1997

CONVERGENCE WITH RESPECT TO F_{σ} -SUPPORTED IDEALS

BY

JACEK HEJDUK (ŁÓDŹ)

Let (X, \mathcal{S}) be a measurable space and $\mathcal{I} \subset \mathcal{S}$ a proper σ -ideal in a σ -field \mathcal{S} . We shall denote by $\mathcal{M}(\mathcal{S})$ the family of all \mathcal{S} -measurable real functions defined on X.

DEFINITION 1 (cf. [7]). We shall say that a sequence $\{f_n\}_{n\in\mathbb{N}}$ of \mathcal{S} -measurable functions defined on X converges with respect to \mathcal{I} to an \mathcal{S} -measurable function f defined on X if and only if every subsequence $\{f_{m_n}\}_{n\in\mathbb{N}}$ contains a subsequence $\{f_{m_{p_n}}\}_{n\in\mathbb{N}}$ converging to $f \mathcal{I}$ -a.e., which means that the set $\{x \in X : f_{m_{p_n}}(x) \not\rightarrow f(x)\}$ is a member of \mathcal{I} . We then write $f_n \xrightarrow[n \to \infty]{} f$.

It is easy to observe that the space $\mathcal{M}(\mathcal{S})$ equipped with convergence with respect to a σ -ideal \mathcal{I} is an \mathcal{L}^* space (cf. [3, Problem Q, p. 90]). Hence it is possible to define the closure operator on $\mathcal{M}(\mathcal{S})$ by letting $f \in \overline{A}$ if and only if A contains a sequence converging with respect to \mathcal{I} to a function f (cf. [7]). This closure operator has the properties: $\overline{\emptyset} = \emptyset, A \subset \overline{A}, \overline{A \cap B} = \overline{A} \cap \overline{B}$, for any sets $A, B \in \mathcal{M}(\mathcal{S})$. Moreover, $\overline{\overline{A}} = \overline{A}$ for every $A \in \mathcal{M}(\mathcal{S})$ if and only if the following condition, usually labelled by (L4), is satisfied:

(L4) If $f_{j,n} \xrightarrow[n \to \infty]{\mathcal{I}} f_j$ for each $j \in \mathbb{N}$ and $f_j \xrightarrow[j \to \infty]{\mathcal{I}} f$, then there exist sequences $\{j_p\}_{p \in \mathbb{N}}$ and $\{n_p\}_{p \in \mathbb{N}}$ of positive integers such that $f_{j_p,n_p} \xrightarrow[n \to \infty]{\mathcal{I}} f$.

If condition (L4) is satisfied, then the topology determined by the closure operator described above is often called the *Fréchet topology*, and the space $\mathcal{M}(\mathcal{S})$ equipped with the Fréchet topology is a *Fréchet space*.

It is well known that the space of Lebesgue measurable functions over \mathbb{R} is a Fréchet space, whereas the space of all functions with the Baire property is not (cf. [7] and [4]).

¹⁹⁹¹ Mathematics Subject Classification: 28A05, 54A10, 54B10, 54H05.

DEFINITION 2. We shall say that a double sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}}$ of S-measurable sets *exhausts* X if

(i) $B_{j,n} \subset B_{j,n+1}$ for each $j \in \mathbb{N}$,

(ii) $\bigcup_{n=1}^{\infty} B_{j,n} = X$ for each $j \in \mathbb{N}$.

THEOREM 1. The space $\mathcal{M}(S)$ is a Fréchet space if and only if, for each double sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}}$ of S-measurable sets exhausting X, there exist an increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ of positive integers and a sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers such that $X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \in \mathcal{I}$.

Proof. Sufficiency. We prove that condition (L4) is fulfilled. We may suppose, choosing subsequences if necessary, that $\{f_{j,n}\}_{j,n\in\mathbb{N}}$ is a sequence of S-measurable functions such that $f_{j,n} \xrightarrow[n\to\infty]{} f_j$ everywhere except on a set $A_j \in \mathcal{I}$ and $f_j \xrightarrow[j\to\infty]{} f$ everywhere except on $A_0 \in \mathcal{I}$. Let $A = \bigcup_{j=0}^{\infty} A_j$.

