) − f(x) is bounded for every h ∈ R. In a recent
paper [T], S. I. Trofimchuk proved that if ∆hf is uniformly continuous for
every h ∈ R then f is also uniformly continuous. In this note we prove
that in this theorem uniform continuity can be replaced by the Lipschitz
property. More exactly, we investigate the following question. Suppose that
f is continuous and ∆hf is Lipschitz for every h belonging to a given subset,
A, of R. We show that this condition implies that f is Lipschitz if and only
if A cannot be covered by a proper Fσ group of R. We also discuss the
analogous problem for uniform Lipschitz functions and for functions defined
on the circle group T = R/Z.

We shall use the following notation. We set N = {1, 2, . . .}. Let G be any
of the groups R or T. If A,B ⊂ G then we define A + B = {a + b : a ∈ A,
b ∈ B}. The sets A − B and −A are defined similarly. If k ∈ N, the k-fold
sum A+ . . .+ A is denoted by kA. By closed (open) intervals in T we mean
closed (open) connected sets. For every L > 0 we denote by LipL the set of
functions f : G → R satisfying

|f(x) − f(y)| ≤ L|x − y|

for every x, y ∈ G. In the case of G = T, by |x| we mean min{|x|, 1 − |x|},
when we identify T with [0, 1). We put Lip =

⋃

L>0
LipL. For H ⊂ G, the

closure and the Lebesgue outer measure of H are denoted by clH and |H|.
The identity ∆h1+h2

f(x) = ∆h1
f(x + h2) − ∆h2

f(x) gives

Lemma 0.1. Assume that L1, L2 > 0, f : G → R, B1, B2 ⊂ G. If ∆hf ∈
LipLi

for every h ∈ Bi (i = 1, 2) then ∆hf ∈ LipL1+L2
for h ∈ B1 + B2.

It is well known that if F1, F2 ⊂ G are closed sets of positive measure
then the interior of F1 + F2 is non-empty. This easily implies
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Lemma 0.2. For every A ⊂ G the following statements are equivalent :

(i) kA is nowhere dense for every k ∈ N.

(ii) |cl(kA)| = 0 for every k ∈ N.

1. Functions defined on the circle group T

Theorem 1.1. Let L > 0 and let A be a subset of T such that A = −A.
Then the following statements are equivalent :

(i) If f : T → R is continuous and ∆hf ∈ LipL for each h ∈ A, then f
is Lipschitz.

(ii) There is an n ∈ N such that nA is dense in T.

P r o o f. Suppose (ii), and let f : T → R be a continuous function
such that ∆hf ∈ LipL for every h ∈ A. By Lemma 0.1, this implies that
∆hf ∈ LipnL for a set of h’s everywhere dense in T. Since f is continuous,
we have ∆hf ∈ LipnL for every h ∈ T, that is,

(1) |f(x + h) − f(x) − f(y + h) + f(y)| ≤ nL|x − y|

for every x, y and h. Using
T
T
(f(x+h)−f(y +h)) dh = 0 and (1) we obtain

|f(y) − f(x)| =
∣

∣

∣

\
T

[f(x + h) − f(x) − f(y + h) + f(y)] dh
∣

∣

∣

≤ nL|x − y|,

and this proves the implication (ii)⇒(i). To prove the converse we need the
following lemma.

Lemma 1.2. Assume that A ⊂ T and |cl(kA)| = 0 for any k ∈ N. Then

there is a closed set H ⊂ T such that |H| > 0 and H + cl(kA) is nowhere

dense for any k ∈ N.

P r o o f. Denote the rationals in T by Q. Clearly, |Q − cl(kA)| = 0 for
any k ∈ N. Let B =

⋃

k∈N
(Q − cl(kA)); then |B| = 0. Choose a closed

set H ⊂ T \ B such that |H| > 0. Then H + cl(kA) is closed. Suppose
that x ∈ (H + cl(kA)) ∩ Q. Then there exist h ∈ H and y ∈ cl(kA) with
h + y = x ∈ Q, that is, h = x − y ∈ Q − cl(kA) ⊂ B, contradicting
h ∈ H ⊂ T \ B. This implies that Q ∩ (H + cl(kA)) = ∅, and hence the
closed set H + cl(kA) is nowhere dense.

