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ON THE NUMBERS OF DISCRETE INDECOMPOSABLE MODULES
OVER TAME ALGEBRAS

BY

ANDRZEJ SKOWROŃSK I AND GRZEGORZ ZWARA (TORUŃ)

1. Introduction. Throughout the paperK denotes a fixed algebraically
closed field. By an algebra we mean an associative finite-dimensional K-
algebra with identity which we shall assume (without loss of generality)
to be basic and connected. For an algebra A, by an A-module we mean
a finitely generated right A-module. We shall denote by modA the cate-
gory of A-modules, by indA its full subcategory formed by the indecom-
posable modules, by ΓA the Auslander–Reiten quiver of A, and by τA the
Auslander–Reiten translation DTr in ΓA. We shall identify an indecompos-
able A-module with the vertex of ΓA corresponding to it.

It follows from a well-known result of Yu. Drozd [11] that the class of
algebras may be divided into two disjoint classes. One class consists of the
wild algebras, whose representation theory is as complicated as the study
of finite-dimensional vector spaces together with two non-commuting en-
domorphisms, for which the classification of indecomposable modules is a
known unsolved problem. The second class is formed by the tame algebras,
for which the indecomposable modules occur, in each dimension d, in a finite
number of discrete and a finite number of one-parameter families. Moreover,
it has been shown by W. W. Crawley-Boevey [10] that, if A is a tame al-
gebra, then, for any d ≥ 1, all but finitely many isomorphism classes of
indecomposable A-modules of dimension d are invariant under the action of
τA = DTr , and hence by a result due to M. Hoshino [13] lie in stable tubes of
rank 1 (in ΓA). Indecomposable modules over tame algebras which do not
lie in stable tubes of rank 1 are said to be discrete.

In this article we are interested in the numbers of isomorphism classes of
discrete indecomposable modules over tame algebras having the same (sim-
ple) composition factors. Recently, tame strongly simply connected algebras
are extensively investigated. In particular, in [30] (see also [28]) a criterion
for a strongly simply connected algebra to be of polynomial growth has been
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established. Recall that an algebra A is said to be of polynomial growth if
there is a positive integer m such that the indecomposable A-modules occur,
in each dimension d, in a finite number of discrete and at most dm one-
parameter families. We shall prove here that a strongly simply connected
algebra A is of polynomial growth if and only if there is a common bound on
the number of isomorphism classes of discrete indecomposable A-modules
with any fixed composition factors. In the paper we consider also the follow-
ing related problem. It follows from the mentioned result by W. W. Crawley-
Boevey that any connected component of the Auslander–Reiten quiver ΓA

of a tame algebra A has only finitely many indecomposable modules with
any fixed composition factors. This is also the case for the connected com-
ponents of the Auslander–Reiten quivers of wild hereditary algebras [19],
[31]. It would be interesting to know when, for a connected component C of
an Auslander–Reiten quiver ΓA, there is a common bound on the numbers
of indecomposable modules in C having the same composition factors. We
prove that it is true if C is generalized standard in the sense of [25]. We also
show tame algebras (pg-critical algebras of [15]) whose Auslander–Reiten
quiver admits a connected component containing arbitrary large numbers
of indecomposable modules with the same composition factors.

2. Generalized standard components. For an algebra A, we de-
note by rad(modA) the Jacobson radical of the category modA and by
rad∞(modA) the intersection of all powers radi(modA), i ≥ 1, of
rad(modA). Following [25], a connected component C of ΓA is said to be
generalized standard if rad∞(X,Y ) = 0 for any modules X and Y from C.
Moreover, a component Γ of ΓA is called standard ([9], [21]) if the full sub-
category of indA given by modules from Γ is equivalent to the mesh-category
K(Γ ) of Γ . It has been proved by S. Liu [14] that any standard component
is generalized standard but the converse is not true. For the structure of
generalized standard components without oriented cycles we refer to [24].
The structure of arbitrary generalized standard components is not known.
It has been proved by the first named author in [25] that if C is a generalized
standard component of ΓA then all but finitely many τA-orbits are periodic,
and hence C admits at most finitely many modules of any fixed dimension.
We note also that if all components of ΓA are generalized standard then A
is tame [29, (2.8)].

Given an algebra A we denote by K0(A) the Grothendieck group of A.
It is well known that K0(A) ' Zn, where n is the number of isomorphism
classes of simple A-modules. For an A-module M we denote by [M ] the
image of M in K0(A). Thus [M ] = [N ] if and only if the modules M and
N have the same composition factors including the multiplicities. We may
ask when two modules M and N have the same composition factors.
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The main aim of this section is to prove the following theorem.