Putting $B_{j,n} = \{x \in X - A : |f_{j,k}(x) - f_j(x)| \le 1/j \text{ for } k \ge n\}$ and $B_{j,n}^* = B_{j,n} \cup A$, we see that the double sequence $\{B_{j,n}^*\}_{j,n\in\mathbb{N}}$ exhausts X. Thus there exist an increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ of positive integers and a sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers such that $B = X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \in \mathcal{I}$. If $x \notin B$, we conclude that there exists a positive integer s such that $x \in B_{j_p,n_p}$ for each $p \ge s$. Hence

$$|f_{j_p,k}(x) - f_{j_p}(x)| \le 1/j_p \quad \text{for } k \ge n_p$$

Thus

$$|f_{j_p,n_p}(x) - f_{j_p}(x)| \le 1/j_p \quad \text{for } p \ge s.$$

Since $\{j_p\}_{p\in\mathbb{N}}$ is increasing, it follows that the sequence $\{f_{j_p,n_p}\}_{p\in\mathbb{N}}$ is convergent to f everywhere except on the set $A\cup B$ which is a member of \mathcal{I} .

Necessity. Suppose to the contrary that a double sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}}$ of S-measurable sets is exhausting and, for every increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ of positive integers and every sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers, $X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \notin \mathcal{I}$.

Putting

$$f_{j,n} = \chi_{X-B_{j,n}} + 1/j, \quad f_j = 1/j, \quad f = 0,$$

we see that $f_{j,n} \xrightarrow[n \to \infty]{\mathcal{I}} f$ and $f_j \xrightarrow[j \to \infty]{\mathcal{I}} f$. Thus, by condition (L4), there exists an increasing sequence $\{j_p\}_{p \in \mathbb{N}}$ of positive integers and a sequence $\{n_p\}_{p \in \mathbb{N}}$ of positive integers such that $f_{j_p,n_p} \xrightarrow[p \to \infty]{\mathcal{I}} 0$. Observe that $\lim_{p \to \infty} f_{j_p,n_p}(x)$ = 0 if and only if $x \notin X - \liminf_{p \in \mathbb{N}} B_{j_p,n_p}$. In that way, we have a contradiction with the fact that no subsequence of $\{f_{j_p,n_p}\}_{p \in \mathbb{N}}$ is \mathcal{I} -a.e. convergent to 0. \blacksquare

In the case when the pair (S, \mathcal{I}) satisfies c.c.c., the paper of Wagner [7] contains a necessary and sufficient condition for convergence with respect

 F_{σ} -SUPPORTED IDEALS

to \mathcal{I} to yield the Fréchet topology in the space $\mathcal{M}(\mathcal{S})$. Also, a condition without the property c.c.c. is given in [8].

Now, we consider a topological space X. We shall denote by $\mathcal{B}(X)$ the family of Borel sets in X. For any proper σ -ideal \mathcal{I} of subsets of X, we set $\mathcal{S} = \mathcal{B}(X) \bigtriangleup \mathcal{I}$, the smallest σ -field containing both $\mathcal{B}(X)$ and \mathcal{I} . One can easily check that \mathcal{S} is the collection of all sets of the form $(A - B) \cup C$ where $A \in \mathcal{S}$ and $B, C \in \mathcal{I}$. Moreover, without any difficulties we have

THEOREM 2. Convergence with respect to \mathcal{I} yields the Fréchet topology in the space $\mathcal{M}(\mathcal{S})$ if and only if, for every sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}}$ of Borel sets in X exhausting X, there exists an increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ of positive integers and a sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers such that $X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \in \mathcal{I}.$

We say that a σ -ideal \mathcal{I} is uniform if it contains all singletons $\{x\}$ for each $x \in X$, and it is F_{σ} -supported if, for any $A \in \mathcal{I}$, there exists an F_{σ} -set B belonging to \mathcal{I} such that $A \subset B$.

Now, our goal is to prove the following

THEOREM 3. If X is a Polish space, then convergence with respect to a uniform and proper F_{σ} -supported σ -ideal \mathcal{I} does not yield the Fréchet topology in the space $\mathcal{M}(\mathcal{B}(X) \bigtriangleup \mathcal{I})$.

Before we carry out the proof we shall present some theorems which are evidently necessary in our considerations.

