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SOME NONEXISTENCE THEOREMS
ON STABLE MINIMAL SUBMANIFOLDS

BY

HAIZHONG LI (BEIJING)

We prove that there exist no stable minimal submanifolds in some n-
dimensional ellipsoids, which generalizes J. Simons’ result about the unit
sphere and gives a partial answer to Lawson—Simons’ conjecture.

1. Introduction. In [S], J. Simons proved that there exist no stable
minimal submanifolds in the n-dimensional unit sphere S™. In this paper,
we establish the following general results.

THEOREM 1. Let N™ be an n-dimensional compact hypersurface in the
(n + 1)-dimensional Euclidean space R" 1. If the sectional curvature K of
N™ satisfies

(1) 1/2< K <1,

then there exist no stable m-dimensional minimal submanifolds in N" for
each m with 1 <m <n-—1.

Remark 1. If N" is an n-dimensional unit hypersphere S™ in R"*1,
then the sectional curvature K of S™ is 1, and from Theorem 1 we deduce
that there exist no stable m-dimensional minimal submanifolds in S™ for
each m with 1 < m < n — 1, which was proved by Simons [S].

THEOREM 2. Let N™ be an n-dimensional (n > 4) compact submanifold
in an (n + p)-dimensional Euclidean space R"P. Let R and H denote the
normalized scalar curvature and the mean curvature functions of N™, re-
spectively. If R satisfies the following pointwise n(n — 2)/(n — 1)%-pinching
condition:

n(n — 2)
(2) s

(n—1)
then there exist mo stable m-dimensional minimal submanifolds in N™ for
each m with 2 <m <n— 2.

H? < R< H?,
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COROLLARY 1. Let N™ be an n-dimensional (n > 4) compact hypersur-
face in R™1. If all the principal curvatures k, of N™ satisfy

1 n
3 0<ky <yl—— k 1<a<
() a n(n—l); bs _CL_TL,
then there exists no m-dimensional minimal submanifold in N™ for each m
with 2 <m <n— 2.

As direct applications of Theorem 1 and Corollary 1, we have

PROPOSITION 1. Let N™ be the following n-dimensional (n > 4) ellipsoid
in R

n ‘T% x%-‘rl
(4) N™: —2++ 5 =1, 0<a1§a2§...§an+1,
ai Ant1

(1) If 1 < apy1 < V2 and a1 > /@11, then there exist no stable m-
dimensional minimal submanifolds of N™ for each m with 1 <m <n —1.

(2) If ans1/ar < ¥/n/(n —1), then there exist no stable m-dimensional
minimal submanifolds of N™ for each m with 2 <m <n — 2.

Remark 2. It can be proved in a similar way that the above results
all keep valid for stable m-currents on N™ (for concepts of stable current,
see Lawson—Simons [LS]). For example, we can state the counterpart of
Theorem 1 as follows:

THEOREM 1’. Let N™ be an n-dimensional compact hypersurface in the
(n + 1)-dimensional Euclidean space R" 1. If the sectional curvature K of
N™ satisfies
(5) 1/2< K <1,
then there exist no stable m-currents on N™ for each m with 1 <m <n-—1.
Remark 3. Let N™ be an n-dimensional compact hypersurface in R"*!
and suppose that every principal curvature k, of N™ satisfies vV§ < k, < 1
(a =1,...,n). H. Mori [M] and Y. Ohnita [O] proved the conclusion of
Theorem 1’ under the stronger conditions 6 > n/(n+1) and § > 1/2,

respectively. Our Theorem 1’ also gives a partial answer to the following
Lawson—Simons’ conjecture:

CoNJECTURE ([LS]). Let N™ be a compact n-dimensional connected Rie-
mannian manifold with the sectional curvature K satisfying

(6) 1/4<K<1.
Then there exist no stable m-currents on N™ for each m with 1 <m <n-—1.

