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We recall (see e.g. [4]) that a ring A is said to have local units in case for
each finite subset F of A there is an idempotent e of A such that F⊂eAe. In
particular, any unital ring has local units. In [1] we investigated the Picard
group Pic(A) of a ring A with local units. Specifically, we showed that there
is a strong connection between Pic(A) and Pic(B), where B is the unital ring
End(AA). We used these results to show, among other things, that Pic(R) is
isomorphic to Pic(RFM(R)) for any unital ring R, where RFM(R) denotes
the (unital) ring of countably infinite row-finite matrices with entries from R.

In this note we focus primarily on the differences between Picard groups
for rings with local units, and their unital brethren. To wit, we consider
the left module structure of elements of Pic(A). For a unital ring R, every
P ∈ Pic(R) has RP finitely generated projective, so that there exists a split
epimorphism RR(n) → P for some integer n. In general, this property does
not extend to rings with local units; we say a ring with local units A has
bounded Picard group if this property does hold for all elements of Pic(A).
Our interest in rings with bounded Picard groups stems from [1, Theorem
1.14], in which an isomorphism is established between a “bounded” subgroup
of Pic(A) and a corresponding subgroup of Pic(End(AA)).

Our two main objectives of this note are to show that the groups Pic(A)
and Pic(End(AA)) need not be isomorphic, and to show that the bounded-
ness property is not in general a Morita invariant. We conclude the note by
mentioning some situations in which boundedness is in fact an invariant.

Throughout this paper A will denote a ring with local units with set of
idempotents E; B will denote End(AA). For each a ∈ A we have %a ∈ B via
(x)%a = xa; the map % : A → B via a 7→ %a gives an embedding of A in B
as a right ideal.

A left A-module M is called unitary in case AM = M ; the category
A-mod is defined to be the collection of unitary left A-modules, together
with usual homomorphisms. Unless otherwise indicated, the word module
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(resp. bimodule) will always mean unitary module (resp. unitary bimodule).
All module homomorphisms will be written opposite the scalars.

The rings A and A′ are said to be Morita equivalent in case the module
categories A-mod and A′-mod are equivalent. The best source for informa-
tion about Morita equivalent rings with local units is [4].

Analogously to the definition for unital rings, the group Pic(A) consists
of those A-A-bimodules P (which by definition are both left and right uni-
tary) for which there exists a (left and right unitary) A-A-bimodule Q having
P ⊗A Q ∼= A and Q ⊗A P ∼= A as A-A-bimodules. By [4, Theorem 2.2],
Pic(A) is precisely the group of category autoequivalences of A-mod. As
such, any two Morita equivalent rings with local units necessarily have iso-
morphic Picard groups. Additional terminology and examples regarding
Picard groups for rings with local units can be found in [1], while [5] is a
good source of information about Picard groups for unital rings.

If M is a left A-module and n is any integer then addn(M) denotes the
collection of those left A-modules which are direct summands of a direct sum
of at most n copies of M . We denote by add(M) the union

⋃
n∈N addn(M);

that is, add(M) is the collection of left A-modules which are direct sum-
mands of a direct sum of some finite number of copies of M .

1. Rings with bounded Picard groups. In light of the motivation
and discussion presented above, we are now in a position to give the defini-
tion of the main idea at hand.

Definition 1.1. The ring with local units A is said to have bounded
Picard group in case for each P ∈ Pic(A) we have AP ∈ add(A). That is, A
has bounded Picard group in case for each element P of the Picard group of
A there exists some integer n for which there is a split epimorphism An → P
of left A-modules. We say A has unbounded Picard group otherwise. For
an integer N we say that A has N -bounded Picard group in case for each
P ∈ Pic(A) we have AP ∈ addN (A).

As mentioned above, every unital ring has bounded Picard group. We
showed in [1] that for any unital ring R, the ring FM(R) (consisting of
countably infinite square matrices over R, each having at most finitely many
nonzero entries) has bounded Picard group; we indicate in the present article
another proof of this result. We give many additional examples of classes
of rings having bounded Picard group in [2]. In contrast, we presented in
[1, Example 1.15] a description of a class of rings having unbounded Picard
groups. After again describing these rings here, we show in Proposition 1.8
below that we may in fact construct such a ring A for which Pic(A) and
Pic(B) are nonisomorphic.
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Lemma 1.2. Let I be any set , and for each i ∈ I let Ri be a unital ring.
Suppose that Pi ∈ Pic(Ri) for each i ∈ I. Let A =

⊕
i∈I Ri, and let P

denote the A-A-bimodule
⊕

i∈I Pi. Then P ∈ Pic(A).