Now we turn to the proof of the implication (i)⇒(ii). We may assume
that L = 1, and 0 ∈ A. Suppose that (ii) is not true; this easily implies
that kA is nowhere dense for every k ∈ N. We shall construct a continuous
non-Lipschitz function f : T → R such that ∆hf ∈ Lip1 for each h ∈ A. We

shall define f as
Tx
0

g(t) dt, where g : T → R is summable and
T1
0
g(t) dt = 0.

(In this proof we identify T with [0, 1).) Then f will be continuous on T

and will satisfy f(0) = limx→1− f(x) = f(1).
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By Lemma 1.2 we can choose a closed set H ⊂ T such that |H| > 0 and
H + cl(kA) is nowhere dense for any k ∈ N. Put H−1 = ∅, H0 = H and
Hj = H + cl(jA) = Hj−1 + cl(A) for j = 1, 2, . . . From 0 ∈ A it follows that
Hj−1 ⊂ Hj . Put H∞ =

⋃

j∈N
Hj ; then limj→∞ |H∞ \Hj−1| = 0 by |T| = 1.

Let j0 = 1. If jk−1 is defined for a k ∈ N, choose jk such that jk > jk−1 and

(2) |H∞ \ Hjk−1| < 1/(k2k).

For jk−1 < j ≤ jk we put cj = k. Thus by induction we have defined jk for
all k, and cj for all j. We put g1(x) = cj if x ∈ Hj \ Hj−1 (j ∈ N), and
g1(x) = 0 for x ∈ T \ H∞. From (2) it follows that c =

T
T

g1 < ∞. Let
g(x) = g1(x) − c for x ∈ T; then

T
T

g = 0.

Let x ∈ H∞ and h ∈ A. Then y = x+h ∈ H∞, and thus x ∈ Hjx
\Hjx−1

and y ∈ Hjy
\ Hjy−1 with suitable jx and jy. If jx ≤ jy, then y = x + h ∈

Hjx
+ cl(A) = Hjx+1, and hence jy = jx or jy = jx + 1. Thus, in this case,

|g(y)−g(x)| = 0 or |g(y)−g(x)| = |(cjx+1−c)−(cjx
−c)| ≤ 1. If, on the other

hand, jx > jy then, using A = −A, x = y−h, and interchanging the roles of
x and y, we reach the same conclusion. Therefore, |g(x+h)−g(x)| ≤ 1 holds
for any x ∈ H∞ and h ∈ A. If x ∈ T \H∞ and h ∈ A then x + h ∈ T \H∞.
Indeed, from x+h ∈ H∞ it follows that x+h ∈ Hj for some j ≥ 0, and then
A = −A implies x = (x+h)−h ∈ Hj +A ⊂ H∞, contradicting x ∈ T\H∞.
Therefore |g(x+h)− g(x)| = c− c = 0 holds for any x ∈ T \H∞ and h ∈ A.
Thus |g(x + h) − g(x)| ≤ 1 for x ∈ T and h ∈ A. Let f(x) =

Tx
0

g(t) dt for
x ∈ T. To show that ∆hf ∈ Lip1 for h ∈ A, let x, d ∈ T be given. We have

|∆hf(x + d) − ∆hf(x)| = |∆df(x + h) − ∆df(x)|

=
∣

∣

∣

x+d\
x

(g(t + h) − g(t)) dt
∣

∣

∣
≤ |d|.

That is, ∆hf ∈ Lip1. Observe that we may replace A by A ∪ {1/n : n ∈ N}
∪ {−(1/n) : n ∈ N}. Then A∞ =

⋃

k∈N
cl(kA) is dense in T. Thus, for any

subinterval J of T, we have 0 < |H∞ ∩ J | = |(H + A∞)∩ J |. Since the Hj ’s
are nowhere dense, there are infinitely many j’s for which |Hj \ Hj−1| > 0.
Hence, putting SK = {x ∈ T : |g(x)| > K} (K > 0), we have |SK | > 0 for
all K > 0. Since f ′ = (

Tx
0

g(t) dt)′ = g(x) almost everywhere on T, it follows
that, for any K, the inequality |f ′(x)| > K holds for almost every x ∈ SK .
Thus f cannot be Lipschitz and hence (i) does not hold. This completes the
proof of Theorem 1.1.