We are greatly indebted to P. F. Leung’s papers [L1, L2] which motivated
us to do this work.
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2. Basic formulas and notations. In this paper, we shall make use
of the following convention on the ranges of indices:

1<ABC,...<n+p;, 1<abec,...<n; n+1<puv,...<n+p;
1<i,jk...<m; m+1<a,8,v...<n.
Let M"™ and N™ be Riemannian manifolds of dimension m and dimen-
sion n, respectively. Let M"™ be an m-dimensional compact minimal sub-

manifold of N, n > m. For any normal variation vector field U = )" _ uqeq
of M™ the second variation of the volume is given by (see [S])

(7) 10,0)= § [ Y udi =Y (0as + Raptiaug)| dov,
M™  o,i a,B

where u,; are the covariant derivatives of wu,,

(8) Oap = Z hh,
(9) Raﬁ = Z Raiﬁi:

and h{; are the components of the second fundamental form h of M™ in
N™,

Now let z : N — R™*? be an n-dimensional submanifold in the (n+ p)-
dimensional Euclidean space R"*P. We choose a local field of orthonor-

mal frames ey, ... €y, €n41,...,€ntp 0 R™TP such that, restricted to N™,
the vectors eq,...,e, are tangent to N™. Their dual coframe fields are
Wiy ey Wiy Wngl, -+ Woyp. Then we have

(10) dx = Zwaea,
(11) de, = Zwabeb + Z B! wye,,,
(12) de, = — Z Babwbea + Zwuyey,

and the second fundamental form of N™ in R**P? is

(13) B = Z Bliw, @wy @ ey
a,b,p

The Gauss equation of N™ in R™"? is

(14) n(n — )R =n*H? - 8,

where R, H and S are the normalized scalar curvature, the mean curva-
ture and the length square of the second fundamental form of N™ in R"*P,
respectively.
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3. An m-dimensional minimal submanifold in N". Let M™ be an
m-~dimensional minimal submanifold in N”, and N" be an n-dimensional
submanifold in R™*?. In this case we can choose a local orthonormal ba-

SIS €1, ey €y €ty vy CnyCnils .-y Entp D R™P such that, restricted to
M™, the vectors ey, ..., e, are tangent to M™, ey, ..., e, are tangent to N,
€n+1,---,6Entp are normal to N™. Their dual coframe fields are wy,...,wn,
Wint1s - -« s Wiy Wig 1, - - - Wntp. From (10)—(12), restricted to M™, we have

(15) dx = Zwiei,

(16) de; = Zw,je] +Zh”w]ea +ZBZ]%6N,

(17) deq = — Z hSwie; + Zwageﬁ + Z Bl wjey,

(18) de, = — Z Bliwe; — Z Bl wjeq + waey,
,J

Where h=3%", g o hijwi @w; @ eq is the second fundamental form of M™ in
"and ), h$ = 0 for any «, since M" is a minimal submanifold in N™.

We choose the following normal variation vector field of M™ in N™:

(19) U= Zuaea, uo = (A, eq),

where A is a constant vector in R™ 17,
Using (15)—(18), a straightforward computation shows

(20) Ui = — Z hiur + Z B!y,
k H
(21) u?, = Z [Z hiihisuku; + Z B! . BYu,u, — 2 Z hgiBZiuku#] )
j7k v ILL,k:

where
(22) 'LL] = <A7 €j>7 ’LLIM — <A7 e,u>-
Let Ei,...,E,4, be a fixed orthonormal basis of R"™?, and Uy =
EQ<EA7604>€Q- Since
n—+p
(23) Z<EA7U><EB,W> = <v,w>
A=1

for any vectors v, w in R™*?_ putting (21) into (7) and using (22) and (23),
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we obtain
n—+p
(24) trace(I) = Z I(Ua,Ua)
A=1
- [~ X sy +ZRM]
Mm ak,p
_— Z[_Z(ng)%rﬁakak] dv
Mm™ ok
_— [ S BB, +22Rm4 dv
M™ a,p,k a,k
| - Y BB
Mm™ wook ok

Thus we obtain

PROPOSITION 2. Let N™ be an n-dimensional compact submanifold in
R™P. Let M™ be an m-dimensional compact minimal submanifold of N™.