P r o o f. For each i ∈ I let Qi denote P−1
i in Pic(Ri), let Q denote the

A-A-bimodule
⊕

i∈I Qi, and let ei denote the element of A which is 1Ri

in the ith coordinate and zero elsewhere. We show that P−1 = Q. We
note that if i 6= j then by the definition of the action of A on P we have
Pi⊗AQj = Pi ·ei⊗AQj = Pi⊗Aei ·Qj = Pi⊗A0 = 0. Using this observation
along with the fact that tensor products commute with direct sums (see e.g.
[3, Theorem 19.10]) we have

P ⊗A Q =
( ⊕

i∈I

Pi

)
⊗A

( ⊕
j∈I

Qj

)
∼=

⊕
i∈I

⊕
j∈I

(Pi ⊗A Qj)

∼=
⊕
i∈I

(Pi ⊗A Qi) ∼=
⊕
i∈I

Ri
∼= A.

Similarly one can show that Q⊗A P ∼= A.

For the entirety of the discussion up to and including Proposition 1.8, we
shall reserve the symbols ki, A, B, Ri, C, and Ci for the following specific
rings.

Notation 1.3. Let {ki}i∈N be any set of pairwise nonisomorphic fields
for which each automorphism group Aut(ki) is trivial. (For instance, let
ki = Zpi , the field of pi elements, where pi denotes the ith prime.) Let

Ri = Mi(ki)⊕ ki (Mi denotes i× i matrices),

A =
⊕
i∈N

Ri, B = End(AA) =
∏
i∈N

Ri,

C = Center(B), Ci = Center(Ri).
Lemma 1.4. For i ∈ N, each ring Ri has Pic(Ri) ∼= Z2 (the cyclic group

of order 2). Specifically , the nontrivial element of Pic(Ri) is represented by
viewing

Ri =


0

Mi(ki)
...
0

0 · · · 0 ki

 and Pi =


ki

0
...
ki

ki · · · ki 0

 ,

where Ri is viewed inside the matrix ring Mi+1(ki). Moreover , each Pi

requires at least i generators as a left Ri-module.

P r o o f. We first note that the basic ring of each Ri is ki ⊕ ki and so
Pic(Ri)∼= Pic(ki ⊕ ki). An easy dimension argument shows that every ele-
ment of Pic(ki⊕ki) is isomorphic to ki⊕ki as left modules. Hence by the com-
mutativity of ki and [5, Theorem 55.13] we have Pic(ki⊕ki) ∼= Aut(ki⊕ki).
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Since by hypothesis Aut(ki) is trivial, it is easy to show that Aut(ki ⊕ ki)
has only two elements, the nontrivial element being the automorphism which
interchanges coordinates.

Thus we know that each Pic(Ri) is a group of two elements. It is easy
to verify that Pi is an Ri-Ri-bimodule by usual matrix multiplication. Fur-
thermore, Pi ⊗Ri Pi

∼= Ri as Ri-Ri-bimodules via multiplication, so that
Pi ∈ Pic(Ri). Finally, we note that the existence of the i independent en-
tries along the bottom row of Pi ensures that Pi requires at least i generators
as a left Ri-module.

As one consequence of the above discussion we get

Corollary 1.5. The ring A has unbounded Picard group.

P r o o f. Let Pi be the non-identity element of Pic(Ri) for each i ∈ N,
and set P =

⊕
i∈N Pi; by Lemma 1.2, P ∈ Pic(A). However, AP cannot be

the epimorphic image of a direct sum of finitely many copies of A, as each
Pi requires at least i generators.

Lemma 1.6. Let ei denote the element of the ring B which is 1Ri in the
ith coordinate and zero elsewhere. Then the ring C = Center(B) has the
properties: C =

∏
i∈N Ci; ei ∈ C for each i; and for any ϕ ∈ Aut(C) and

i ∈ N we have (ei)ϕ = ei. Consequently , Aut(C) =
∏

i∈N Aut(Ci).

