ROUGH SINGULAR INTEGRAL OPERATORS
 WITH HARDY SPACE FUNCTION KERNELS on a PRODUCT DOMAIN

BY

YONG DING (NANCHANG)

In this paper we introduce atomic Hardy spaces on the product domain $S^{n-1} \times S^{m-1}$ and prove that rough singular integral operators with Hardy space function kernels are L^{p} bounded on $\mathbb{R}^{n} \times \mathbb{R}^{m}$. This is an extension of some well known results.

1. Introduction. Let S^{n-1}, S^{m-1} be unit spheres in $\mathbb{R}^{n}, \mathbb{R}^{m}(n \geq$ $2, m \geq 2)$ respectively and $\Omega(x, y)$ be a function on the product domain $\mathbb{R}^{n} \times \mathbb{R}^{m}$ satisfying

$$
\begin{equation*}
\Omega\left(\lambda_{1} x^{\prime}, \lambda_{2} y^{\prime}\right)=\Omega\left(x^{\prime}, y^{\prime}\right) \quad \text { for any } \lambda_{1}, \lambda_{2}>0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{array}{ll}
\int_{S^{n-1}} \Omega\left(x^{\prime}, y^{\prime}\right) d x^{\prime}=0 & \text { for any } y^{\prime} \in S^{m-1} \\
\int_{S^{m-1}} \Omega\left(x^{\prime}, y^{\prime}\right) d y^{\prime}=0 & \text { for any } x^{\prime} \in S^{n-1} \tag{1.2}
\end{array}
$$

A singular integral operator T on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ is defined by

$$
T f(x, y)=\text { p.v. } \iint_{\mathbb{R}^{n} \times \mathbb{R}^{m}} \frac{\Omega(u, v)}{|u|^{n}|v|^{m}} f(x-u, y-v) d u d v .
$$

It is well known that T is an $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ bounded operator $(1<p<\infty)$ when Ω satisfies some regularity conditions [3]. Using the idea developed in [2], J. Duoandikoetxea [1] proved the $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ boundedness $(1<p<\infty)$ of T with the rough condition $\Omega \in L^{q}\left(S^{n-1} \times S^{m-1}\right)$ instead of regularity. Recently, Y. S. Jiang and S. Z. Lu improved the above results in [4]. They set up a class of block-spaces $B_{q}^{\phi}\left(S^{n-1} \times S^{m-1}\right)(q>1)$ on $S^{n-1} \times S^{m-1}$ and proved that T is $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ bounded if $\Omega \in B_{q}^{\phi}\left(S^{n-1} \times S^{m-1}\right)$.

[^0]Under inspiration from [5], in this paper we shall introduce the atomic Hardy spaces $H_{\mathrm{a}}^{1}\left(S^{n-1} \times S^{m-1}\right)$ and prove that T is $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ bounded $(1<p<\infty)$ if $\Omega \in H_{\mathrm{a}}^{1}\left(S^{n-1} \times S^{m-1}\right)$. This is an extension of the above mentioned results.

Let us begin with the definition of $(1, \infty)$-atoms on $S^{n-1} \times S^{m-1}$.
Definition 1. A function $a\left(x^{\prime}, y^{\prime}\right)$ on $S^{n-1} \times S^{m-1}$ is called a $(1, \infty)$ atom if it satisfies the following conditions:

$$
\int_{S^{n-1}} a\left(x^{\prime}, y^{\prime}\right) d x^{\prime}=0 \quad \text { for any } y^{\prime} \in S^{m-1}
$$

$$
\begin{equation*}
\int_{S^{m-1}} a\left(x^{\prime}, y^{\prime}\right) d y^{\prime}=0 \quad \text { for any } x^{\prime} \in S^{n-1}, \tag{i}
\end{equation*}
$$

where
(iii)

$$
\begin{equation*}
\operatorname{supp} a \subset B, \quad B=B_{n} \times B_{m}, \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
B_{n} & =\left\{x^{\prime} \in S^{n-1}:\left|x^{\prime}-x_{0}^{\prime}\right|<\alpha, x_{0}^{\prime} \in S^{n-1}\right\} \\
B_{m} & =\left\{y^{\prime} \in S^{m-1}:\left|y^{\prime}-y_{0}^{\prime}\right|<\beta, y_{0}^{\prime} \in S^{m-1}\right\}
\end{aligned}
$$