Theorem 1. Let A be an algebra and C be a generalized standard com-
ponent of ΓA. Then there is a positive integer m such that , for each vector
x ∈ K0(A), the number of modules X in C with [X] = x is bounded by m.

For the proof of Theorem 1 we need the following concept. By a proper
subtube of an Auslander–Reiten quiver ΓA we mean a full translation sub-
quiver T (X, p, q), p, q ≥ 1, of ΓA obtained from a translation quiver T (X)
of the form

X0,0=X

↗ ↘
X1,0 X0,1

↗ ↘ ↗ ↘
X1,1

. .
. ↗ ↘ . . .

↗ . .
. . . . ↘

Xi,0 X0,j

↗ ↘ ↗ ↘ ↗ ↘
Xi+1,0 Xi,1 X1,j X0,j+1

↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘
Xi+1,1 X1,j+1

. .
. ↗ ↘ . . . . .

. ↗ ↘ . . .

. .
. . . . ↘ ↗ . .

. . . .
Xi,j

↘ ↗ ↘ ↗
Xi+1,j Xi,j+1

↗ ↘ ↗ ↘
Xi+1,j+1

. .
. ↗ ↘ . . .

. .
. . . .

with the set of vertices Xr,s, r, s ≥ 0, the set of arrows Xr+1,s → Xr,s,
Xr,s → Xr,s+1, and the translation τ defined on Xr,s, r ≥ 0, s ≥ 1, by
τ(Xr,s) = Xr+1,s−1, by identifying the vertices Xi+p,j and Xi,j+q for all
i, j ≥ 0. Observe that then

{Xi,j : i ≥ 0, 0 ≤ j < q} = {Xi,j : 0 ≤ i < p, j ≥ 0}

is a complete set of pairwise different vertices of T (X, p, q).

Proposition 2. Let A be an algebra and T = T (X, p, q) a proper
subtube of ΓA. Then, for each vector z ∈ K0(A), the number of modules Z
in T with [Z] = z is bounded by pq.
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P r o o f. We use the notation introduced above. We shall prove that
[Xp,0] − [X0,0] > 0 and for i = mp + r, m ≥ 0, 0 ≤ r < p, 0 ≤ j < q, the
following equality holds:

[Xi,j ] = [Xr,j ] +m([Xp,0]− [X0,0]).

Then, since any module in T is of the form Xi,j , i ≥ 0, 0 ≤ j < q, for
any given z ∈ K0(A) the number of indecomposable modules Z in T with
[Z] = z is bounded by pq. Observe that for any mesh

Xs,t

↗ ↘
Xs+1,t Xs,t+1

↘ ↗
Xs+1,t+1

in T , s, t ≥ 0, we have an Auslander–Reiten sequence

0→ Xs+1,t → Xs,t ⊕Xs+1,t+1 → Xs,t+1 → 0,

and hence [Xs+1,t+1] + [Xs,t] = [Xs+1,t] + [Xs,t+1]. Let l ≥ 1. From the
rectangle in T given by the modules Xlp,0, Xlp,q, X0,0 and X0,q we get
[Xlp,0] + [X0,q] = [Xlp,q] + [X0,0]. Since X0,q = Xp,0 and Xlp,q = X(l+1)p,0

this gives [X(l+1)p,0]− [Xlp,0] = [Xp,0]− [X0,0]. By induction we infer that

[Xmp,0] = m([Xp,0]− [X0,0]) + [X0,0]

for any m ≥ 0. In particular, [Xp,0] − [X0,0] ≥ 0. Suppose that [Xp,0] −
[X0,0] = 0. Then [Xmp,0] = [X0,0] for any m ≥ 1. Choose now irreducible
maps fi : Xi+1,0 → Xi,0, i ≥ 0, and put gm = fmp−1 ◦ . . . ◦ f(m−1)p for any
m ≥ 1. Thus we get the family of maps

· · · −→Xmp,0
gm−→X(m−1)p,0 −→ · · · −→X2p,0

g2−→Xp,0
g1−→X0,0.