If
(25) trace(l) = S { Z (B.)? Z B~ B,’:k] dv <0,
M™ wook ok

then M™ is not a stable minimal submanifold of N™.

4. The proof of Theorem 1. Let N" be an n-dimensional hypersur-
face in R™*! and M™ be an m-dimensional compact minimal submanifold
in N™. At a given point p € M™ in N", we can choose a local orthonormal

frame field e}, ..., e}, 7 in R™™! such that el,...,er are tangent to N™ and
atpe M™,
(26) v = (B(er,ep), ) = kabap, 1<a,b<n,

where the k, are the principal curvatures of N” in R*t1.

Since M™ is an m-dimensional compact minimal submanifold in N", at
a given point p € M™ in N™, we can also choose a local orthonormal frame
field e1, ..., €m,€myr1,---, €, in N™ such that eq, ..., e, are tangent to M™.
Noting that e;,...,e, and e],..., e} are two local orthonormal frame fields
in a neighborhood of p € M™, we can set

n
(27) e;= Y Alej, 1<i<m,
b=1

(28) eq = ZAbeb, m+1<a<n,
b=1
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where (A%) € SO(n), i.e.
(29) D ARAL =, Y ALAC =6
a=1 a=1
It is a direct verification that at p € M™, by use of (26)—(29) and (1),
(30) ZBQ&BMC = Z(B(eavea)7B(ekvek)>
a,k a,k
= ) ALALALALB(e; €), Bler, )
a,k,a,b,c,d

= D kake(A3)"(45)7

a,k,a,c

= Z RacaC(Ag)z(AZ)z

< Y (AD(AR)? = m(n —m),

a,c,a,k
where Rycqc = kqoke is the sectional curvature of N. From (1), we also have
= 1
(31) -2 2; Rokor < —2- im(n —m) =—m(n—m).

Putting (30) and (31) into (24), we obtain trace(I) < 0. From Proposi-
tion 2, we infer that M™ is not a stable minimal submanifold of N™.

5. The proof of Theorem 2. We first establish the following algebraic
lemma in order to prove our Theorem 2:

LEMMA 1. Let
1<a,b<n; 1<4j<m; m+1<a,p<n,

and consider the symmetric n X n matrix

BN
T Tpa
such that

m n n
(32) > Tii+ > Taa=D, > Ti=S5.
=1

a=m+1 a,b=1
Then:
(1) If m=1 orm =n— 1, we have

(33) (ZTZ-Z->2—DZT“~+2Z(TM)2§S+n;5D2.
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(2) If 2 <m < n—2, we have
6 (Y1) - DY T +2Y (1)

< m(n — m)S n |(2m —Qn)D| Jmn = m)(8n = D7) — 2m(n ;Qm)D%

Proof. We apply the Lagrange multiplier method to the problem (cf.
P. F. Leung [L1, L2])

2
(35) (X Xi) ~ DY X+ 23 (Xia)? = mad
subject to the constraints
(36) Y X+ Xaa=D

and

(37) Z(Xn) +Z aa) +22 ij) +2Z aB) —I-QZ i) =5,

i i<j a<p
where S =3 (T, »)? and the X, form a symmetric n x n matrix
[ Xij  Xia ]

Xpj Xpa

We consider the function

= (ZX“)Q —DZXn‘ +QZ(Xm)2
(T T D) 4 [Z 2 )
+2) (Xy)* +2 ) (Xap) +2Z ) = 5],

1<j a<f

where A, u are the Lagrange multipliers.
Differentiating with respect to each variable and equating to zero, we
obtain

(38) 2> X — D+ A+ 2uX;; =0,
J

(39) A+ 2NXaa = 07

(40) 4Xm + 4/$Xm = O,

(41) 4/1,XU =0, 1< 7,

(42) pXop =0, a<p.
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Hence (with the numbers standing for the corresponding left hand sides)

D Xi(38) + ) Xaa(39) + D> Xia(40) + > Xi5(41) + Y Xap(42) =0

1<j a<p

gives
2
(43) 2(2)@-@-) ~ DY X +4) (Xia)? = —(AD +2u8).
(1) Case p=0. It is easy to see in this case

2
(44) (ZXii)Q—DZXii+2Z(Xm)2:—%.