Now, we may define the atomic Hardy space $H_{\mathrm{a}}^{1}\left(S^{n-1} \times S^{m-1}\right)$.
Definition 2. The atomic Hardy space $H_{\mathrm{a}}^{1}\left(S^{n-1} \times S^{m-1}\right)$ is defined by

$$
\begin{array}{r}
H_{\mathrm{a}}^{1}\left(S^{n-1} \times S^{m-1}\right)=\left\{f \in L^{1}\left(S^{n-1} \times S^{m-1}\right): f\left(x^{\prime}, y^{\prime}\right)=\sum_{l=0}^{\infty} \lambda_{l} a_{l}\left(x^{\prime}, y^{\prime}\right)\right. \\
\left.a_{l}\left(x^{\prime}, y^{\prime}\right) \text { is a }(1, \infty) \text {-atom and } \sum_{l=0}^{\infty}\left|\lambda_{l}\right|<\infty\right\} .
\end{array}
$$

Moreover, we set $\|f\|_{H_{\mathrm{a}}^{1}\left(S^{n-1} \times S^{m-1}\right)}=\inf \sum_{l=0}^{\infty}\left|\lambda_{l}\right|$, where the infimum is taken over all decompositions $f=\sum_{l=0}^{\infty} \lambda_{l} a_{l}$ of f.

The main result of this paper is
Theorem 1. Suppose that Ω satisfies (1.1), (1.2) and $\Omega\left(x^{\prime}, y^{\prime}\right) \in$ $H_{\mathrm{a}}^{1}\left(S^{n-1} \times S^{m-1}\right)$. Then T is $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ bounded $(1<p<\infty)$.

In proving Theorem 1 we shall use a result of [1]:
Theorem A. Let $\left\{\sigma_{j, k}\right\}_{j, k \in \mathbb{Z}}$ be a double sequence of uniformly bounded Borel measures in $\mathbb{R}^{n} \times \mathbb{R}^{m}$ and

$$
\left|\widehat{\sigma}_{j, k}(\xi, \eta)\right| \leq C\left|a^{j} \xi\right|^{ \pm \delta}\left|b^{k} \eta\right|^{ \pm \varrho}
$$

for some $a, b>1, \delta, \varrho>0$ and for all $j, k \in \mathbb{Z}$. If $\sigma^{*}(f)=\sup _{j, k}| | \sigma_{j, k}|* f|$
is bounded in $L^{q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ for some $q>1$, then

$$
T f(x, y)=\sum_{j} \sum_{k} \sigma_{j, k} * f(x, y)
$$

is bounded in $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ for $|1 / p-1 / 2|<1 /(2 q)$.
2. Proof of Theorem 1. By Definition 2, we may write $\Omega\left(x^{\prime}, y^{\prime}\right)=$ $\sum_{l=0}^{\infty} \lambda_{l} \Omega_{l}\left(x^{\prime}, y^{\prime}\right)$, where $\Omega_{l}\left(x^{\prime}, y^{\prime}\right)$ is a $(1, \infty)$-atom and $\sum_{l=0}^{\infty}\left|\lambda_{l}\right|<\infty$. Then Ω_{l} satisfies the following conditions:

$$
\begin{array}{ll}
\int_{S^{n-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) d x^{\prime}=0 & \text { for any } y^{\prime} \in S^{m-1} \\
\int_{S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) d y^{\prime}=0 & \text { for any } x^{\prime} \in S^{n-1} \tag{2.1}
\end{array}
$$

where

$$
\begin{gather*}
B_{n}^{l}=\left\{x^{\prime} \in S^{n-1}:\left|x^{\prime}-x_{0}^{\prime}\right|<\alpha_{l}, x_{0}^{\prime} \in S^{n-1}\right\} \\
B_{m}^{l}=\left\{y^{\prime} \in S^{m-1}:\left|y^{\prime}-y_{0}^{\prime}\right|<\beta_{l}, y_{0}^{\prime} \in S^{m-1}\right\} \\
\left\|\Omega_{l}\right\|_{L^{\infty}\left(S^{n-1} \times S^{m-1}\right)} \leq \alpha_{l}^{-(n-1)} \beta_{l}^{-(m-1)} \tag{2.3}
\end{gather*}
$$

