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WILD TILTED ALGEBRAS REVISITED

BY

OTTO KERNER (DÜSSELDORF)

In this paper wild tilted algebras are studied. Following [6] an algebra
B is called tilted (of type A) if there exists a finite-dimensional hereditary
algebra A over some field k and a tilting module T in the category A-mod of
finite-dimensional left A-modules with B = EndA(T ). The tilting module
T has a structure as an (A,B)-bimodule and induces in B-mod a splitting
torsion pair (X ,Y), where the torsion-free class Y is the full subcategory of
B-mod, defined by the objects M with Tor1B(T,M) = 0, whereas the torsion
class X is defined by the objects N with T ⊗B N = 0.

A tilted algebra B of type A is only wild if A is wild hereditary. It was
shown in [9] that the study of Y (respectively, X ) can be reduced to the
case of tilting modules without nonzero direct summands in the preinjective
component I(A) (respectively, preprojective component P(A)). Only this
case will be considered here, and it was shown in [9] that in this situation
B is wild if and only if A is wild. In this paper the torsion-free class Y is
studied, dual results hold for X . For basic terminology and general results
we refer to [6, 16]. The main result of this paper is:

Theorem 1. Let A be connected wild hereditary , T a tilting module
in A-mod without indecomposable preinjective direct summand and B =
EndA(T ). If F = HomA(T,−) denotes the tilting functor and (Y,X ) the
torsion pair in B-mod induced by T , we have:

1. The Auslander–Reiten quiver Γ (B) of B has exactly one preprojective
component P(B).
(a) C = B/annP(B) is connected wild concealed.
(b) If T0 is a preprojective direct summand of T , then F (T0) is pre-
projective in B-mod.

2. If X ∈ Y is indecomposable and not in the connecting component ,
then:
(a) τ−m

B X is in C-mod for m � 0.
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(b) τ−m
B X = τCτ−m−1

B X for m � 0.
(c) If X is not in P(B), then τ−m

B X is a regular C-module for m � 0.

3. All regular C-modules are in Y. If X is a regular C-module, then
τ−m
C X = τBτ−m−1

C X for m � 0.

The first part of the theorem was the main result in the paper [17] of
Strauss. The remaining parts had been first shown in [11].

The original proofs are quite complicated. A unified, shorter and more
conceptual proof will be given here. Many of the ideas for this proof can be
found in [2, 11, 17].

Additionally it turned out that rather similar results hold for some classes
of quasi-tilted algebras (see for example [13, 14], and [4] for the concept of
quasi-tilted algebras).

It should also be mentioned that by parts 2 and 3 of the theorem there is
a bijection between the set Ω(C) of regular components of the Auslander–
Reiten quiver of C and the set Ω(Y) of those components of Γ (B) which
are completely contained in Y and are different from the preprojective com-
ponent. In particular, no component in Ω(Y) has empty stable part. Hence
by [9] there is a bijection between Ω(Y) and the set Ω(A) of regular com-
ponents of the Auslander–Reiten quiver of A, too. For more details see [2,
9, 11].

In order to make the proof less technical, the theorem will be reformu-
lated. The tilting module T defines in A-mod a torsion pair (G,F) where the
torsion class G consists of the A-modules generated by the tilting module T .
The torsion-free class F is defined by the modules Y with Hom(T, Y ) = 0.
The torsion class G is equivalent to Y under the functor F . In G there exist
relative Auslander–Reiten sequences; the relative Auslander–Reiten trans-
lation in G will be denoted by τG . If t is the torsion-radical associated with
G, then τG = tτA, and τG is a full functor. Moreover, one has FτG = τBF .
The relative Auslander–Reiten quiver of G is denoted by Γ (G) and its pre-
projective component or components by PG . The image of PG under the
tilting functor F is P(B).

If A is hereditary with n simple modules and U is a partial tilting mod-
ule with m pairwise nonisomorphic indecomposable direct summands, we
denote by U⊥ the full subcategory of A-mod defined by the objects Y
with Hom(U, Y ) = 0 and Ext(U, Y ) = 0. In this case U⊥ is an exact
abelian subcategory of A-mod which is closed under extensions. Moreover,
U⊥ ∼= H-mod, where H is a hereditary algebra with n−m simple modules
(see [3, 5, 18]). Hence the Auslander–Reiten translations in U⊥, denoted by
τU⊥ , τ−

U⊥ or τH , τ−H , are full functors in U⊥.
In terms of the torsion class G in A-mod, Theorem 1 reads as follows.
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Theorem 2. Let A be connected wild hereditary , T a tilting module in
A-mod without indecomposable preinjective direct summands, G the class of
A-modules generated by T and Γ (G) its relative Auslander–Reiten quiver.