THEOREM 4 (cf. [4]). Convergence with respect to the σ -ideal $\mathcal{K}(X)$ of all meager sets in a second countable topological space X yields the Fréchet topology in the space of all real functions on X with the Baire property if and only if $X = A \cup B$ where A is an open set of the first category and B is the countable set of all isolated points of X.

THEOREM 5. If (X, S) is a measurable space and there exists an S-measurable real function f such that $f^{-1}(\{z\}) \notin \mathcal{I}$ for each $z \in \mathbb{R}$, then $\mathcal{M}(S)$ is not a Fréchet space.

Proof. It is known (see, for example, Th. 2 in [5]) that convergence with respect to the σ -ideal $\mathcal{I} = \{\emptyset\}$ does not generate the Fréchet topology in the space of all real Borel functions on \mathbb{R} . Hence, by Theorem 1, there exists a sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}}$ of Borel sets exhausting \mathbb{R} such that, for each increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ of positive integers and each sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers, $\mathbb{R} - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \neq \emptyset$. Now, putting $B_{j,n}^* = f^{-1}(B_{j,n})$, we have an exhausting sequence of \mathcal{S} -measurable sets such that, for each increasing sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers, $X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p}^* \notin \mathcal{I}$, which ends the proof of the theorem. THEOREM 6 (Kechris and Solecki [6]). If \mathcal{I} is an F_{σ} -supported, proper and uniform σ -ideal of subsets of a Polish space X, then exactly one of the following possibilities holds:

(i) $\mathcal{I} = \mathcal{MGR}(\mathcal{F})$ for a countable family \mathcal{F} of closed subsets of X (which can be assumed to be well-ordered by reverse inclusion), where $\mathcal{MGR}(\mathcal{F}) = \{A \subset X : \forall_{F \in \mathcal{F}}, A \cap F \text{ is meager in } F\};$

(ii) there is a homeomorphic embedding $\Phi : 2^{\omega} \times \omega^{\omega} \to X$ such that $\Phi(\{\alpha\} \times \omega^{\omega}) \notin \mathcal{I}$ for any $\alpha \in 2^{\omega}$.

Proof of Theorem 3. We see that only the case when X is dense in itself is essential because the countable set of all isolated points is a member of \mathcal{I} . Suppose that the σ -ideal \mathcal{I} satisfies condition (i) of Theorem 5. Let $\mathcal{F} = \{F_{\alpha}\}_{\alpha < \beta}$ where $\beta < \omega_1$. It is demonstrated in the proof of the Kechris– Solecki theorem that, for any $F_{\alpha_1}, F_{\alpha_2} \in \mathcal{F}$, if $\alpha_1 < \alpha_2$, then F_{α_2} is meager in F_{α_1} . We consider two cases:

Case 1: card $\mathcal{F} = 1$. If $X - F_0 = \emptyset$, then the σ -ideal \mathcal{I} is identical with the σ -ideal of all meager sets in X and, by Theorem 3, $\mathcal{M}(\mathcal{B}(X) \bigtriangleup \mathcal{I})$ is not a Fréchet space. Let $X - F_0 \neq \emptyset$. We see that $X - F_0 \in \mathcal{I}$, $F_0 \notin \mathcal{I}$ and $\mathcal{I} \cap 2^{F_0} = \mathcal{K}(F_0)$ where $\mathcal{K}(F_0)$ is the σ -ideal of all meager sets in F_0 . By Theorem 4, convergence with respect to $\mathcal{K}(F_0)$ does not yield the Fréchet topology in the space of all real Baire functions in F_0 and, in consequence, by Theorem 1, $\mathcal{M}(\mathcal{B}(X) \bigtriangleup \mathcal{I})$ is not a Fréchet space.