P r o o f. The first two statements are clear.
As Center(Mi(ki)) ∼= ki (these are just the scalar matrices), we have

Ci
∼= ki ⊕ ki, which yields C ∼=

∏
i∈N ki ⊕ ki.

Let ui (resp. hi) denote the element of C which is (1Mi(ki), 0) (resp.
(0, 1ki)) in the ith coordinate and zero in all other coordinates. It is easy to
show that any primitive idempotent of C is either of the form ui or hi for
some i. (We note that even though ui is not primitive in Mi(ki), it clearly is
primitive in Ci.) Since automorphisms of any ring must preserve primitive
idempotents, for each i we have (hi)ϕ = hj or uj for some j. But if vj

denotes either hj or uj we have
ki
∼= hiChi

∼= (hiChi)ϕ = (hi)ϕ(C)ϕ(hi)ϕ = vjCvj
∼= kj ,

so that i = j as the {ki}i∈N were chosen to be pairwise nonisomorphic.
Thus (hi)ϕ = hi or ui. Similarly one can show that (ui)ϕ = ui or hi. As
ei = ui + hi this then yields that (ei)ϕ = ei for all i, and the result follows.

For the final statement, note that for any ϕ ∈ Aut(C) we have (Ci)ϕ =
(eiCei)ϕ = (ei)ϕ(C)ϕ(ei)ϕ = eiCei = Ci, so that any automorphism of C
leaves each of the factors Ci invariant.

Corollary 1.7. Let X be any element of the group Pic(B). Then for
each i ∈ N and each x ∈ X we have eix = xei. In particular , eiX = eiXei

= Xei.
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P r o o f. As each ei is central in B we may apply [5, Lemma 55.7] to
conclude that there exists ϕ ∈ Aut(C) such that eix = x · (ei)ϕ. But any
ϕ ∈ Aut(C) has (ei)ϕ = ei for all i ∈ N by the previous lemma, so that
eix = xei as desired. The second part is immediate.

We are now in a position to show that Pic(A) is not isomorphic to Pic(B).

Proposition 1.8. Let A and B be the rings defined above. Then Pic(A)
is uncountable, while Pic(B) is countable. In particular , Pic(A) 6∼= Pic(B).

P r o o f. By Lemma 1.2, any A-A-bimodule of the form
⊕

i∈N Qi is an
element of Pic(A), where Qi ∈ Pic(Ri) for each i. By the definition of the
A-module action, two left A-modules of the form

⊕
i∈N Qi and

⊕
i∈N Q′

i are
isomorphic if and only if Qi

∼= Q′
i as left Ri-modules for each i ∈ N. Thus

Pic(A) is uncountable, since by Lemma 1.4 there are two choices for Qi for
each i ∈ N, and any collection of distinct choices produces distinct elements
of Pic(A).

We claim on the other hand that Pic(B) is countable. To see this, it
suffices to show that any element of Pic(B) is of the form

∏
i∈N Pi, where

each Pi ∈ Pic(Ri), and there exists some integer s with the property that
Pi = Ri for all i > s.

We begin by noting that each Ri is self-injective (as each is semisimple);
this in turn yields that B is self-injective, so that BP is injective for any
P ∈ Pic(B). Furthermore, for each i ∈ N we see that eiP is a B-submodule
of P , and that

⊕
i∈N eiP ≤ P. Also, the map P →

∏
i∈N eiP is injective, so

that
⊕

i∈N eiP ≤ P ≤
∏

i∈N eiP . But
⊕

i∈N eiP is an essential submodule of∏
i∈N eiP ; with the injectivity of P , we conclude that in fact P =

∏
i∈N eiP.

We claim that each ejP is in Pic(Rj). Let Q = P−1 in Pic(B). Ar-
guing as above, using the fact that B is also right-self-injective, we have
Q =

∏
j∈N Qej as right B-modules. But finitely generated projective mod-

ules commute with direct products (on the appropriate sides); in addi-
tion, any bimodule structure is clearly preserved. Applying this observa-
tion first to the finitely generated projective left B-module P, and then to
the finitely generated projective right B-modules Qej , we have the series of
B-B-bimodule isomorphisms

B ∼= Q⊗B P =
( ∏

j∈N
Qej

)
⊗B P ∼=

∏
j∈N

(Qej ⊗B P )

∼=
∏
j∈N

(
Qej ⊗B

∏
i∈N

eiP
)
∼=

∏
j∈N

∏
i∈N

(Qej ⊗B eiP )

∼=
∏
j∈N

∏
i∈N

(Qej ⊗B eiP ) ∼=
∏
j∈N

(Qej ⊗B ejP )

(as Qej ⊗B eiP = 0 for i 6= j). On multiplication by ej this yields Rj-Rj-
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bimodule isomorphisms Rj RjRj
∼= ejQej⊗Rj ejPej . But by Corollary 1.7 we

have ejQej = Qej and ejPej = ejP. Thus we have Rj RjRj
∼= Qej ⊗Rj ejP.