Since the morphisms fi, i ≥ 0, form a sectional path in ΓA, we conclude (see
[7, VII.2.4]) that, for eachm ≥ 1, the composition gm . . . g1 is non-zero. This
contradicts the lemma of Harada and Sai [12] (see also [20]), because the
modules Xmp,0, m ≥ 0, have the same dimension d = dimKX0,0. Therefore,
[Xp,0]−[X0,0] > 0. Finally, take arbitrary i ≥ 0, 0 ≤ j < q, and let i = mp+r
for m ≥ 0, 0 ≤ r < p. From the rectangle in T given by Xi,0, Xr,0, Xi,j and
Xr,j we have [Xi,0]+[Xr,j ] = [Xi,j ]+[Xr,0]. Further, from the rectangle given
by Xr,0, X0,0, Xr,mq and X0,mq we get [Xr,0] + [X0,mq] = [Xr,mq] + [X0,0].
Hence, we obtain the equalities

[Xi,j ] = [Xi,0] + [Xr,j ]− [Xr,0] = [Xr,j ] + [Xmp+r,0]− [Xr,0]
= [Xr,j ] + [Xr,mq]− [Xr,0] = [Xr,j ] + [X0,mq]− [X0,0]
= [Xr,j ] + [Xmp,0]− [X0,0] = [Xr,j ] +m([Xp,0]− [X0,0]).

This finishes the proof.
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P r o o f o f T h e o r e m 1. Assume that M is an indecomposable mod-
ule in C which does not lie on an oriented cycle (in C). We claim that then
M is uniquely determined by [M ]. We shall use arguments similar to that in
[18, (2.1)]. Let N be an indecomposable module in C such that [M ] = [N ].
Let

P1 → P0 →M → 0

be a minimal projective presentation of M and

0→M → I0 → I1

a minimal injective copresentation of M in modA. Then for any A-module
X we have, by [6, (1.4)], the following equalities:

[M,X]− [X, τAM ] = [P0, X]− [P1, X],

[X,M ]− [τ−AM,X] = [X, I0]− [X, I1],

where we abbreviate dimK HomA(X,Y ) by [X,Y ]. Since [M ] = [N ], we have
[P0,M ] = [P0, N ], [P1,M ] = [P1, N ], [M, I0] = [N, I0], and [M, I1] = [N, I1].
Letting X = M and X = N we get the equalities

[M,M ]− [M, τAM ] = [M,N ]− [N, τAM ],

[M,M ]− [τ−AM,M ] = [N,M ]− [τ−AM,N ].

Since C is generalized standard and M does not lie on an oriented cycle in C
we get [M, τAM ] = 0 and [τ−AM,M ] = 0. Hence [M,N ] − [N, τAM ] =
[M,M ] > 0 and [N,M ] − [τ−AM,N ] = [M,M ] > 0, and consequently
[M,N ] 6= 0 and [N,M ] 6= 0. By our assumption on C we have rad∞(M,N) =
0 and rad∞(N,M) = 0. Now, if M 6' N then rad(M,N) 6= 0, rad(N,M) 6=
0 and we infer that C contains an oriented cycle passing through M and N ,
a contradiction. Therefore, M ' N .

Now since C is generalized standard, we know from [25, (2.3)] that C
admits at most finitely many nonperiodic τA-orbits. Then there is a finite
family T1 = T (X1, p1, q1), . . . , Tr = T (Xr, pr, qr) of pairwise disjoint sub-
tubes of C such that all but finitely many modules lying on oriented cycles in
C belong to the sum T1∪ . . .∪Tr (see [32, (3.6)] for a detailed proof). Then,
by Proposition 2, there is a positive integer m such that for each x ∈ K0(A),
the number of modules X in C with [X] = x is bounded by m.

3. Components with unbounded numbers of discrete modules.
In this section we shall exhibit a class of components which occur in the
Auslander–Reiten quivers of tame algebras and have arbitrary large numbers
of indecomposable modules with the same composition factors.
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The one-point extension of an algebra B by a B-module M is the algebra

B[M ] =
[
K M
0 B

]
with the usual addition and multiplication of matrices. The quiver of B[M ]
contains the quiver of B as a full convex subquiver and there is an addi-
tional (extension) vertex which is a source. The B[M ]-modules are usually
identified with the triples (V,X,ϕ), where V is a K-vector space, X is a
B-module and ϕ : V → HomB(M,X) is a K-linear map. A B[M ]-linear
map (V,X,ϕ) → (V ′, X ′, ϕ′) is thus a pair (f, g), where f : V → V ′ is
K-linear and g : X → X ′ is B-linear such that ϕ′f = HomB(M, g)ϕ. One
defines dually the one-point coextension [M ]B of B by M .

Let B be an algebra and Γ a generalized standard component of ΓB

and X a B-module from Γ . Denote by HX the full subcategory of indB
formed by the indecomposable modules Z in Γ such that HomB(X,Z) 6= 0,
and by IX the ideal of HX consisting of morphisms f : Y → Z such that
HomB(X, f) = 0. Then the quotient category S(X) = HX/IX is said to be
the support of the functor HomB(X,−)|Γ . We usually identify the K-linear
category S(X) with its quiver.