First let us introduce some notation. For $j, k \in \mathbb{Z}$,

$$
\begin{aligned}
E_{j, k}(x, y) & =\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}: 2^{j-1}<|x| \leq 2^{j}, 2^{k-1}<|y| \leq 2^{k}\right\}, \\
E_{j, k}^{\mathrm{c}}(x, y) & =\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right) \backslash E_{j, k}(x, y), \\
K_{j, k}(x, y) & = \begin{cases}\Omega(x, y)|x|^{-n}|y|^{-m} & \text { for }(x, y) \in E_{j, k}(x, y), \\
0, & \text { for }(x, y) \in E_{j, k}^{\mathrm{c}}(x, y),\end{cases} \\
K_{j, k}^{l}(x, y) & = \begin{cases}\Omega_{l}(x, y)|x|^{-n}|y|^{-m} & \text { for }(x, y) \in E_{j, k}(x, y), \\
0, & \text { for }(x, y) \in E_{j, k}^{\mathrm{c}}(x, y) .\end{cases}
\end{aligned}
$$

Then we have

$$
K_{j, k}(x, y)=\sum_{l=0}^{\infty} \lambda_{l} K_{j, k}^{l}(x, y)
$$

and

$$
T f(x, y)=\sum_{j} \sum_{k} K_{j, k} * f(x, y)=\sum_{j} \sum_{k} \sum_{l \geq 0} \lambda_{l} K_{j, k}^{l} * f(x, y)
$$

Let j_{l}, k_{l} be integers such that

$$
\begin{equation*}
1<2^{j_{l}} \alpha_{l} \leq 2 \quad \text { and } \quad 1<2^{k_{l}} \beta_{l} \leq 2 \tag{2.4}
\end{equation*}
$$

where α_{l}, β_{l} are determined by (2.2). Obviously, when l is fixed, j_{l}, k_{l} are
unique. Then we may write

$$
\begin{equation*}
T f(x, y)=\sum_{j} \sum_{k} \sigma_{j, k} * f(x, y) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{j, k}(x, y)=\sum_{l=0}^{\infty} \lambda_{l} K_{j+j_{l}, k+k_{l}}^{l}(x, y) \tag{2.6}
\end{equation*}
$$

We now give the Fourier transform estimates of $K_{j, k}^{l}(x, y)$.
Lemma 1. For any δ with $0<\delta<1 / 2$, there are $0<\varepsilon, \theta<1$ and a constant $\bar{C}=C(\delta, \varepsilon, \theta)$ such that

$$
\begin{aligned}
& \left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| \leq \bar{C} \min \left\{\left|2^{j} \alpha_{l} \xi\right|^{1 / 2}\left|2^{k} \beta_{l} \eta\right|^{1 / 2},\left|2^{j} \alpha_{l} \xi\right|^{-\delta}\left|2^{k} \beta_{l} \eta\right|^{-\delta}\right. \\
& \left.\left|2^{j} \alpha_{l} \xi\right|^{\varepsilon}\left|2^{k} \beta_{l} \eta\right|^{-\theta},\left|2^{j} \alpha_{l} \xi\right|^{-\theta}\left|2^{k} \beta_{l} \eta\right|^{\varepsilon}\right\}
\end{aligned}
$$

Proof. By the cancellation condition (2.1), we have

$$
\int_{S^{n-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) \int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}} e^{-2 \pi i\left(r \xi \cdot x_{0}^{\prime}+s \eta \cdot y^{\prime}\right)} \frac{d r d s}{r s} d x^{\prime}=0
$$

Hence

$$
\begin{equation*}
\iint_{S^{n-1} \times S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) \int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}} e^{-2 \pi i\left(r \xi \cdot x_{0}^{\prime}+s \eta \cdot y^{\prime}\right)} \frac{d r d s}{r s} d x^{\prime} d y^{\prime}=0 \tag{2.7}
\end{equation*}
$$

Again using (2.1) we get

$$
\begin{equation*}
\iint_{S^{n-1} \times S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) \int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}} e^{-2 \pi i\left(r \xi \cdot x^{\prime}+s \eta \cdot y_{0}^{\prime}\right)} \frac{d r d s}{r s} d x^{\prime} d y^{\prime}=0 \tag{2.8}
\end{equation*}
$$