1. There exists exactly one preprojective component PG in Γ (G). If T1

is the direct sum of all indecomposable direct summands X of T con-
tained in PG and T = T1 ⊕ T2 then:
(a) C = EndA(T1) is connected wild concealed.
(b) T2 is regular in A-mod.
(c) T1 is a preprojective tilting module in T⊥2 .

2. Denote by G̃ the torsion class G ∩ T⊥2 in T⊥2 . If X ∈ G is indecom-
posable and not preinjective in A-mod, then:
(a) τ−m

G X is in T⊥2 for m � 0.
(b) τ−m

G X = τG̃τ−m−1
G X for m � 0.

(c) If X is not in PG , then τ−m
G X is a regular T⊥2 -module for m � 0.

3. If X is regular in T⊥2 , then τ−m
T⊥

2
X = τGτ−m−1

T⊥
2

X for m � 0.

If M is regular in T⊥2 , then M ∈ G̃ with τG̃M = τT⊥
2

M by 1(c). It
should be mentioned that the theorem trivially holds if T is a preprojective
tilting module, in particular, if A has only two simple modules. Therefore,
we assume that T is not preprojective and A has n > 2 simple modules.
The proof will be by induction on n.

1. The Strauss decomposition of T . We assume that T is a square-
free tilting module with n pairwise nonisomorphic indecomposable direct
summands, none of them preinjective and not all of them preprojective in
A-mod. By PG we denote the preprojective component or components of
the relative Auslander–Reiten quiver Γ (G). Then T has a decomposition,
usually called the Strauss decomposition,

T = T1 ⊕ T2

where T1 is the sum of all indecomposable direct summands of T which are
G-preprojective, that is, which are in PG . It has to be shown that T1 6= 0,
that EndA(T1) is a connected wild concealed algebra and that all A-pre-
projective direct summands of T are in T1. The second summand T2 has
a decomposition T2 = P ⊕ R where P is preprojective and R is regular in
A-mod. It is easy to show

Lemma 1.1. T1 ∈ T⊥2 and T1 ⊕ P ∈ R⊥.

In the sequel the summand R will be studied in detail.

Lemma 1.2. R 6= 0.
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P r o o f. The statement is obvious if T1 = 0, since T has regular direct
summands by assumption. Suppose T1 6= 0 but R = 0. Since End(T ) is not
concealed one has P 6= 0. The algebra End(T ) is connected and T1 ∈ T⊥2
by 1.1. Consequently, there exist indecomposable direct summands X of
T1 and Y of P with Hom(X, Y ) 6= 0. Since only X is in PG , each nonzero
homomorphism f : X → Y has an arbitrary long factorisation through G-
preprojectives, that is, there exist infinitely many indecomposable modules
M with Hom(M,Y ) 6= 0, an absurdity.

An indecomposable regular A-module Y is uniquely determined by its
quasi-length r and its quasi-socle X (respectively, quasi-top Z) (see [15]).
We write Y = X(r) (respectively, Y = [r]Z) in this case. If Y is quasi-simple
we have Y = Y (1) = [1]Y with this convention.

If Y = X(r) is an indecomposable regular A-module of quasi-length r
and with quasi-socle X, the wing W(Y ) with top Y and length r is the
mesh complete full subquiver of the regular component C containing Y ,
which consists of the vertices {τ−i

A X(j) | 1 ≤ j ≤ r, 1 ≤ i + j ≤ r} (see
[16]).

If X = X(r) is a direct summand of R, the wing W(Y ) contains ex-
actly r indecomposable direct summands of T (see [16, 17]). Since these
r summands are connected by G-irreducible maps, all of them are direct
summands of R. We therefore get a decomposition

R =
l⊕

i=1

Wi

where all ri indecomposable direct summands of Wi are contained in the
same wing W(Si(ri)) with Si quasi-simple and W(Si(ri)) ∩W(Sj(rj)) = ∅
for i 6= j (see for example [11]). The tops Si(ri) of the wings W(Si(ri)) are
summands of R. The class G and the relative Auslander–Reiten quiver Γ (G)
remain unchanged outside the wings W(Si(ri)) if we additionally assume
that Wi is W(Si(ri))-projective, that is, Wi =

⊕ri

j=1 Si(j) (see [11], 2.5). In
particular, PG remains unchanged.

We therefore assume Wi =
⊕ri

j=1 Si(j) for the rest of the paper. In [11]
this was called the normalised form of T .

We will frequently use

Lemma 1.3. (a) For X, Y regular in A-mod we have HomA(X, τ−mY )
= 0 for m � 0.

(b) HomA(Si, τ
−m
A Si) = 0 for all m > 0.

P r o o f. (a) was shown in [9] and (b) follows from [11], 1.2, since the Si

are quasi-simple bricks.
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2. The wing quiver QW(T ). We call the decomposition

T = T1 ⊕ P ⊕
( l⊕

i=1

Wi

)
with Wi =

⊕ri

j=1 Si(j) and Si quasi-simple regular the (normalised) wing
decomposition of T . Moreover, we decompose P =

⊕t
j=1 Pj with Pj in-

decomposable preprojective in A-mod. This decomposition will be used
throughout the paper.