(2) Case pu = —1. First we suppose m(n — m) > n, and putting
Xaa =A/2, >, Xsi =D — (n—m)A\/2 into (38), we have
)= (m—2)D X, = (n—m—2)D 7
m(n—m)—n 2[m(n —m) — n|
(45)
X = (m—2)D ,
2[m(n —m) — n]
and

4[m(n —m) — n]

(46) (ZX@-@-)Q_DZXiiJrQZ(XiQ)Q:S_ mn—m) 4,

is another critical value.

Now suppose m(n —m) =n, i.e. n =4,m = 2. If y = —1, then
1 A
4 X“‘:—D—)\, Xaa:_a
(47) (D) .
2 D2
2 _
(48) (ZXn> —DZXM-F?Z(Xm) =5-—

that is, equality holds in (34) in this case.
(3) Case p#0,—1. Let X =), X;;. Then

(49) X = _%, (X — D) = (n— m)A,
(50) A:D—2<1+ﬁ>X.
m
Substituting (50) into the second formula of (49), we get
m(n —m)(D — 2X A 2
(51) p= om0 -2X) A2y p)

2(nX —mD) W n—m
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From (43), we have

XD =2X) _ Ap 4 as.
[ [

Putting (51) into (52), we get

Xz_yX_ <M5_ED2> o,

(52)

that is,

(53) X:mDi\/w<S—D—2>.

The critical value is

(54) (Z Xii>2 -D Z Xii +2 Z(Xm)Q

m(n —m) |(2m — n)D| 2m(n — m)D?
= - S+ 3 \/m(n—m)(Sn—Dz)—T.
Hence, the critical values are
D? m(n—m)—4 _,
4 5_4[m(n—m)—n]D ’
- 2m —n)D 2m(n — m)D?
m(n m)S—I- I ann) |\/m(n—m)(5n—D2) - —m(nnzm) .

It can be verified directly by calculation that if m = 1 or m = n — 1,
then m(n —m) = n— 1 and the maximum is S+ 22D? if 2<m <n -2,
the maximum is (cf. [L1])

m(nn— m)S n |(2mn—2n)D| J/m(n =) Sn = D7) — 2m(n;2m)D2‘

This completes the proof of Lemma, 1.

PROPOSITION 3. Let N™ be an n-dimensional (n > 4) compact subman-
ifold in R™"P. Let S be the length square of the second fundamental form.

If

n
55 S <2nH?*—|2m-n)H|, | ———
(55) <ont? — |om |, [
then there exist no stable m-dimensional minimal submanifolds of N™ for

each m with 2 < m < n — 2, where Sy is the length square of the second
fundamental form in the direction of the mean curvature vector of N™.

(SH - 7”LH2),

Proof. We choose a local orthonormal frame field e, ..., €,4, in R"*?
with eq,...,e, tangent to N and ej41,...,€,4p normal to N™. Let e,41
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be parallel to the mean curvature vector H and
n+p
(56) B(X,Y)= Y  B"X.,Y)e,,
p=n+1
then

ZBH—H(eaaea) =nH, ZB#(emea) =0, n+2<p<n+p.

Moreover,
(58) Z[QHB(GZ‘,GQ)”Q - <B(€i,€i),B(€a,€a)>]
= (ZB"-Fl(ei, ei)>2 + QZ(B"‘H(ei, ea))2 _ nHZB"‘H(ei, ei)
n+p |
5 (5 srE ]

For each symmetric n X n-matrix (B”“(ea, ep)) and (B*(eq,€p)), 1 < a,b <
n,n+ 1< pu<n+p, applying Lemma 1, we have

(59 (X B (e e)) +2 > (B" (enea)’ —nH Y B (ere)

< MSH +](2m — n)Hl\/w(SH — nH?) — 2m(n — m) H?
and
we m(n —m) u 9
) (X penen) # 23 (B ) < RSB )
i a,b

Combining (58), (59) with (60), from assumption (55) we get
(61) Y _[2B(eisealll® = (Bleisei), B(eas ea))]

oY

MS—%l(n—m)HQJr |(2m—n)H|\/M(SH —nf?) <0.

n
This completes the proof of Proposition 3.