By (2.7),

$$
\begin{aligned}
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| & =\left|\iint_{\mathbb{R}^{n} \times \mathbb{R}^{m}} e^{-2 \pi i(\xi \cdot x+\eta \cdot y)} K_{j, k}^{l}(x, y) d x d y\right| \\
& =\left|\iint_{E_{j, k}(x, y)} e^{-2 \pi i(\xi \cdot x+\eta \cdot y)} \frac{\Omega_{l}\left(x^{\prime}, y^{\prime}\right)}{|x|^{n}|y|^{m}} d x d y\right| \\
& =\left|\int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}} \iint_{S^{n-1} \times S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) e^{-2 \pi i\left(r \xi \cdot x^{\prime}+s \eta \cdot y^{\prime}\right)} d x^{\prime} d y^{\prime} \frac{d r d s}{r s}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\mid \iint_{S^{n-1} \times S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) \int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}}\left[e^{-2 \pi i\left(r \xi \cdot x^{\prime}+s \eta \cdot y^{\prime}\right)}\right. \\
& \left.-e^{-2 \pi i\left(r \xi \cdot x_{0}^{\prime}+s \eta \cdot y^{\prime}\right)}\right] \left.\frac{d r d s}{r s} d x^{\prime} d y^{\prime} \right\rvert\, \\
& \leq \iint_{S^{n-1} \times S^{m-1}}\left|\Omega_{l}\left(x^{\prime}, y^{\prime}\right)\right| \int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}} 2 \pi\left|r \xi \cdot\left(x^{\prime}-x_{0}^{\prime}\right)\right| \frac{d r d s}{r s} d x^{\prime} d y^{\prime} \\
& =C 2^{j}|\xi| \iint_{S^{n-1} \times S^{m-1}}\left|\Omega_{l}\left(x^{\prime}, y^{\prime}\right)\right| \cdot\left|x^{\prime}-x_{0}^{\prime}\right| d x^{\prime} d y^{\prime} \leq C\left|2^{j} \alpha_{l} \xi\right|
\end{aligned}
$$

where the last inequality follows from $\iint_{S^{n-1} \times S^{m-1}}\left|\Omega_{l}\left(x^{\prime}, y^{\prime}\right)\right| d x^{\prime} d y^{\prime} \leq 1$ (by (2.2) and (2.3)). From (2.8) and using the same method we can prove

$$
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| \leq C\left|2^{k} \beta_{l} \eta\right|
$$

Thus we obtain

$$
\begin{equation*}
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| \leq C \min \left\{\left|2^{j} \alpha_{l} \xi\right|,\left|2^{k} \beta_{l} \eta\right|\right\} \tag{2.9}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
& \left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right|^{2} \\
& \quad=\left|\int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}} \iint_{S^{n-1} \times S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) e^{-2 \pi i\left(r \xi \cdot x^{\prime}+s \eta \cdot y^{\prime}\right)} d x^{\prime} d y^{\prime} \frac{d r d s}{r s}\right|^{2} \\
& \quad \leq C \int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}}\left|\iint_{S^{n-1} \times S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) e^{-2 \pi i\left(r \xi \cdot x^{\prime}+s \eta \cdot y^{\prime}\right)} d x^{\prime} d y^{\prime}\right|^{2} \frac{d r d s}{r s}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left.\iint_{S^{n-1} \times S^{m-1}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) e^{-2 \pi i\left(r \xi \cdot x^{\prime}+s \eta \cdot y^{\prime}\right)} d x^{\prime} d y^{\prime}\right|^{2} \\
&= \iint_{\left(S^{n-1} \times S^{m-1}\right)^{2}} \Omega_{l}\left(x^{\prime}, y^{\prime}\right) \overline{\Omega_{l}\left(u^{\prime}, v^{\prime}\right)} \\
& \times e^{-2 \pi i\left(r \xi \cdot x^{\prime}+s \eta \cdot y^{\prime}\right)} e^{2 \pi i\left(r \xi \cdot u^{\prime}+s \eta \cdot v^{\prime}\right)} d x^{\prime} d y^{\prime} d u^{\prime} d v^{\prime}
\end{aligned}
$$

Set

$$
I=\int_{2^{k-1}}^{2^{k}} \int_{2^{j-1}}^{2^{j}} e^{-2 \pi i\left[r \xi \cdot\left(x^{\prime}-u^{\prime}\right)+s \eta \cdot\left(y^{\prime}-v^{\prime}\right)\right]} \frac{d r d s}{r s} .
$$

Then we have $|I| \leq(\log 2)^{2}$. Moreover, from [2] there is a constant C such that

$$
|I| \leq C \frac{1}{\left|2^{j} \xi \cdot\left(x^{\prime}-u^{\prime}\right)\right| \cdot\left|2^{k} \eta \cdot\left(y^{\prime}-v^{\prime}\right)\right|}
$$