The wing quiver QW(T ) of T has {1, . . . , l} as set of vertices and no
loops. For 1 ≤ i 6= j ≤ l there exists an arrow i → j exactly if we have
HomA(Si, τ

−m
A Sj) 6= 0 for some m ≥ 0. Let m(i, j) ≥ 0 be in this case the

smallest natural number m with HomA(Si, τ
−m
A Sj) 6= 0.

Lemma 2.1. QW(T ) has no oriented cycles. Therefore it has sinks.

P r o o f. Suppose, first, QW(T ) has an oriented cycle i → j → i of
length 2. Since Hom(Sr, τASt) = 0 for all 1 ≤ r, t ≤ l, all nonzero maps f ∈
Hom(Si, τ

−m(i,j)Sj) and g ∈ Hom(Sj , τ
−m(j,i)Si) are injective or surjective

(see [6], 4.1). If f is surjective, then fτ−m(i,j)g : Si → τ−(m(i,j)+m(j,i))Si is
nonzero. From 1.3(b), m(i, j)+m(j, i) = 0 follows and f therefore is a split
mono, hence an isomorphism, a contradiction to i 6= j. A similar argument
works for f injective.

Suppose next that QW(T ) has an oriented cycle, say

i1 → i2 → . . . → ir → i1

of minimal length r > 2, therefore with ix 6= iy for 1 ≤ x 6= y ≤ r. Again
we use [6], 4.1. If 0 6= f ∈ Hom(Si1 , τ

−m(i1,i2)Si2) is surjective, we get
Hom(Si1 , τ

−(m(i1,i2)+m(i2,i3))Si3) 6= 0. Then i1 → i3 → . . . → ir → i1 is a
cycle of smaller length r− 1, a contradiction. If f is injective, we construct
a cycle i2 → . . . → ir → i2 of length r − 1.

For the rest of the paper we assume that l is a sink of QW(T ).

Lemma 2.2. Let X(r) be indecomposable regular of quasi-length r ≥ 1.

(a) If Y is indecomposable and not in W(X(r)), then HomA(X(r), Y )
= 0 (respectively , HomA(Y, X(r)) = 0) if and only if HomA(U, Y ) = 0
(respectively , HomA(Y, U) = 0) for all U ∈ addW(X(r)).

(b) The wing W(X(r)) is a standard wing , that is, rad∞(U, V ) = 0 for
all U, V ∈ addW(X(r)), if and only if X(r) is a brick.

P r o o f. See [11], 1.4 and 1.6.
It should be mentioned that it is 2.2(a) which allows us to consider only

the normalised form Wi =
⊕ri

j=1 Si(j) (1 ≤ i ≤ l) of T .

Lemma 2.3. (a) Hom(Sl,Wi) = 0 for i < l.
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(b) Hom(Wl,Wi) = 0 for i < l.
(c) Hom(Wl, τ

−j
A Wi) = 0 for i < l and j ≥ 0.

(d) Hom(Wl, τ
−j
A Wl) = 0 for j ≥ rl.

(e) If T = Wl ⊕ U , then U ∈ W⊥
l .

(f) For X ∈ addT we have rad∞(Wl, X) = 0.

P r o o f. (a) Hom(Sl,Wi) 6= 0 for some i < l is equivalent to Hom(Sl,
τ−j
A Si) 6= 0 for some j with 0 ≤ j < ri (see [11], 1.4). This cannot happen

by definition of l.
(b) Consider for 1 < j ≤ rl the exact sequence 0 → Sl → Sl(j) →

τ−A Sl(j − 1) → 0. From Hom(τ−A Sl(j − 1),Wi) ∼= Hom(Sl(j − 1), τAWi) = 0
and Hom(Sl,Wi) = 0 we get Hom(Sl(j),Wi) = 0, hence Hom(Wl,Wi) = 0.

(c) From Hom(Sl, τ
−j
A Si) = 0 for all j ≥ 0 and i < l we get, again

by [11], 1.4 or Lemma 2.2(a), Hom(Sl, τ
−j
A Wi) = 0 for all j ≥ 0. Assume

Hom(Wl, τ
−j
A Wi) 6= 0 for some j. Take j minimal with this property, hence

j > 1 by (b). Let m > 1 be minimal with Hom(Sl(m), τ−j
A Wi) 6= 0. As in

(b) we get a contradiction if we apply Hom(−, τ−j
A Wi) to the short exact

sequence 0 → Sl → Sl(m) → τ−A Sl(m− 1) → 0.
(d) follows from (1.3) and [11], 1.4, whereas (e) follows from 1.1 and part

(b) of the lemma.
(f) Let X = X1 ⊕ X2 with X1 ∈ addU and X2 ∈ addWl. Since

Hom(Wl, X1) = 0, we have rad∞(Wl, X) = rad∞(Wl, X2) = 0 by 2.2.