A similar computation yields that Rj RjRj
∼= ejP ⊗Rj Qej . We conclude that

ejP ∈ Pic(Rj) as desired.
Thus we have shown that any P ∈ Pic(B) has the form P =

∏
i∈N eiP ,

and each eiP ∈ Pic(Ri). As BP is finitely generated, there exists an integer s
for which P is generated by s elements as a left B-module. By the definition
of the module action, this means that the element eiP of Pic(Ri) is generated
by s elements as a left Ri-module. But for i > s the only element of Pic(Ri)
which can be generated by at most s elements is Ri. Thus eiP = Ri for all
i > s, and we are done.

2. Morita invariance. With Proposition 1.8 put to rest, we move on to
our second goal, the verification that boundedness is not a Morita invariant
of the ring. We work somewhat harder than is necessary, in that we present
two pairs of rings A and A′ which are Morita equivalent, where A′ has
bounded Picard group, but A does not. The specific ring A studied above
will serve as its namesake in the first such pair; here the corresponding A′

has bounded Picard group, but is not unital. We then provide a second pair
of the desired type in which A′ is unital.

Notation 2.1. We continue to let A and ki denote the rings described
in Notation 1.3. For i ∈ N we denote ki ⊕ ki by R′

i, and we let A′ denote
the ring

⊕
i∈N R′

i.

Proposition 2.2. Let A and A′ be the rings given in Notation 2.1.

1. A′ has bounded Picard group; in fact , A′ has 1-bounded Picard group.
2. The rings A and A′ are Morita equivalent.

Consequently , the property “bounded Picard group” is not a Morita invariant
of the ring.

P r o o f. 1. This follows directly from [2], as the ring A′ is a basic
semiperfect ring with local units.

2. Any left Ri-module of the form k
(i)
i ⊕ ki is clearly a progenerator

for R′
i-mod. Thus A′ and lim−→i∈NEndR′

i
(k(i)

i ⊕ ki) =
⊕

i∈N EndR′
i
(k(i)

i ⊕ ki)
are Morita equivalent, by [4, Theorem 2.5]. But this latter ring is clearly
isomorphic to A.

We now proceed to produce the promised example of a pair of Morita
equivalent rings A and A′ for which A has unbounded Picard group, and
A′ is unital. To this end, the following useful notation will remain in effect
through Proposition 2.4.
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Notation 2.3. Let k be any ring with identity, let K =
∏N

k (countable
direct product), let A′ =

∏N
K and let U =

∐N
K (countable direct sum).

We observe that U is a ring with local units; in addition, U is a 2-sided ideal
of the unital ring A′. Furthermore, A′A′n ∼= A′A′ and UUn ∼= UU for any
integer n. We let P denote the left A′-module U ⊕A′. For convenience, we
denote the symbols

∏N and
∐N simply by

∏
and

∐
, respectively.

We first verify that P is a locally projective generator for A′-mod.
Clearly P is a generator for A′-mod since A′ is a direct summand. Now
write U = lim−→e∈EUe, where E is a set of local units of U . Each Ue is a
finitely generated, projective A′-module and is a direct summand of U . But
it is easy to check that P = lim−→e∈E(Ue⊕A′), which verifies the assertion.

Now let α ∈ Aut(A′) be defined by setting [(aij)j ]αi = [(aji)j ]i. We use α
to define the left A′-module αP , which as an abelian group is P , and whose
left A′-action is given by setting a ∗ p = aαp for a ∈ A′, p ∈ P . We define
similarly the modules αU and αA′, and note that αP = αU ⊕ αA′.