Proposition 3. Let B be an algebra, Γ a generalized standard compo-
nent of ΓB , and T a proper subtube of Γ . Assume that X is an indecom-
posable module in Γ satisfying the following conditions:

(i) S(X) is given by two parallel infinite sectional paths

Y1 → Y2 → · · · → Yi+1 → Yi+2 → · · ·x x x x
X = X0 → X1 → · · · → Xi → Xi+1 → · · ·

formed by pairwise different modules.
(ii) T contains all but finitely many modules of S(X).

Let A = B[X] and C be the component of ΓA containing X. Then, for
any positive integer r, there exists a vector x ∈ K0(A) such that C admits
r pairwise different modules M1, . . . ,Mr with [Mi] = x and Mi 6' τAMi for
all 1 ≤ i ≤ r.

P r o o f. We may choose irreducible maps fi : Xi → Xi+1, gi : Xi →
Yi+1, hi+1 : Yi+1 → Yi+2, i ≥ 0, such that hi+1gi = gi+1fi for any i ≥ 0.
Hence, HomB(X,Xi), i ≥ 0, and HomB(X,Yj), j ≥ 1, are one-dimensional
K-vector spaces generated by u0 = 1X , ui = fi−1 . . . f0, for i ≥ 1, and
v1 = g0, vj = hj−1 . . . h1g0, j ≥ 2, respectively. Moreover, HomB(X,ϕ) = 0
for any ϕ : Yj → Xi, j ≥ 1, i ≥ 0, and HomB(X,ψ) = 0 for any ψ : Xi → Yj
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with 1 ≤ j ≤ i. Then we get the following indecomposable A-modules:

Zi,j = (K,Xi ⊕ Yj ,∆i,j), 1 ≤ j ≤ i,

where

∆i,j : K → HomB(X,Xi ⊕ Yj) = HomB(X,Xi)⊕HomB(X,Yj)

assigns to 1 ∈ K the pair (ui, vj). Consider also the indecomposable A-
modules X ′

i = (K,Xi, ηi), i ≥ 0, where ηi(1) = ui for each i ≥ 0. Observe
that X ′

0 is the (new) indecomposable projective A-module whose radical is
X. Applying now [21, (2.5)] and calculating the corresponding cokernels,
we infer that C admits a full translation subquiver D of the form

Y1 X′
1 Y3 . . .

↗ ↘ ↗ ↘ ↗ ↘ ↗
X=X0→ X′

0→Z1,1→Y2→Z2,2→X′
2→Z3,3→· · ·

↘ ↗ ↘ ↗ ↘ ↗ ↘
X1 Z2,1 Z3,2

↘ ↗ ↘ ↗ ↘ . . .
X2 Z3,1

↘ ↗ ↘ . . .
X3

↘ . . .
. . .

formed by the modules Xi, X ′
i, i ≥ 0, Yj , j ≥ 1, and Zi,j , 1 ≤ j ≤ i, which

is closed under successors in ΓA.
We shall find the required modules M1, . . . ,Mr (with the same com-

position factors) among the modules Zi,j in D. Denote by Σ the infinite
sectional path formed by the modules Xi, i ≥ 0, and by Ω the infinite sec-
tional path (in Γ ) consisting of the modules Yj , j ≥ 1. Let m ≥ 1 be such
that all modules Xj−1, Yj , j ≥ m, belong to the subtube T . Without loss
of generality, we may assume that T = T (Y, p, q) for Y = Ym and some
p ≥ 2, q ≥ 1. Denote by Θ the infinite sectional path in T with target
Ym. Then there exists a sequence m = i1 < i2 < . . . such that Ω ∩ Θ
consists of the modules Yi1 , Yi2 , . . . , and Σ ∩ Θ consists of the modules
Xi1−1, Xi2−1, . . . Finally, for any fixed r ≥ 1, consider the indecomposable
A-modules Mt = Zir+t−1,ir−t+1 , 1 ≤ t ≤ r. Clearly, the modules M1, . . . ,Mr

are pairwise nonisomorphic. We shall show that they have the same compo-
sition factors. It is enough to prove that the B-modules Xir+t−1 ⊕ Yir−t+1 ,
1 ≤ t ≤ r, have the same composition factors. We may assume r ≥ 2. Take
1 ≤ t < r. Observe that we have in T a rectangle
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Yir−t

•
Xir−t−1 ↗ ↘

• •
↗ ↘ ↗ ↘

•
. .

. ↗ ↘ . . .

Yir+t
↗ . .

. . . . ↘
• •
↗ ↘ ↗ ↘ ↗ ↘

Xir+t−1• • • • Yir−t+1

↘ ↗ ↘ ↗ ↘ ↗
• •
↘ . . . . .