Case 2: card $\mathcal{F} > 1$. If $X - F_0 \neq \emptyset$, we argue as in the previous case. Let $X - F_0 = \emptyset$. Then, by the property of the family $\mathcal{F}, X - F_1$ is a nonempty open set of the second category. By Theorem 4, convergence with respect to the σ -ideal $\mathcal{K}(X - F_1)$ of meager sets in $X - F_1$ does not yield the Fréchet topology in the family of all $\mathcal{B}(X - F_1) \Delta \mathcal{K}(X - F_1)$ -measurable functions. Thus, by Theorem 2, there exists a sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}}$ of Borel sets in $X - F_1$ exhausting $X - F_1$ such that, for each increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ of positive integers and each sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers, $(X - F_1) - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \in \mathcal{K}(X - F_1)$. Putting $B_{j,n}^* = B_{j,n} \cup F_1$ for any $j, n \in \mathbb{N}$, we have a sequence of Borel sets exhausting X such that $X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p}^* = (X - F_1) - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \in \mathcal{K}(X - F_1)$. For every $A \in \mathcal{K}(X - F_1)$ and for each set $F_\alpha \in \mathcal{F}$, we have $F_\alpha \cap A = \emptyset$ for $\alpha \neq 0$ and $F_0 \cap A = A$; thus for every $A \in \mathcal{K}(X - F_1)$, $F_\alpha \cap A$ is meager in F_α for each $F_\alpha \in \mathcal{F}$. This implies that $X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \in \mathcal{I}$ and the proof in the case when condition (i) is satisfied is complete.

Suppose that \mathcal{I} satisfies condition (ii) of Theorem 6. By Proposition 2 of [2], there exists a Borel function $f: X \to \mathbb{R}$ such that $f^{-1}(\{z\}) \notin \mathcal{I}$ for any $z \in \mathbb{R}$. An application of Theorem 5 finishes the proof.

COROLLARY 1. If \mathcal{I} is a proper and uniform σ -ideal in a Polish space X such that convergence with respect to \mathcal{I} yields the Fréchet topology in the space of $\mathcal{M}(\mathcal{B} \triangle \mathcal{I})$ -measurable functions, and $\mathcal{I}^* = \{A \in I : \exists_{B \in F_{\sigma}} A \subset B \land B \in I\}$, then $\mathcal{I} - \mathcal{I}^* \neq \emptyset$.

Proof. If $\mathcal{I} - \mathcal{I}^* = \emptyset$, then $\mathcal{I} = \mathcal{I}^*$, which contradicts Theorem 3 stating that convergence with respect to \mathcal{I}^* does not generate the Fréchet topology in the space of $\mathcal{M}(\mathcal{B} \bigtriangleup \mathcal{I}^*)$ -measurable functions.

Now, we will be concerned with product ideals.

Let \mathcal{I} and \mathcal{J} be proper σ -ideals of X and Y, respectively. We consider a σ -ideal of $X \times Y$ which is the product of \mathcal{I} and \mathcal{J} according to the following definition (cf. [1]):

$$\mathcal{I} \times \mathcal{J} = \{ A \subset X \times Y : \{ x : A_x \notin \mathcal{J} \} \in \mathcal{I} \}$$

where A_x denotes the section of A, i.e. $A_x = \{y \in Y : (x, y) \in A\}.$

If \mathcal{I} and \mathcal{J} are proper σ -ideals, then $\mathcal{I} \times \mathcal{J}$ is also a proper σ -ideal of subsets of $X \times Y$ (see [1]).

Let \mathcal{I} and \mathcal{J} be proper σ -ideals of topological spaces X and Y, respectively.

THEOREM 7. If convergence with respect to $\mathcal{I} \times \mathcal{J}$ yields the Fréchet topology in the space of $\mathcal{B}(X \times Y) \bigtriangleup (\mathcal{I} \times \mathcal{J})$ -measurable functions, then convergence with respect to \mathcal{I} and \mathcal{J} yields the Fréchet topology in the space of $\mathcal{B}(X) \bigtriangleup \mathcal{I}$ - and $\mathcal{B}(Y) \bigtriangleup \mathcal{J}$ -measurable functions, respectively.