R e m a r k 1.3. Since ∆−hf ∈ LipL follows from ∆hf ∈ LipL, the as-
sumption A = −A is natural. We show that this assumption cannot be
deleted from the implication (i)⇒(ii) of Theorem 1.1.

Indeed, by a result of Haight [H], there exists an Fσ subset B of the
positive real line such that B − B = R but kB has zero Lebesgue measure
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for any positive integer k. Choose closed compact sets Fn of measure zero
such that B =

⋃

∞

n=1
Fn and F1 ⊂ F2 ⊂ . . . Since B −B = R, it follows that

Fn − Fn contains an interval for a suitable n ∈ N. Taking this Fn “mod1”
we obtain a nowhere dense compact set A such that kA is nowhere dense
for every k ∈ N and A − A contains an interval. It is easy to see, following
the proof of Theorem 1.1, that if ∆hf ∈ LipL for every h ∈ A then f is
Lipschitz.

Next we turn to the non-uniform case, i.e. to the case when the difference
functions are Lipschitz but not necessarily with the same constant.

Theorem 1.4. For every A ⊂ T the following statements are equivalent :

(i) If f : T → R is continuous and ∆hf ∈ Lip for every h ∈ A then f
is Lipschitz.

(ii) There is no proper Fσ subgroup of T containing A.

P r o o f. (ii)⇒(i). Suppose (ii), and let f : T → R be a continuous
function such that ∆hf ∈ Lip for every h ∈ A. Put G = {h ∈ T : ∆hf ∈ Lip}
and Gn = {h ∈ T : ∆hf ∈ Lipn} for n ∈ N. Then G =

⋃

n∈N
Gn. Since

f is continuous, it is easy to verify that the sets Gn are closed and G is
an Fσ set. The identities ∆−h1

f(x) = f(x − h1) − f(x) = −∆h1
f(x − h1)

and ∆h1+h2
f(x) = ∆h2

f(x + h1) − ∆h1
f(x) show that G is a group. Since

A ⊂ G, (ii) implies that G = T. Therefore, by the Baire category theorem,
there exists n ∈ N such that Gn contains a subinterval of T. Then kGn = T

for some k ∈ N. By Theorem 1.1, this implies that f is Lipschitz.

(i)⇒(ii). Suppose that there exists an Fσ group C such that A ⊂ C ⊂
T and C 6= T. Then we can choose nowhere dense closed sets Cn such
that C =

⋃

n∈N
Cn. Since C = −C, we may assume Cn = −Cn. Setting

D/n = {x ∈ T : |x| < 1/n, n · x ∈ D} for every D ⊂ T, we define
B = {0} ∪

⋃

n∈N
Cn/n. Then B = −B and B is a nowhere dense closed set.

Thus, for each k ∈ N, the set kB is a closed subset of
⋃

n∈N
C/n, as kC = C.

Since C is of first category, so is
⋃

n∈N
C/n. Therefore kB is a closed set of

first category and thus it is nowhere dense. By Theorem 1.1, there exists a
non-Lipschitz and continuous function f for which ∆hf ∈ Lip1 if h ∈ B. It
is clear that the group generated by B contains all Cn’s and hence all of C.
Thus ∆hf ∈ Lip for h ∈ C; that is, (i) does not hold.

2. Functions defined on the real line

Theorem 2.1. Let L > 0 and let A be a bounded subset of R such that

A = −A. Then the following statements are equivalent :

(i) If f : R → R is continuous, ∆hf is bounded for some h 6= 0, and

∆hf ∈ LipL for each h ∈ A then f is Lipschitz.
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(i′) If f : R → R is continuous, ∆hf is bounded for every h ∈ R and

∆hf ∈ LipL for each h ∈ A then f is Lipschitz.