3. Relative Auslander–Reiten translations. If T is a torsion class
in Λ-mod, where Λ is some finite-dimensional algebra and X is indecompos-
able in T , not Ext-projective, then the relative Auslander–Reiten translate
τT X of X in T is the T -torsion submodule tτΛX of τΛX (see [1, 7]). If A is
hereditary and T a torsion-class, the cokernel of the embedding τT X → τAX
is Ext-injective in the corresponding torsion-free class F , see [10, 11]. If G
is a tilting torsion class induced by a tilting module this implies (see [11],
2.2):

Lemma 3.1. Let A be hereditary and T a tilting module without prein-
jective direct summand. If X is in G, not Ext-projective, then there is a
short exact sequence 0 → τGX → τAX → F → 0 with F ∈ add τAT . If X
is not in PG , then F is in add τAT2.

From 3.1 we deduce (see for example [12], 3.2):

Lemma 3.2. Let X ∈ G be indecomposable and r > 0.

(a) If τ r
GX 6= 0 there is a short exact sequence

0 → τ r
GX → τ r

AX
π→ S → 0
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where S has a filtration S = Sr ⊃ Sr−1 ⊃ . . . ⊃ S1 ⊃ S0 = 0 with Si/Si−1 ∈
add τ i

AT , or even Si/Si−1 ∈ add τ i
AT2 for all i if X 6∈ PG.

(b) If τ−r
A X 6= 0 there is a short exact sequence

0 → τ−r
A X → τ−r

G X
π→ Q → 0

where Q has a filtration Q = Q0 ⊃ Q1 ⊃ . . . ⊃ Qr−1 ⊃ Qr = 0 with
Qi/Qi+1 ∈ add τ−i

A T , or even Qi/Qi+1 ∈ add τ−i
A T2 for all i if X 6∈ PG.

Note that 3.2(a) implies that for an indecomposable module X ∈ G and
r � 0 either τ r

GX = 0 or τ r+1
G X = τAτ r

GX. Indeed, if τ r
GX is nonzero for all

r > 0, consider the short exact sequences 0 → τ r
GX → τ r

AX → S → 0 and
0 → τ r+1

G X → τAτ r
GX → τ T̃ → 0. They induce an infinite chain

X ⊃ τ−1
A τGX ⊃ τ−2

A τ2
GX ⊃ . . . ⊃ τ−r

A τ r
GX ⊃ . . .

hence this chain becomes stationary [9, 2]. In particular, there are no regular
tubes in Γ (G).

Lemma 3.2 has the following application.

Lemma 3.3. Let X ∈ G be indecomposable not in PG , and s an integer
with τ s

GX 6= 0. Then HomA(Sl, τ
s
AX) = 0 implies HomA(Sl, τ

s
GX) = 0.

P r o o f. For s > 0 the claim follows from 3.2(a), nothing is to show for
s = 0.

Let s = −r < 0. Assume HomA(Sl, τ
−r
A X) = 0 but HomA(Sl, τ

−r
G X) 6=

0. Take 0 6= f ∈ HomA(Sl, τ
−r
G X). From HomA(Sl, τ

−r
A X) = 0 we see by

3.2(b) that fπ : Sl → Q is nonzero. Since Qi/Qi+1 ∈ add τ−i
A T2 we de-

duce from the definition of l that HomA(Sl, Qi/Qi+1) = 0 for i > 0 and
therefore HomA(Sl, Q1) = 0. If π1 : Q → Q/Q1 denotes the canonical sur-
jection, we therefore have 0 6= fππ1 : Sl → Q/Q1. But rad∞(Sl, Q/Q1) = 0
by 2.3(f), hence Q/Q1 has a direct summand Z ∈ addWl and the image
of fππ1 is contained in Z. Thus there exists a nonzero composition of
maps Sl → τ−r

G X → Sl(i) for some 1 ≤ i ≤ rl. But HomA(Sl, Sl(i)) is
one-dimensional as EndA(Sl)-module or EndA(Sl(i))-module, by 2.2(b) and
τ−r
G X is indecomposable. Therefore τ−r

G X ∼= Sl(j) for some 1 ≤ j ≤ rl,
which is impossible, since r ≥ 1.

Lemma 3.4. For X indecomposable in G we have HomA(Wl, τ
−r
G X) = 0

for r � 0.

P r o o f. Since HomA(Wl,PG)=0, the statement trivially holds for X ∈
PG . If X is preinjective in A-mod we have τ−r

G X =τ−r
A X =0 for r�0.