We show that αP 6∈ add(P ). For just suppose γ : Pn → αP is a split
epimorphism. Since Pn = Un⊕A′n ∼= U ⊕A′ ∼= P , we may assume γ : P →
αP is a split epimorphism as left A′-modules. In particular, γπ : P → αU is a
split epimorphism; we will set γ = γπ. Now write γ = [f %x] : U⊕A′ → αU ,
where f : U → αU and x ∈ U . Thus, αU = (U)f + A′ ∗ x = (U)f + (A′)αx.
Moreover, (U)f = (UU)f = U ∗ (U)f = Uα(U)f .

Since x ∈ U , we can write x = ((x1i), . . . , (xmi), 0, . . .), where (xji) ∈ K.
Also, since Uα is a 2-sided ideal of A′, Uα(U)f ⊂ Uα. But Uα =

∏
(
∐

k);
that is, v ∈ Uα if and only if v = ((vji)i)j such that (vji)i ∈

∐
k. Moreover,

(U)f ⊂ U =
∐

(
∏

k), so (U)f = Uα(U)f ⊂
∏

(
∐

k) ∩
∐

(
∏

k) =
∐

(
∐

k).
Now define u ∈ αU as follows: write u = ((uji)i)j , and set uji = 0 if

j 6= m + 1 and uji = 1 if j = m + 1. Now suppose u = rx + b, where r ∈ A′

and b ∈ (U)f . From the form of x and u it follows that we may assume
that r = 0, so that u = b. But b ∈ (U)f =

∐
(
∐

k), so b = ((bji)i)j , where
(bji)i = 0 if j 6= m + 1 and (bji)i ∈

∐
k if j = m + 1. However, it is clear

that u 6= b and so we have a contradiction. We conclude that αP 6∈ add(P )
as claimed. We are now in a position to prove

Proposition 2.4. Let A′ be the ring described in Notation 2.3. Let
A = lim−→e∈EEnd(A′Ue⊕A′). Then A is a ring with unbounded Picard group
which is Morita equivalent to the unital ring A′.

P r o o f. By [4, Theorem 2.5], A = lim−→e∈EEnd(A′Ue ⊕ A′) and A′ are
Morita equivalent via the Morita context

[A′, A, A′PA, AQA′ , µ : P ⊗Q → A′, τ : Q⊗ P → A],

where Q = lim−→e∈EHomA′(Ue ⊕ A′, A′). In addition, this context yields an
isomorphism of Picard groups Pic(A′) → Pic(A), given by X 7→ Q⊗X⊗P .
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In particular, αA′ ∈ Pic(A′) (it has inverse α−1A′), so Q⊗αA′⊗P ∈ Pic(A).
But we note that if Q⊗αA′⊗P ∈ add(A) = add(Q⊗P ), then tensoring on
the left by P would give αA′ ⊗ P ∼= αP ∈ add(P ), contrary to the previous
observation.

Therefore the bimodule Q ⊗ αA′ ⊗ P belongs to Pic(A), but does not
belong to add(A). We conclude that A has unbounded Picard group.

We put the finishing touches on the above discussion by giving a concrete
description of the ring A. It is straightforward to see that

End(A′Ue⊕A′) ∼=
(

eUe eUe
eUe A′

)
,

and so it follows that

A ∼=
(

U U
U A′

)
.

Furthermore, P = [U A′] while

Q ∼=
(

U
A′

)
.

The Morita context maps µ and τ are given by matrix multiplication. Thus,
simple calculations give

X = Q⊗ αA′ ⊗ P ∼=
(

UαU UαA′

A′
αA′ A′

αA′

)
while

X−1 ∼=
(

U(α−1U) U(α−1A′)
A′(α−1U) A′(α−1A′)

)
.

One easily checks that these are the appropriate invertible bimodules.

We conclude this article on a somewhat reassuring note by showing that
there are indeed situations in which boundedness is a Morita invariant. Our
main result of this flavor is Proposition 2.6, from which we will be able to
deduce the Morita invariance of the property “bounded Picard group” in
three situations, involving hypotheses on the equivalence functors, hypothe-
ses on the ring, and hypotheses on the corresponding Picard groups. We
first need a lemma.

Lemma 2.5. Let A be a ring with local units which has N -bounded Picard
group. Then for each pair Y, Z ∈ Pic(A) there exists a split epimorphism
Y N → Z.