Thus, for any $0<\sigma<1$ we have

$$
|I| \leq C_{\sigma} \frac{1}{\left|2^{j} \xi \cdot\left(x^{\prime}-u^{\prime}\right)\right|^{\sigma}\left|2^{k} \eta \cdot\left(y^{\prime}-v^{\prime}\right)\right|^{\sigma}} .
$$

Hence

$$
\begin{aligned}
& \left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right|^{2} \\
& \quad \leq C_{\sigma} \iint_{\left(S^{n-1} \times S^{m-1}\right)^{2}} \left\lvert\, \Omega_{l}\left(x^{\prime}, y^{\prime}\right) \overline{\Omega_{l}\left(u^{\prime}, v^{\prime}\right) \mid} \frac{d x^{\prime} d y^{\prime} d u^{\prime} d v^{\prime}}{\left.\left|2^{j} \xi \cdot\left(x^{\prime}-u^{\prime}\right)\right|^{\sigma} 2^{k} \eta \cdot\left(y^{\prime}-v^{\prime}\right)\right|^{\sigma}}\right. \\
& \quad \leq \frac{C_{\sigma}}{\left|B_{n}^{l}\right|^{2}\left|B_{m}^{l}\right|^{2}}\left(\int_{\substack{\left|x^{\prime}-x^{\prime}\right|<\alpha_{l} \\
\left|u^{\prime}-x_{0}^{\prime}\right|<\alpha_{l}}} \frac{d x^{\prime} d u^{\prime}}{\left|22^{j} \xi \cdot\left(x^{\prime}-u^{\prime}\right)\right|^{\sigma}}\right) \\
& \quad \times\left(\int_{\substack{\left|y^{\prime}-y_{0}^{\prime}\right|<\beta_{l} \\
\left|v^{\prime}-y_{0}^{\prime}\right|<\beta_{l}}} \frac{d y^{\prime} d v^{\prime}}{\left|2^{k} \eta \cdot\left(y^{\prime}-v^{\prime}\right)\right|^{\sigma}}\right) .
\end{aligned}
$$

From [5] we know that

$$
\frac{1}{\left|B_{n}^{l}\right|^{2}}\left(\underset{\substack{\left|x^{\prime}-x^{\prime}\right|<\alpha_{l} \\\left|u^{\prime}-x_{0}^{\prime}\right|<\alpha_{l}}}{ } \frac{d x^{\prime} d u^{\prime}}{\left|2^{j} \xi \cdot\left(x^{\prime}-u^{\prime}\right)\right|^{\sigma}}\right) \leq \frac{C}{\left|2^{j} \alpha_{l} \xi\right|^{\sigma}}
$$

and

Thus, we obtain

$$
\begin{equation*}
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| \leq \frac{C_{\sigma}}{\left|2^{j} \alpha_{l} \xi\right|^{\sigma / 2}\left|2^{k} \beta_{l} \eta\right|^{\sigma / 2}} . \tag{2.10}
\end{equation*}
$$

Combining (2.9) and (2.10), we see that

$$
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| \leq C_{\sigma} \min \left\{\left|2^{j} \alpha_{l} \xi\right|,\left|2^{k} \beta_{l} \eta\right|, \frac{1}{\left|2^{j} \alpha_{l} \xi\right|^{\sigma / 2}\left|2^{k} \beta_{l} \eta\right|^{\sigma / 2}}\right\} .
$$

By interpolation we get

$$
\begin{align*}
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| \leq \bar{C} \min \left\{\left|2^{j} \alpha_{l} \xi\right|^{1 / 2}\left|2^{k} \beta_{l} \eta\right|^{1 / 2}, \frac{1}{\left|2^{j} \alpha_{l} \xi\right| \delta\left|2^{k} \beta_{l} \eta\right|^{\delta}}\right. \tag{2.11}\\
\left.\left|2^{j} \alpha_{l} \xi\right|^{\varepsilon}\left|2^{k} \beta_{l} \eta\right|^{-\theta},\left|2^{j} \alpha_{l} \xi\right|^{-\theta}\left|2^{k} \beta_{l} \eta\right|^{\varepsilon}\right\},
\end{align*}
$$

where $0<\delta=\sigma / 2<1 / 2,0<\varepsilon, \theta<1$.