Suppose that X 6∈ PG ∪ I(A). If X is preprojective in A-mod we have
HomA(Sl, τ

−r
A X) = 0 for all integers r. If X is regular, there exists r′

with HomA(Sl, τ
−j
A X) = 0 for all j ≥ r′ (see 1.3(a)). Hence there ex-

ists in both cases an integer r such that HomA(Sl, τ
−j
A X) = 0 for all
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j ≥ r − rl. By 3.3 this implies HomA(Sl, τ
−j
G X) = 0 for all j ≥ r − rl.

We show by induction on m ≤ rl that HomA(Sl(m), τ−j
G X) = 0 for all

j ≥ r−rl +m−1. Assume the statement holds for all 1 ≤ m < rl. Consider
the short exact sequence 0 → Sl → Sl(m + 1) → τ−A Sl(m) → 0 and take
j ≥ r− rl + m. We get HomA(Sl(m + 1), τ−j

G X) ∼= HomA(τ−A Sl(m), τ−j
G X).

Take f ∈ HomA(τ−A Sl(m), τ−j
G X). Then τAf ∈ HomA(Sl(m), τAτ−j

G X) has
image in the torsion submodule τ−j+1

G X of τAτ−j
G X. Therefore τAf = 0, by

induction. Hence f is zero and the claim follows.

Recall that P =
⊕t

j=1 Pj with Pj indecomposable preprojective.

Corollary 3.5. (a) HomA(Wl, τ
−r
G Si) = 0 for all i < l and all r ≥ 0.

(b) HomA(Wl, τ
−r
G Pj) = 0 for all 1 ≤ j ≤ t and all r ≥ 0.

(c) HomA(Wl, τ
−r
G Sl) = 0 for all r ≥ rl.

P r o o f. Since Hom(Wl, τ
−j
A Wi) = 0 for all i < l and all j ≥ −1 by 2.3,

we get Hom(Sl, τ
−j
A Si) = 0 for all j ≥ −rl by 2.2(a), and (a) follows from 3.4.

(b) immediately follows from 3.4 and for (c) we use HomA(Sl, τ
−j
A Sl) = 0

for all j > 0 (see 1.3).

4. Comparison of relative Auslander–Reiten translations. The
tilting module T has a decomposition T = Wl ⊕ U with U ∈ W⊥

l (see
2.3). If W⊥

l
∼= A′-mod, then A′ is a wild connected hereditary algebra by

[17] and we identify W⊥
l with A′-mod. In particular, we write τA′ for the

Auslander–Reiten translation in W⊥
l . Moreover, we have τ−r

G X ∈ W⊥
l for

X ∈ G and r � 0 by 3.4. Notice that PG is in W⊥
l , too.

The module U is a tilting module in A′-mod, so it defines a torsion pair
(G,F) in A′-mod by G = {Y ∈ W⊥

l | ExtA′(U, Y ) = 0} and F = {Y ∈
W⊥

l | HomA′(U, Y ) = 0}. The Auslander–Reiten translation τA′ in A′-mod
induces a relative Auslander–Reiten translation τG in G.

The torsion class G in A′-mod is a full, exact and extension-closed sub-
category of A-mod, but it is not closed under factors in A-mod, hence it is
not a torsion class in A-mod. The following can be shown easily.

Lemma 4.1. (a) G ⊂ G.
(b) G = {Y ∈ G | HomA(Wl, Y ) = 0}.

The aim of this part is to describe for X ∈ G the relation between τGX
and τGX. For this Lemma 2 of [2] is used.

Let G be the minimal projective generator in W⊥
l . Then T ′ = Wl ⊕ G

is a tilting module. If G′ denotes the torsion class of A-modules generated
by T ′, as in [2] one has G′ = {Y | ExtA(Wl, Y ) = 0} thus G ⊂ G′ and
A′-mod = W⊥

l ⊂ G′.
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It is easy to check that G ⊕ (
⊕rl−1

i=1 Sl(i)) is the minimal projective
generator in Sl(rl)⊥ and Sl(rl)⊥ = W⊥

l ×addW(Sl(rl−1)) (see for example
[17], 4.5).

Lemma 4.2. If M is an indecomposable A′-module, not projective, then
τA′M is the middle term of the universal sequence

0 → τASl(rl)⊗End(τASl(rl)) DExt(τG′M, τASl(rl)) → τA′M → τG′M → 0.

P r o o f. It follows from Sl(rl)⊥ = W⊥
l × addW(Sl(rl − 1)), for M ∈

A′-mod that τA′M = τSl(rl)⊥M . Since G ⊕ (
⊕rl−1

i=1 Sl(i)) is the minimal
projective generator in Sl(rl)⊥, the claim follows from [2], Lemma 2.

Lemma 4.3. Let M be indecomposable in G ⊂ A′-mod, not Ext-projec-
tive. Then τGM is the middle term V of the universal sequence

0 → τASl(rl)⊗End(τASl(rl)) DExt(τGM, τASl(rl)) → V → τGM → 0.