P r o o f. Since Y −1 ⊗ Z ∈ Pic(A), there exists a split epimorphism
AN → Y −1 ⊗ Z. Upon tensoring this map by the bimodule Y on the
left, we get the desired result.
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Proposition 2.6. Let R be a ring having N -bounded Picard group for
some positive integer N . Suppose A is a ring with local units which is Morita
equivalent to R. Let −⊗R QA : mod-R → mod-A be an equivalence functor
such that RQ is a direct sum of elements of Pic(R). Then A has N -bounded
Picard group.

P r o o f. Let APR⊗R− : R-mod → A-mod be the left equivalence functor
such that [R,A, P,Q] defines an appropriate Morita context. Since A and
R are Morita equivalent we have Pic(R) ∼= Pic(A), with the isomorphism
given by X 7→ P ⊗R X⊗R Q for X ∈ Pic(R). Thus to prove the proposition
we need only show that each P ⊗X ⊗Q belongs to addN (A).

We first show that for X ∈ Pic(R), Q is a direct summand of (X−1⊗Q)N ,
considered as left R-modules. By hypothesis RQ is a direct sum of elements
from Pic(R) when considered as a left R-module; thus we can write Q =⊕

i∈I Qi with Qi ∈ Pic(R), for some index set I. By Lemma 2.5, there are
split epimorphisms αi : (X−1 ⊗ Qi)N → Qi. It follows that the coproduct
map

⊕
i∈I αi :

⊕
i∈I(X

−1⊗Qi)N ∼= (X−1⊗Q)N →
⊕

i∈I Qi = Q is a split
epimorphism of left R-modules.

We now complete the proof of the proposition. Tensoring this split epi-
morphism on the left by P yields a left A-split epimorphism (P ⊗ X−1 ⊗
Q)N → P ⊗Q. But P ⊗Q ∼= A from the Morita context, so we have a split
epimorphism (P ⊗X−1 ⊗ Q)N → A. Upon tensoring this map on the left
by P ⊗X ⊗Q we reach the desired conclusion.

We note here that by essentially mimicking the proof of Proposition 2.6,
we can produce another proof of [1, Proposition 2.8(1)]: For any unital ring
R the ring FM(R) has bounded Picard group.

Corollary 2.7. Let R be a ring having bounded Picard group such that
Pic(R) is finite. Let A be a ring with local units which is Morita equivalent
to R via an equivalence functor −⊗R QA : mod-R → mod-A such that RQ
is a direct sum of elements of Pic(R). Then both R and A are N -bounded
for some positive integer N .

P r o o f. Since R has bounded Picard group and Pic(R) is finite, it follows
that R has N -bounded Picard group, where N is the smallest integer n such
that Pic(R) ⊂ addn(R). Now apply Proposition 2.6.

Corollary 2.8. For local perfect rings, boundedness is a Morita invari-
ant. That is, if A is Morita equivalent to a (unital) local perfect ring , then
A has 1-bounded Picard group.

P r o o f. (The verification of each of the following statements can be
found in [3].) Since any local ring is basic semiperfect, we deduce by [2] that
any local ring has 1-bounded Picard group. If we denote the local perfect
ring by R, then the module RQA which yields the Morita equivalence has
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the property that RQ is a direct limit of projective modules, hence is flat.
But any flat module over a perfect ring is projective, so that RQ is free as R
is local. Since R ∈ Pic(R), the module RQ thereby satisfies the hypotheses
of Proposition 2.6.

As our final application, we show that the smash product R # G of a
strongly graded ring often has N -bounded Picard group. The appropriate
definitions and background information regarding graded rings and their
associated smash products can be found in [6]. We remind the reader that
the graded ring R is called strongly graded in case RgRh = Rgh for all
g, h ∈ G; in this case there is a category equivalence between R-gr and
R1-mod, the category of modules over the identity component ring R1.

Proposition 2.9. Let R be a ring strongly graded by the infinite group
G, and suppose that the identity component ring R1 has N -bounded Picard
group. Then R#G has N -bounded Picard group. In particular , if Pic(R1) is
finite, then R#G has N -bounded Picard group for some positive integer N .

P r o o f. Since R is strongly graded there is a Morita equivalence (R1,
R # G, P, Q), where each of P and Q is isomorphic to R as left (resp.
right) R1-modules; see e.g. [6, Theorem 5.5]. But as R1-modules we have
R ∼=

⊕
x∈G Rx. Since R is strongly graded, each Rx ∈ Pic(R1). Thus the

conditions of Proposition 2.6 are satisfied and 2.9 follows.
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