In fact, taking $\delta /(1+\delta)<\tau<1$, we obtain

$$
\begin{aligned}
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| & =\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right|^{\tau}\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right|^{1-\tau} \\
& \leq\left|2^{j} \alpha_{l} \xi\right|^{\tau}\left\{\left|2^{j} \alpha_{l} \xi\right|^{-\delta}\left|2^{k} \beta_{l} \eta\right|^{-\delta}\right\}^{1-\tau} \\
& =\left|2^{j} \alpha_{l} \xi\right|^{\tau-\delta(1-\tau)}\left|2^{k} \beta_{l} \eta\right|^{-\delta(1-\tau)}=\left|2^{j} \alpha_{l} \xi\right|^{\varepsilon}\left|2^{k} \beta_{l} \eta\right|^{-\theta},
\end{aligned}
$$

where $\varepsilon=\tau-\delta(1-\tau)$ and $\theta=\delta(1-\tau)$. Using the same method, we may get

$$
\left|\widehat{K_{j, k}^{l}}(\xi, \eta)\right| \leq\left|2^{j} \alpha_{l} \xi\right|^{-\theta}\left|2^{k} \beta_{l} \eta\right|^{\varepsilon}
$$

This is the conclusion of Lemma 1.
Lemma 2. For $\sigma_{j, k}$ as defined above in (2.6), the maximal operator σ^{*} defined in Theorem A is bounded on $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ for $1<p<\infty$.

Proof. For any $j, k \in \mathbb{Z}$, the measures $\left\{\sigma_{j, k}\right\}_{j, k \in \mathbb{Z}}$ are uniformly bounded Borel measures in $\mathbb{R}^{n} \times \mathbb{R}^{m}$. Indeed,

$$
\begin{aligned}
\left\|\sigma_{j, k}\right\| & =\iint_{\mathbb{R}^{n} \times \mathbb{R}^{m}}\left|\sigma_{j, k}(x, y)\right| d x d y \\
& \leq \sum_{j=0}^{\infty}\left|\lambda_{l}\right| \iint_{E_{j+j_{l}, k+k_{l}}}\left|K_{E_{j+j_{l}, k+k_{l}}^{l}}^{l}(x, y)\right| d x d y \\
& =\sum_{j=0}^{\infty}\left|\lambda_{l}\right| \iint_{S^{n-1} \times S^{m-1}}\left|\Omega_{l}\left(x^{\prime}, y^{\prime}\right)\right| \int_{2^{j+j_{l}-1}}^{2^{j+j_{l}}} \int_{2^{k+k_{l}-1}}^{2^{k+k_{l}}} \frac{d r d s}{r s} d x^{\prime} d y^{\prime} \\
& \leq \sum_{j=0}^{\infty}\left|\lambda_{l}\right|
\end{aligned}
$$

where we use again the fact that $\iint_{S^{n-1} \times S^{m-1}}\left|\Omega_{l}\left(x^{\prime}, y^{\prime}\right)\right| d x^{\prime} d y^{\prime} \leq 1$. Moreover, from (2.11), (2.4) and (2.6) we deduce immediately that $\sigma_{j, k}(x, y)$ satisfies the following Fourier transform estimates:

$$
\begin{align*}
\left|\widehat{\sigma}_{j, k}(\xi, \eta)\right| \leq \bar{C} \sum_{j=0}^{\infty}\left|\lambda_{l}\right| \cdot \min \left\{\left|2^{j} \xi\right|^{1 / 2}\left|2^{k} \eta\right|^{1 / 2}, \frac{1}{\left|2^{j} \xi\right|^{\delta}\left|2^{k} \eta\right|^{\delta}}\right. \tag{2.12}\\
\left.\left|2^{j} \xi\right|^{\varepsilon}\left|2^{k} \eta\right|^{-\theta},\left|2^{j} \xi\right|^{-\theta}\left|2^{k} \eta\right|^{\varepsilon}\right\}
\end{align*}
$$

To complete the proof of Lemma 2 we need to introduce the following variances of maximal operators.