. ↗ Xir−t+1−1

. . . ↘ ↗ . .
.

•
↘ ↗ ↘ ↗
• •
↘ ↗ Yir+t+1•

Xir+t+1−1

Hence, we get

[Xir+(t+1)−1 ⊕ Yir−(t+1)+1 ] = [Xir+t+1−1] + [Yir−t ]

= [Xir+t−1] + [Yir−t+1 ] = [Xir+t−1 ⊕ Yir−t+1 ].

This shows that the modules Xir+t−1⊕ Yir−t+1 , and hence the modules Mt,
1 ≤ t ≤ r, have the same composition factors. This finishes the proof.

In the representation theory of tame simply connected algebras an im-
portant role is played by the polynomial growth critical algebras introduced
and investigated by R. Nörenberg and A. Skowroński in [15]. By a polyno-
mial growth critical algebra (briefly pg-critical algebra) we mean an algebra
A satisfying the following conditions:

(i) A is one of the matrix algebras

B[X] =
[
K X
0 B

]
, B[Y, t] =



K K . . . K K K Y
K . . . K K K 0

. . .
...

...
...

...
K K K 0

K 0 0
0 K 0

B


,

where B is a representation-infinite tilted algebra of Euclidean type D̃n, n ≥
4, with a complete slice in the preinjective component of ΓB , X (respectively,
Y ) is an indecomposable regular B-module of regular length 2 (respectively,
regular length 1) lying in a tube of ΓB with n− 2 rays, t+ 1 (t ≥ 2) is the
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number of isoclasses of simple B[Y, t]-modules which are not B-modules.
(ii) Every proper convex subcategory of A is of polynomial growth.

The pg-critical algebras have been classified by quivers and relations in
[15]. There are 31 frames of such algebras. In particular, it is known that
if A is a pg-critical algebra then: (1) A is tame minimal of non-polynomial
growth, (2) gl.dimA = 2, (3) A is simply connected (in the sense of [1]), (4)
the opposite algebra Aop is also pg-critical.

We shall prove now the following properties of pg-critical algebras.

Proposition 4. Let A be a polynomial growth critical algebra. Then
ΓA admits a component C such that , for any positive integer r, C contains
pairwise different modules M1, . . . ,Mr having the following properties:

(i) [Mi] = [Mj ] for any 1 ≤ i, j ≤ r.
(ii) Mi 6' τAMi for any 1 ≤ i ≤ r.
(iii) pdAMi = 1 for any 1 ≤ i ≤ r.
(iv) dimK EndA(Mi) > dimKExt1A(Mi,Mi) for any 1 ≤ i ≤ r.
P r o o f. It is well known that all components of the Auslander–Reiten

quiver of a tilted algebra of Euclidean type are standard [21, (4.9)]. Assume
first that A is of the form B[X]. Then S(X) is given by two parallel infinite
sectional paths

Y1 → Y2 → · · · → Yi+1 → Yi+2 → · · ·x x x x
X = X0 → X1 → · · · → Xi → Xi+1 → · · ·

Let C be the connected component of ΓA containing the module X. Ap-
plying Proposition 3 we infer that, for any positive integer r, there are
pairwise different modules M1, . . . ,Mr in C satisfying the conditions (i) and
(ii). Moreover, we may choose the modules Mt, 1 ≤ t ≤ r, of the form
Mt = Zit,jt = (K,Xit ⊕ Yjt , ∆it,jt) for the corresponding pairs (it, jt) with
2 ≤ jt ≤ it. Hence, in order to show that the modules M1, . . . ,Mr sat-
isfy the conditions (iii) and (iv), it is enough to prove that pdAZi,j = 1
and dimK EndA(Zi,j) > dimKExt1A(Zi,j , Zi,j) for any 2 ≤ j ≤ i. Fix a
pair i, j with 2 ≤ j ≤ i. Then τAZi,j = Zi−1,j−1. Since pdBU ≤ 1
for any B-module U which is not in the preinjective component of ΓB ,
we get HomB(D(B), Xi) = 0 = HomB(D(B), Yj) for all i ≥ 0, j ≥ 1.
Then HomA(D(A), τAZi,j) = HomA(D(A), Zi−1,j−1) = 0, and consequently
pdAZi,j ≤ 1. Further, observe that the image of any map Zi,j → Zi−1,j−1

is contained in the submodule Xi−1 ⊕ Yj−1 of Zi−1,j−1. Hence the canoni-
cal embedding Xi−1⊕Yj−1 → Zi−1,j−1 induces an isomorphism of K-vector
spaces HomA(Zi,j , Xi−1⊕Yj−1)

∼−→ HomA(Zi,j , Zi−1,j−1). Choose now the
irreducible morphisms f : Xi−1 → Xi and g : Yj−1 → Yj . Since the arrows
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Xi−1 → Xi and Yj−1 → Yj belong to rays of a standard ray tube of ΓB , f
and g are monomorphisms. Thus we get a monomorphism(

f 0
0 g

)
: Xi−1 ⊕ Yj−1 → Xi ⊕ Yj .