P r o o f. Consider the universal sequence

0 → τASl(rl)t → τA′M → τG′M → 0

with t = dimEnd(τASl(rl)) Ext(τG′M, τASl(rl)), given in 4.2.
Since τGM and τG′M are the torsion submodules of τAM with respect

to the torsion classes G and, respectively, G′, we get from G ⊂ G′ a short
exact sequence

0 → τGM
ε→ τG′M → F → 0

with F ∈ F = F(T ). But F is a factor module of τG′M , hence in G′.
Therefore F ∈ W⊥

l , that is, F ∈ F .
Consider the following pullback along ε:

0 0

0 τASl(rl)t V τGM 0

0 τASl(rl)t τA′M τG′M 0

F F

0 0

�� ��
// //

�
�
�
�
�

�
�
�
�
�

//

��

//

��
// // //

��

//

��
__________________

�� ��

Since τA′M and F are in W⊥
l , also V ∈ W⊥

l . Applying Hom(U,−) to
the first row of the diagram, we get 0 = ExtA(U, V ) = ExtA′(U, V ), hence
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V ∈ G. Applying HomA(−, τASl(rl)) to the same exact sequence, we get

0 → HomA(τASl(rl)t, τASl(rl))
∼=→ ExtA(τGM, τASl(rl)) → 0.

Hence
0 → τASl(rl)t → V → τGM → 0

is a universal short exact sequence.
Since V ∈ G and F ∈ F , the module V is the G-torsion submodule of

τA′M , that is, V = τGM .

Lemma 4.4. For X ∈ G one has τ−m
G X = τGτ−m−1

G X for m � 0.

P r o o f. By 3.4 there exists m0 with HomA(Wl, τ
−r
G X) = 0 for all r ≥

m0, that is, τ−r
G X ∈ W⊥

l for all r ≥ m0.
Therefore, DExtA(τ−m

G X, τASl(rl)) ∼= HomA(Sl(rl), τ−m
G X) = 0 for all

m ≥ m0, and the claim follows from 4.3.

5. The inductive setting

Lemma 5.1. The tilting module U in A′-mod has no nonzero A′-preinjec-
tive direct summands.

P r o o f. We have U = T1 ⊕ (
⊕t

j=1 Pj) ⊕ (
⊕

j<l Wj). For an indecom-
posable module X ∈ G one has τ−r

G X = 0 for some r ≥ 0 if and only if X is
A-preinjective. Therefore for each indecomposable direct summand X of U
one has τ−r

G X 6= 0 for all r ≥ 0.
If X is a summand of T1, one has τ−r

G X ∈ W⊥
l for all r, since PG ∈ W⊥

l .
For X ∈ {Si, Pj | i < l, j ≤ t} one gets τ−r

G X ∈ W⊥
l for all r ≥ 0 by 3.5. If

0 → τ−r
G X → E → τ−r−1

G X → 0 for r ≥ 0 is the relative Auslander–Reiten
sequence in G, then also E ∈ W⊥

l , since W⊥
l is closed under extensions.

Hence each indecomposable direct summand of T1 and each of the mod-
ules Pj with 1 ≤ j ≤ t and Si with i < l has infinitely many successors in
A′-mod. Consequently, it is not A′-preinjective.

The irreducible maps Si(j) → Si(j + 1) for 1 ≤ j < ri and i < l remain
irreducible in A′-mod. Therefore the claim follows.

In the notation of [17] this means that Wl is a special summand of T .

Let Z → Sl(rl) be the irreducible epimorphism in A-mod. If Y is the
quasi-top of Sl(rl) we have Z = [rl + 1]Y . Let ml be such that [ml]Y is a
brick with self-extensions (see [8, 11]).

Lemma 5.2. (a) Z = τGτ−rl

G Sl.
(b) τ i

GZ = τ i+1
A Sl for i > 0.

(c) [i]Y ∈ G for all i ≥ 1.
(d) [j]Y ∈ G for rl + 1 ≤ j ≤ ml.
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P r o o f. (a) We have τ−rl+1
G Sl = τ−rl+1

A Sl = Y and τ−rl

G Sl ∈ G by 3.5.
By 4.3 there is a universal exact sequence

0 → τASl(rl)⊗DExt(Y, τASl(rl) → τGτ−rl

G Sl → Y → 0.

By the Auslander–Reiten formula it follows from 2.2 that ExtA(Y, τASl(rl))
is one-dimensional as EndA(Sl(rl))-module with basis 0 → τASl(rl) → Z →
Y → 0.