The maximal operator in direction θ is defined by

$$
M_{\theta} f(x)=\sup _{r>0} \frac{1}{r} \int_{0}^{r}|f(x-t \theta)| d t \quad \text { for } \theta \in S^{n-1}
$$

and the maximal operator in directions $\left(\theta_{1}, \theta_{2}\right) \in S^{n-1} \times S^{m-1}$ is defined by

$$
M_{\theta_{1}, \theta_{2}} f(x, y)=\sup _{r_{1}, r_{2}>0} \frac{1}{r_{1} r_{2}} \int_{0}^{r_{2}} \int_{0}^{r_{1}}\left|f\left(x-t_{1} \theta_{1}, y-t_{2} \theta_{2}\right)\right| d t_{1} d t_{2}
$$

Moreover, if $\Omega(x, y)$ is homogeneous of degree zero, i.e. (1.1) holds, then the maximal operator M_{Ω} on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ is defined by

$$
M_{\Omega} f(x, y)=\sup _{r>0, s>0} \frac{1}{r^{n} s^{m}} \iint_{\substack{|u|<r \\|v|<s}}|\Omega(u, v)| \cdot|f(x-u, y-v)| d u d v
$$

From the above definitions of maximal operators we see that

$$
\begin{equation*}
M_{\theta_{1}, \theta_{2}} f(x, y) \leq M_{\theta_{1}}\left(M_{\theta_{2}} f\right)(x, y) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\Omega_{l}} f(x, y) \leq \iint_{S^{n-1} \times S^{m-1}}\left|\Omega_{l}\left(\theta_{1}, \theta_{2}\right)\right| M_{\theta_{1}, \theta_{2}} f(x, y) d \theta_{1} d \theta_{2} \tag{2.14}
\end{equation*}
$$

By the strong maximal theorem on $\mathbb{R}^{1} \times \mathbb{R}^{1}$ and Fubini's theorem we find that $M_{\theta_{1}}\left(M_{\theta_{2}}\right)$ is uniformly bounded on $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)(1<p<\infty)$ for any $\left(\theta_{1}, \theta_{2}\right) \in S^{n-1} \times S^{m-1}$ and so is $M_{\theta_{1}, \theta_{2}}$ by (2.13).

Now, let us turn to the proof of the boundedness for σ^{*} on $L^{p}\left(\mathbb{R}^{n} \times\right.$ $\left.\mathbb{R}^{m}\right)(1<p<\infty)$. Using the method of rotations and (2.14) we see that for any $j, k \in \mathbb{Z}$,

$$
\left|\left|K_{j+j_{l}, k+k_{l}}^{l}\right| * f(x, y)\right| \leq \iint_{S^{n-1} \times S^{m-1}}\left|\Omega_{l}\left(\theta_{1}, \theta_{2}\right)\right| M_{\theta_{1}, \theta_{2}} f(x, y) d \theta_{1} d \theta_{2}
$$

Thus, from (2.6) we have

$$
\left|\left|\sigma_{j, k}\right| * f(x, y)\right| \leq \iint_{S^{n-1} \times S^{m-1}}\left(\sum_{l \geq 0}\left|\lambda_{l}\right| \cdot\left|\Omega_{l}\left(\theta_{1}, \theta_{2}\right)\right|\right) M_{\theta_{1}, \theta_{2}} f(x, y) d \theta_{1} d \theta_{2}
$$

uniformly in j, k, so the inequality still holds upon replacing the left side with $\sigma^{*} f(x, y)$. Since

$$
\iint_{S^{n-1} \times S^{m-1}} \sum_{l \geq 0}\left|\lambda_{l}\right| \cdot\left|\Omega_{l}\left(\theta_{1}, \theta_{2}\right)\right| d \theta_{1} d \theta_{2} \leq \sum_{l \geq 0}\left|\lambda_{l}\right|<\infty
$$

The $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ boundedness $(1<p<\infty)$ of σ^{*} now follows from the uniform L^{p} bounds for $M_{\theta_{1}, \theta_{2}}$ by the Minkowski integral formula, and the proof of Lemma 2 is finished.

Now, the conclusion of Theorem 1 is a straightforward consequence of Lemma 2 and Theorem A.

REFERENCES

[1] J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (4) (1986), 185-206.
[2] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[3] R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. 4 (1981), 195-201.
[4] Y. S. Jiang and S. Z. Lu, A class of singular integral operators with rough kernel on product domains, Hokkaido Math. J. 24 (1995), 1-7.
[5] D. K. Watson, The Hardy space kernel condition for rough integrals, preprint.

Department of Mathematics
Nanchang Vocational and Technical Teachers' College
Nanchang, Jiangxi, 330013
P.R. China

[^0]: 1991 Mathematics Subject Classification: Primary 42B20; Secondary 42B25.
 The author was supported by NSF of Jiangxi in China.