Therefore, we have a chain of monomorphisms of K-vector spaces

HomA(Zi,j , Xi−1 ⊕ Yj−1)→ HomA(Zi,j , Xi ⊕ Yj)
→ rad(Zi,j , Zi,j)→ EndA(Zi,j).

Together with the Auslander–Reiten formula [7; (IV.4.6)]

Ext1A(Zi,j , Zi,j) ' DHomA(Zi,j , τAZi,j) ' DHomA(Zi,j , Zi−1,j−1)

this gives the inequalities

dimK EndA(Zi,j)− dimKExt1A(Zi,j , Zi,j)

≥ dimK EndA(Zi,j)− dimK HomA(Zi,j , Zi−1,j−1)

≥ dimK EndA(Zi,j)− dimK HomA(Zi,j , Xi−1 ⊕ Yj−1)

≥ dimK EndA(Zi,j)− dimKrad(Zi,j , Zi,j) > 0,

and we are done.
Consider now the case when A = B[Y, t]. Observe that A is obtained

from the one-point extension B[Y ] by glueing the extension vertex of B[Y ]
with the vertex a0 of the following (free) quiver

•at−1

↗
a0 • −→ • · · · −→ •at−2

↘
•at

Denote by A′ the algebra obtained from A by reversing the arrow at−2 → at

on at−2 ← at. Then A′ is a pg-critical algebra of the form B′[X ′], where
B′ is the full subcategory of A′ (and A) given by all vertices except at and
X ′ is the indecomposable projective A′-module given by the vertex at−2.
Consider now the APR-tilting A-module T = τ−A SA(at) ⊕ P associated to
at, where SA(at) is the simple A-module given by at and P is the direct
sum of indecomposable projective A-modules given by all objects of A ex-
cept at. Then A′ = EndA(T ). Further, by [5], the functor F = HomA(T,−)
induces an equivalence between the full subcategory G(T ) of modA formed
by all modules having no SA(at) as a direct summand and the full subcat-
egory Y(T ) of modA′ formed by all modules having no SA′(at) as a direct
summand. Moreover, there is an isomorphism σT : K0(A) → K0(A′) of
groups (see [21, (4.1)]) such that σT ([Z]) = [F (Z)] for any module Z from
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G(T ). Let C be the components of ΓA containing SA(at) and C′ the com-
ponent of ΓA′ containing X ′, or equivalently, the indecomposable projective
A′-module given by at. Take an arbitrary positive integer r. From the first
part of the proof there exist pairwise different modules M ′

1, . . . ,M
′
r in C′

satisfying the conditions (i)–(iv). Clearly, the modules M ′
1, . . . ,M

′
r belong

to Y(T ), and hence there exist pairwise different modules M1, . . . ,Mr in C
such that M ′

i = F (Mi) for 1 ≤ i ≤ r. Since M1, . . . ,Mr belong to G(T ),
for 1 ≤ i, j ≤ r, we have σT ([Mi]) = [M ′

i ] = [M ′
j ] = σT ([Mj ]), and so

[Mi] = [Mj ]. Moreover, for each 1 ≤ i ≤ r, we obtain

dimK EndA(Mi) = dimK EndA′(M ′
i)

> dimKExt1A′(M ′
i ,M

′
i) = dimKExt1A(Mi,Mi).

Further, since the indecomposable A-modules nonisomorphic to SA(at) be-
long to G(T ), the indecomposable A′-modules nonisomorphic to SA′(at) be-
long to Y(T ), and F induces an equivalence G(T ) ' Y(T ), we conclude
that Mi 6' τAMi for 1 ≤ i ≤ r. Moreover, HomA(D(A), τAMi) = 0, and
so pdAMi ≤ 1 for any 1 ≤ i ≤ r. Consequently, the modules M1, . . . ,Mr

satisfy the required conditions (i)–(iv). This completes the proof.