(b) We first consider i = 1. We get DExtA(T, τ2
ASl) ∼= HomA(Sl, τ

−
A T1)

from the Auslander–Reiten formula, since HomA(Sl, τ
−
A T2) = 0 by definition

of l (see 2.3). If HomA(Sl, τ
−
A T1) 6= 0, then HomA(Sl, τ

−
G T1) 6= 0 by 3.2,

which is impossible, since τ−G T1 ∈ PG . Therefore τ2
ASl ∈ G. The relative

Auslander–Reiten sequence ending in Z is 0 → tτAZ → t[rl + 2]Y → Z
→ 0. The first term τ2

ASl of the short exact sequence 0 → τ2
ASl → τAZ

→ τASl(rl) → 0 is torsion and the last term is torsion free. Therefore τ2
ASl

= tτAZ, which also implies [rl + 2]Y ∈ G.
By induction on i ≥ 2 one shows τ i

ASl ∈ G. If τ i
ASl is in G, consider the

universal sequence 0 → τGτ i
ASl → τ i+1

A Sl → τ T̃ → 0 with T̃ ∈ addT2. The
definition of l and 1.3 imply T̃ = 0, that is, τ i+1

A Sl ∈ G.
(c) From τ1+i

A Sl ∈ G for i > 0 and Z ∈ G it follows by induction that
the middle term [rl + 1 + i]Y of the short exact sequence 0 → τ1+i

A Sl →
[rl + 1 + i]Y → [rl + i]Y → 0 is in G. Clearly [j]Y ∈ G for j ≤ rl, which
proves (c).

(d) By [17] the modules Z = [rl + 1]Y, . . . , [ml]Y are in W⊥
l .

Lemma 5.2 also implies that the stable part of the relative component in
Γ (G) containing Wl is of type ZA∞. A picture of this component is given
in [11], Fig. 1.

6. The inductive step. The tilting module U in A′-mod has no
A′-preinjective direct summand by 5.1. By induction on the number of
nonisomorphic indecomposable direct summands of the tilting module, we
get for the torsion class G in A′-mod defined by U ,

(ind1) There exists exactly one preprojective component PG in Γ (G). If U1

is the direct sum of all indecomposable direct summands X of U
contained in PG and U = U1 ⊕ U2 then:
(a) C = End(U1) is connected wild concealed.
(b) U2 is regular in A′-mod.
(c) U1 is a preprojective tilting module in U⊥2 ⊂ A′-mod.

(ind2) Denote by Ĝ the torsion class of U1 in U⊥2 . If X ∈ G is indecompos-
able and not preinjective in A′-mod, then:
(a) τ−m

G X is in U⊥2 for m � 0.
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(b) τ−m
G X = τĜτ−m−1

G X for m � 0.
(c) If X is not in PG , then τ−m

G X is a regular U⊥2 -module for m � 0.

(ind3) If X is regular in U⊥2 , then τ−m
U⊥

2
X = τGτ−m−1

U⊥
2

X for m � 0.

Lemma 6.1. If P is a preprojective component in Γ (G), then it is a
preprojective component in Γ (G).

P r o o f. If X is in P, then it is in W⊥
l , hence in G.

First we consider the module Z = [rl + 1]Y ∈ G, where Y is the quasi-
top of Sl(rl). It was shown already in [17] that Z is quasi-simple regular in
A′-mod. We keep the notation of 5.2.

Lemma 6.2. The module Z is neither in PG nor preinjective in A′-mod.

P r o o f. The modules [rl + 1]Y, . . . , [ml]Y , where [ml]Y is a brick with
self-extensions, are in G by 5.2. Therefore the chain of irreducible epimor-
phisms in A-mod

[ml]Y → [ml − 1]Y → . . . → Z

is also a chain of irreducible epimorphisms in G and G. Since [ml]Y has
self-extensions, Z is neither in PG nor in I(A′).

Lemma 6.3. PG is a full component in the relative Auslander–Reiten
quiver Γ (G). It is the unique preprojective component in Γ (G).

P r o o f. We show that τG and τG coincide on PG . Let M be in PG , not
Ext-projective. By 4.3 it has to be shown that 0 = DExtA(τGM, τSl(rl)) ∼=
HomA(Sl(rl), τGM) = HomA(Sl(rl), τAM).

From M ∈ W⊥
l we deduce HomA(τAWl, τAM) = 0. Considering the

Auslander–Reiten sequences

0 → τASl → τASl(2) → Sl → 0

and
0 → τASl(i) → τASl(i + 1)⊕ Sl(i− 1) → Sl(i) → 0

for 1 < i < rl we get by induction HomA(Sl(i), τAM) = 0 for 1 ≤ i < rl.
Since Z 6∈ PG we get 0 = ExtA′(M,Z) = ExtA(M,Z). Using, finally, the
Auslander–Reiten sequence 0 → τASl(rl) → Z ⊕ Sl(rl − 1) → Sl(rl) → 0
we get 0 = ExtA(τGM, τSl(rl)), hence τGM = τGM for all M ∈ PG and the
claim follows.