(ii) There is an n ∈ N such that nA is dense in a nondegenerate interval.

P r o o f. (ii)⇒(i). We can assume that ∆hf is bounded for some h > 0.
Fix such an h = h0, and let B be a constant such that |∆h0

f(x)| ≤ B
for all x. Fix also an n with nA dense in an interval [m,M ], for some
m < M . By making n larger, if necessary, we can assume that m+h0 ≤ M .
Since f is continuous, ∆hf ∈ LipnL for all h in [m,M ]. Now, for x < y,Tm+h0

m
(f(y + h) − f(x + h)) dh =

Ty+m

x+m
(f(h + h0) − f(h)) dh, so we get

|f(y) − f(x)|

=
∣

∣

∣

(1/h0)

m+h0\
m

(f(x + h) − f(x) − f(y + h) + f(y)

+ f(y + h) − f(x + h)) dh
∣

∣

∣

≤ (1/h0)

m+h0\
m

|∆hf(x) − ∆hf(y)| dh + (1/h0)

y+m\
x+m

|f(h + h0) − f(h)| dh

≤ nL|y − x| + (1/h0)

y+m\
x+m

|∆h0
f(h)| dh ≤ nL|y − x| + (B/h0)|y − x|.

Thus, f ∈ LipnL+B/h0
.

(i)⇒(i′) is obvious.

(i′)⇒(ii). Suppose that (ii) is not true. Let ν denote the canonical
homomorphism which maps R onto R/Z = T. Since A is bounded and kA is
nowhere dense in R, it is easy to see that kB is nowhere dense in T, where
B = ν(A) ⊂ T. Applying Theorem 1.1, we find a continuous non-Lipschitz
function g : T → R such that ∆hg ∈ LipL for each h ∈ B. Extending
this function g from T onto R periodically, that is, taking f = g ◦ ν, we
obtain a periodic continuous non-Lipschitz function f : R → R such that
∆hf ∈ LipL for each h ∈ A ⊂ ν−1(B). Since f is obviously bounded, ∆hf
is also bounded for each h ∈ R.

R e m a r k 2.2. 1. The condition on the boundedness of the differences
∆hf cannot be deleted. Indeed, for f(x) = x2, ∆hf ∈ Lip2 for every
h ∈ [0, 1], but f is not Lipschitz.

2. The boundedness of A was not used in (ii)⇒(i). On the other hand,
we do not know whether or not (i′)⇒(ii) is true for each A ⊂ R satisfying
A = −A.

In the non-uniform case we obtain
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Theorem 2.3. For every A ⊂ R, the following two statements are equiv-

alent :

(i) If f : R → R is continuous, ∆hf is bounded for every h ∈ R and

∆hf ∈ Lip for each h ∈ A then f is Lipschitz.

(ii) There is no proper Fσ subgroup of R containing A.

P r o o f. (ii)⇒(i). Suppose (ii) and let f : R → R be a continuous
function such that ∆hf is bounded for every h ∈ R and ∆hf ∈ Lip for each
h ∈ A. Let G = {h ∈ R : ∆hf ∈ Lip} and Gn = {h ∈ R : ∆hf ∈ Lipn}
for n ∈ N. Then G =

⋃

n∈N
Gn and G is an Fσ group containing A. Hence

G = R. By the Baire category theorem, Gn is dense in an interval for some
n ∈ N. Next it suffices to apply Theorem 2.1.

(i)⇒(ii). Assume that there exists an Fσ group C 6= R containing A.
Since C must be of the first category, we can choose closed nowhere dense
sets Cn ⊂ [−n, n] such that Cn = −Cn, and C =

⋃

n∈N
Cn. Setting D/n =

{x/n : x ∈ D} for every D ⊂ R, we define B = {0} ∪
⋃

n∈N
(Cn/n2). Then

B = −B is bounded, closed and nowhere dense. The rest of the proof is
similar to the (i)⇒(ii) part of the proof of Theorem 1.4.
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