Proof. Suppose that convergence with respect to $\mathcal{I} \times \mathcal{J}$ yields the Fréchet topology in the space of $\mathcal{B}(X \times Y) \Delta (\mathcal{I} \times \mathcal{J})$ -measurable functions. Assume that the space of $\mathcal{B}(X) \Delta \mathcal{I}$ -measurable functions is not a Fréchet space. By Theorem 1, there exists a double sequence $\{B_{j,n}\} \subset \mathcal{B}(X)$ exhausting X such that, for each increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ of positive integers and for each sequence $\{n_p\}_{p\in\mathbb{N}}$ of positive integers, $X - \lim \inf_{p\in\mathbb{N}} B_{j_p,n_p} \notin \mathcal{I}$. Putting $A_{j,n} = B_{j,n} \times Y$ for any $j, n \in \mathbb{N}$, we have a double sequence $\{A_{j,n}\} \subset \mathcal{B}(X \times Y)$ of sets exhausting $X \times Y$ such that, for each increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ and each sequence $\{n_p\}_{p\in\mathbb{N}}$, we have $\{x : (X \times Y - \liminf_{p\in\mathbb{N}} A_{n_p,j_p})_x \notin \mathcal{J}\} = X - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \notin \mathcal{I}$. This means that $X \times Y - \liminf_{p\in\mathbb{N}} A_{j_p,n_p} \notin \mathcal{I} \times \mathcal{J}$, which contradicts the fact that the last set should be a member of $\mathcal{I} \times \mathcal{J}$.

Now, suppose that convergence with respect to \mathcal{J} does not yield the Fréchet topology in the space of $\mathcal{B}(Y) \bigtriangleup \mathcal{J}$ -measurable functions. By Theorem 1, there exists a double sequence $\{B_{j,n}\}_{j,n\in\mathbb{N}} \subset \mathcal{B}(X)$ exhausting Xsuch that, for each increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ and each sequence $\{n_p\}_{p\in\mathbb{N}}$, we have $Y - \liminf_{p\in\mathbb{N}} B_{j_p,n_p} \notin \mathcal{J}$. Putting $A_{j,n} = X \times B_{j,n}$ for any $j,n \in \mathbb{N}$, we have a double sequence of Borel sets exhausting $X \times Y$ such that for each increasing sequence $\{j_p\}_{p\in\mathbb{N}}$ and each sequence $\{n_p\}_{p\in\mathbb{N}}$, we have $\{x : (X \times Y - \liminf_{p \in \mathbb{N}} A_{j_p, n_p})_x \notin \mathcal{J}\} = X \notin \mathcal{I}$. This means that $X \times Y - \liminf_{p \in \mathbb{N}} A_{j_p, n_p} \notin \mathcal{I} \times \mathcal{J}$, which contradicts the fact that the last set should be a member of $\mathcal{I} \times \mathcal{J}$.

COROLLARY 2. If \mathcal{L} is the σ -ideal of all Lebesgue null sets over \mathbb{R} and \mathcal{K} is the σ -ideal of all meager sets, then convergence with respect to the σ -ideal $\mathcal{K} \times \mathcal{L}$ (respectively $\mathcal{L} \times \mathcal{K}$) does not yield the Fréchet topology in the space of $\mathcal{B}(\mathbb{R}^2) \triangle (\mathcal{K} \times \mathcal{L})$ -measurable functions (respectively $\mathcal{B}(\mathbb{R}^2) \triangle (\mathcal{L} \times \mathcal{K})$ -measurable functions).

REFERENCES

- M. Balcerzak, Some Properties of Ideals of Sets in Polish Spaces, Łódź University Press, 1991.
- M. Balcerzak and D. Rogowska, Solution of the Baire order problem of Mauldin, Proc. Amer. Math. Soc. 123 (1995), 3413–3416.
- [3] R. Engelking, *General Topology*, PWN, Warszawa, 1977.
- [4] J. Hejduk, Convergence with respect to σ -ideal of meager sets in separable category bases, Demonstratio Math. 28 (1995), 619–623,
- [5] —, Convergence with respect to some σ -ideals, Rev. Res. Faculty of Science of Novi Sad, Math. Ser. 21 (1991).
- [6] A. S. Kechris and S. Solecki, Approximation of analytic by Borel sets and definable countable chain conditions, Israel J. Math. 89 (1995), 343–356.
- [7] E. Wagner, Sequences of measurable functions, Fund. Math. 112 (1981), 89–102.
- [8] E. Wagner and W. Wilczyński, Spaces of measurable functions, Rend. Circ. Mat. Palermo (2) 30 (1981), 97–110.

Institute of Mathematics Lódź University Stefana Banacha 22 90-238 Łódź, Poland E-mail: jachej@krysia.uni.lodz.pl

> Received 10.10.1995; revised 20.4.1996 and 10.10.1996