4. Polynomial growth strongly simply connected algebras. Let
A be an algebra. Then there exists an isomorphism A ' KQ/I, where KQ
is the path algebra of the ordinary (Gabriel) quiver Q = QA of A and I
is an admissible ideal in KQ. Equivalently, A = KQ/I may be considered
as a K-category whose object class is the set Q0 of vertices of Q, and the
set of morphisms A(x, y) from x to y is the quotient of the K-vector space
KQ(x, y), formed by the K-linear combinations of the paths in Q from x to
y, by the subspace I(x, y) = KQ(x, y) ∩ I. An algebra A with QA having
no oriented cycle is said to be triangular . A full subcategory C of A is said
to be convex if any path in QA with source and target in QC lies entirely
in QC . A triangular algebra A is called simply connected [1] if, for any
presentation A ' KQ/I of A as a bound quiver algebra, the fundamental
group π1(Q, I) of (Q, I) is trivial. Following [23], an algebra A is said to
be strongly simply connected if every convex subcategory C of A is simply
connected. It is shown in [23, (4.1)] that a triangular algebra A is strongly
simply connected if and only if, for any convex subcategory C of A, the first
Hochschild cohomology group H1(C,C) vanishes.

The Tits form qA of a triangular algebra A = KQ/I with the quiver
Q = (Q0, Q1) is the integral quadratic form q : Zn → Z, n = |Q0|, defined
by

qA(x) =
∑
i∈Q0

x2
i −

∑
(i→j)∈Q1

xixj +
∑

i,j∈Q0

r(i, j)xixj ,
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where r(i, j) is the cardinality of R∩ I(i, j) for a minimal set of generators
R ⊂

⋃
i,j∈Q0

I(i, j) of the ideal I [8]. The Euler form χA of A is the integral
quadratic form

χA(x) =
∑
i∈Q0

x2
i −

∑
i,j∈Q0

xixjdimKExt1A(Si, Sj)

+
∑

i,j∈Q0

xixjdimKExt2A(Si, Sj),

where Si are the simple A-modules associated with i ∈ Q0. It is known that
for any A-module X we have (see [21])

χA([X]) =
∞∑

i=0

(−1)idimKExti
A(X,X).

If gl.dimA ≤ 2 then qA and χA coincide [8].
Following [11], an algebra A is said to be tame if, for any dimension d,

there exists a finite number of K[X]–A-bimodules Mi, 1 ≤ i ≤ nd, which are
finitely generated and free as left K[X]-modules and all but finitely many
isomorphism classes of indecomposable A-modules of dimension d are of the
form K[X]/(X − λ) ⊗K[X] Mi for some λ ∈ K and some i. Let µA(d) be
the least number of K[X]-A-bimodules satisfying the above condition for d.
Then A is said to be of polynomial growth [22] if there is a positive integer
m such that µA(d) ≤ dm for all d ≥ 1. From the validity of the second
Brauer-Thrall conjecture, we know that A is representation-finite if and
only if µA(d) = 0 for all d ≥ 1. Examples of polynomial growth algebras are
provided by all tilted algebras of Euclidean type, tubular algebras and tame
coil enlargements of such algebras (see [21], [4]). The polynomial growth
critical algebras are tame but not of polynomial growth. It is known that
if A is triangular and tame then the Tits form qA is weakly nonnegative
(see [16]). Recently it was shown in [30] that a strongly simply connected
algebra A is of polynomial growth if and only if qA is weakly nonnegative
and A does not contain a pg-critical convex subcategory. This gives a handy
criterion for a strongly simply connected algebra to be of polynomial growth.
We note that among the 31 frames of pg-critical algebra described in [15]
we have only 16 frames which are strongly simply connected. Finally, we
also mention that, by [17], if A is a strongly simply connected algebra of
polynomial growth, X an indecomposable A-module and [X] = x, then
Exti

A(X,X) = 0 for i ≥ 2 and

qA(x) ≥ χA(x) = dimK EndA(X)− dimKExt1A(X,X) ≥ 0.

Here, we shall prove the following characterizations of polynomial growth
strongly simply connected algebras.
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Theorem 5. Let A be a strongly simply connected algebra and n be the
rank of K0(A). The following conditions are equivalent :

(i) A is of polynomial growth.
(ii) A is tame and there exists m ∈ N such that for each x ∈ Nn,

the number of isomorphism classes of indecomposable A-modules X with
[X] = x and X 6' τAX is bounded by m.

(iii) qA is weakly nonnegative and there exists m ∈ N such that , for
each x ∈ Nn, there are at most m isomorphism classes of indecomposable
A-modules X with [X] = x and qA(x) 6= 0.

(iv) A is tame and there exists m ∈ N such that for each x ∈ Nn, there
are at most m isomorphism classes of indecomposable A-modules X with
[X] = x and χA(x) 6= 0.