Proof of Theorem 2. Let N™ be an n-dimensional (n > 4) compact
submanifold in R"*?. By the Gauss equation (14) and the fact that S >
nH?, we know that condition (2) is equivalent to

n?H?

2 .
(62) S<n_1
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But (62) is equivalent to

n 1 n 1 n
—nH? —|H| == Hl —=(n—-2 HI.
(63) V5 —nl? < ||l = 5\ [onlH| - S(n—2), [

Now (63) is equivalent to

(64) ( S—nH2+%(n—2)\/I]H]>2<<% nﬁln\mf,

that is,

(65) S < 2nH2—(n—2),/n7z1|H|\/s—nH2.
Since |2m—n|y/n/(m(n —m)) < (n—2)y/n/(n — 1) and Sy < S, we see

that (65) implies (55) for each m with 2 < m < n—2. Therefore, Theorem 2
follows from Proposition 3 directly.

6. The proof of Corollary 1 and Proposition 1

Proof of Corollary 1. Let N™ be an n-dimensional compact hy-
persurface in R"*! and let the principal curvatures be k,, 1 < a < n. By
assumption (3), we have

27172
(66) s=Y k<1

n—1"
By the Gauss equation (14) and the fact S > nH?, (66) is equivalent to
(2). Now Corollary 1 follows from Theorem 2 directly.

Proof of Proposition 1. Let N" be the following n-dimensional
(n > 4) ellipsoid in R™*1:

n ‘,L'% x721+1
N™: g—l——i-az—:l, 0<a1§a2§...§an+1.
1 n+1

It is not difficult to verify by a direct computation that the maximum
and minimum of the principal curvatures are

k _ Qny1 k !
max — 2 min — "9 )
ai 41

respectively.
(D1 <ap < /2 and a1 > \/an+1, then the sectional curvature K
of N™ satisfies

1 a? 2 = ap i
4 min — — "max —
2 apy ay

Thus the conclusion of Proposition 1 follows from Theorem 1.
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(2) If apy1/a1 < {/n/(n —1), then
1 - Ap 1 n a
ko — | ——= ky < — 0.
n(n—l); b= a2 \/n—lai+1<

Thus the conclusion of Proposition 1 follows from Corollary 1.

7. Some remarks. Let N” be an n-dimensional compact submanifold
in an (n + p)-dimensional unit sphere S™*? and B the second fundamental
form of N™. By a reduction as in the proof of (24) (cf. (2.11) of Pan—Shen
[PS]) we have

(67) trace(l) = — S [— Z (B + ZR‘W] dv

Mm™ a,k,p o
= § [ m—m)+2 > (BE)? = Y BBl dv.
Mm™ ok ook

We can prove the following counterparts of Theorems 1 and 2 by making
use of (67):

THEOREM 3. Let N™ be an n-dimensional compact hypersurface in an
(n + 1)-dimensional unit sphere S"*1. If the sectional curvature K of N™
satisfies

(68) 1/2< K <1,

then there exist no stable m-dimensional minimal submanifolds in N™ for
eachm with1 <m <n—1.

THEOREM 4. Let N™ be an n-dimensional (n > 4) compact submanifold
in an (n + p)-dimensional Euclidean sphere S™P. Let S and H be the
length square of the second fundamental form and the mean curvature of
N™ respectively. If

3

n 5 n(n—2)
(69) S<nt s -5

Vn2H* + 4(n — 1)H?2,

then there exist mo stable m-dimensional minimal submanifolds in N™ for
each m with 2 <m <n—2.

Remark 4. From the main theorem of [L2], we can prove that condition
(2) or (69) implies Ric(N™) > 0.

Remark 5. These conclusions keep valid for stable currents (see
Lawson—Simons [LS] or Federer-Fleming [FF]).
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