The second statement follows from 6.1.

Lemma 6.4. T1 = U1 and G̃ = Ĝ.

P r o o f. The first claim follows from 6.3. Since T2 = U2 ⊕Wl, we get

T⊥2 = {X ∈ A-mod | Hom(T2, X) = 0 = Ext(T2, X)}
= {X ∈ A′-mod = W⊥

l | Hom(U2, X) = 0 = Ext(U2, X)}.
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This gives

G̃ = {X ∈ G | Hom(T2, X) = 0 = Ext(T2, X)}

= {X ∈ G | Hom(U2, X) = 0 = Ext(U2, X)} = Ĝ.

Lemma 6.5. T2 is regular in A-mod.

P r o o f. By (ind1) the module U2 is regular in A′-mod, and consequently
it is regular in A-mod. Since T2 = U2 ⊕Wl, by 6.4, it is regular in A-mod.
In particular, P = 0 and T2 = ⊕l

i=1Wi.

Lemma 6.6. If X ∈ G is indecomposable and not preinjective in A-mod,
then:

(a) τ−m
G X is in G̃ for m � 0.

(b) τ−m
G X = τG̃τ−m−1

G X for m � 0.
(c) If X is not in PG , then τ−m

G X is a regular T⊥2 -module for m � 0.

P r o o f. Take X ∈ G indecomposable and not preinjective in A-mod.
Then τ−m

G X 6= 0 for all m ≥ 0 and by 3.4 there is an m0 with τ−m
G X ∈ W⊥

l

hence in G for all m ≥ m0. Let Y = τ−m0
G X. By 4.3, we have τ−t

G Y = τ−t
G Y

for all t ≥ 0 and Y is not preinjective in A′-mod since τ−t
G Y 6= 0 for all

t ≥ 0. The claim now follows from 6.4 and (ind2).

Lemma 6.7. For X1, X2 ∈ G, not in PG , we have HomA(X1, τ
−m
G X2) = 0

for m � 0.

P r o o f. It is enough to consider X1, X2 not preinjective in A-mod.
By 6.6(b,c) there is an integer s > 0 with τ−r

G Xi a regular T⊥2 -module for
i = 1, 2 and all r ≥ s such that τ−r

G Xi = τ s−r

G̃
τ−s
G Xi = τ s−r

T⊥
2

τ−s
G Xi. By

1.3(a) we therefore get Hom(τ−s
G X1, τ

−s−m
G X2) = 0 for m � 0. Since τG is

a full functor, the claim follows.

The third statement of Theorem 2 is shown by induction on l. We start
with the case l = 1.

Lemma 6.8. Let T = T1 ⊕Wl. If X is a regular module in W⊥
l , then

τ−m
W⊥

l
X = τGτ−m−1

W⊥
l

X for m � 0.

P r o o f. Since T1 is a preprojective tilting module in W⊥
l , all regular

W⊥
l -modules are in G̃ = G and τW⊥

l
X = τGX, for all X regular in W⊥

l .
Choose m0 with Hom(Z, τ−m

W⊥
l

X) = 0 for all m ≥ m0 (see 1.3). By 4.3,
we have a universal sequence

0 → τASl(rl)⊗DExt(τGτ−m−1
W⊥

l
X, τASl(rl))

f→ τ−m
W⊥

l
X

g→ τGτ−m−1
W⊥

l
X → 0.



80 O. KERNER

We show Hom(τASl(rl), τ−m
W⊥

l
X) = 0, for m ≥ m0, which implies f = 0.

Therefore g is an isomorphism.
Consider the Auslander–Reiten sequence

0 → τASl(rl) → Z ⊕ Sl(rl − 1) → Sl(rl) → 0.

Applying Hom(−, τ−m
W⊥

l
X) to this sequence, we get Hom(τASl(rl), τ−m

W⊥
l

X) ∼=
Hom(Z, τ−m

W⊥
l

X) = 0 for m ≥ m0.

The proof of the inductive step is quite similar. Let X be regular in T⊥2 .
By (ind3) and 6.4 we get τ r

Gτ−m−r
T⊥

2
X = τ−m

T⊥
2

X for m ≥ m0 and r ≥ 0. As in

the proof of 6.8 we get Hom(τASl(rl), τ−m
T⊥

2
X) ∼= Hom(Z, τ−m

T⊥
2

X). Since Z is

in G by 5.2, it follows that 0 = Hom(Z, τ−m−r
T⊥

2
X) = Hom(Z, τ−r

G τ−m
T⊥

2
X) for

r � 0, by 6.7. In particular, Hom(τASl(rl), τGτ−m−r−1
T⊥

2
X) = 0. Considering

the universal exact sequence

0 → τASl(rl)t → τGτ−m−r−1
T⊥

2
X → τGτ−m−r−1

T⊥
2

X → 0

the claim follows.
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