In the representation theory of polynomial growth strongly simply con-
nected algebras developed in [30] a fundamental role is played by tame coil
enlargements of tame concealed algebras (coil algebras). In our proof of
Theorem 5 we need information on the numbers of isomorphism classes of
discrete indecomposable modules lying in the Auslander–Reiten components
(multicoils) of such algebras. We recall first briefly the notion of admissible
operations [2, 3]. Let A be an algebra and Γ be a standard component of ΓA.
For an indecomposable moduleX in Γ , called the pivot , three admissible op-
erations (ad 1), (ad 2), (ad 3) (and their duals) are defined, depending on the
shape of the support S(X) of HomB(X,−)|Γ . These admissible operations
yield in each case a modified algebra A′ of A, and a modified component Γ ′

of Γ :
(ad 1) If S(X) is of the form

X = X0 → X1 → X2 → · · ·
then X is called an (ad 1)-pivot , we set A′=(A×D)[X⊕Y1], where D is the
full t×t lower triangular matrix algebra, and Y1 is the unique indecomposable
projective-injective D-module. In this case, Γ ′ is obtained from Γ and ΓD

by inserting a rectangle consisting of the modules Zi,j =
(
K,Xi⊕Yj ,

(
1
1

))
for

i ≥ 0, 1 ≤ j ≤ t, and X ′
i = (K,Xi, 1) for i ≥ 0, where Yj , 1 ≤ j ≤ t, denote

the indecomposable injective D-modules. The translation τ ′ = τA′ in Γ ′ is
defined as follows: τ ′Zi,j = Zi−1,j−1 if i ≥ 1, j ≥ 2, τ ′Zi,1 = Xi−1 if i ≥ 1,
τ ′Z0,j = Yj−1 if j ≥ 2, Z0,1 = P is projective, τ ′X ′

0 = Yt, τ ′X ′
i = Zi−1,t if

i ≥ 1, τ ′(τ−AXi) = X ′
i provided Xi is not an injective A-module, otherwise

X ′
i is injective in Γ ′. For the remaining points of Γ and ΓD, the translation

τ ′ coincides with τA and τD, respectively. If t=0, we set A′=A[X], and the
rectangle reduces to the ray formed by the modules of the form X ′

i, i≥0.
(ad 2) If S(X) is of the form

Yt ← · · · ← Y1 ← X = X0 → X1 → X2 → · · ·
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with t ≥ 1 (so that X is injective), then X is called an (ad 2)-pivot , we
set A′ = A[X]. In this case, Γ ′ is obtained by inserting in Γ a rectangle
consisting of the modules Zi,j =

(
K,Xi ⊕ Yj ,

(
1
1

))
, i ≥ 1, 1 ≤ j ≤ t,

and X ′
i = (K,Xi, 1), i ≥ 0. The translation τ ′ = τA′ in Γ ′ is defined as

follows: P = X ′
0 is projective-injective, τ ′Zi,j = Zi−1,j−1 if i ≥ 2, j ≥ 2,

τ ′Zi,1 = Xi−1 if i ≥ 1, τ ′Z1,j = Yj−1 if j ≥ 2, τ ′X ′
i = Zi−1,t if i ≥ 2,

τ ′X ′
1 = Yt, τ ′(τ−AXi) = X ′

i if i ≥ 1, provided Xi is not an injective A-
module, otherwise X ′

i is injective in Γ ′. For the remaining points of Γ ′, the
translation τ ′ coincides with the translation τA.

(ad 3) If S(X) is of the form

Y1 → Y2 → · · · → Ytx x x
X = X0 → X1 → · · · → Xt−1 → Xt → · · ·

with t ≥ 2 (so that Xt−1 is injective), then X is called an (ad 3)-pivot , we
set A′ = A[X]. In this case Γ ′ is obtained by inserting in Γ a rectangle
consisting of the modules Zi,j =

(
K,Xi ⊕ Yj ,

(
1
1

))
for 1 ≤ j ≤ i ≤ t and

i > t, 1 ≤ j ≤ t, and X ′
i = (K,Xi, 1) for i ≥ 0. The translation τ ′ = τA′

in Γ ′ is defined as follows: P = X ′
0 is projective, τ ′Zi,j = Zi−1,j−1 if i ≥ 2,

j ≥ 2, τ ′Zi,1 = Xi−1 if i ≥ 1, τ ′X ′
i = Zi−1,t if i > t, τ ′X ′

i = Yi if 1 ≤ i ≤ t,
τ ′Yj = X ′

j−2 if 2 ≤ j ≤ t, τ ′(τ−AXi) = Xi if i ≥ t, provided Xi is not an
injective A-module, otherwise X ′

i is injective in Γ ′. For the remaining points
of Γ ′, the translation τ ′ coincides with τA. We note that X ′

t−1 is injective.
Finally, together with each of the admissible operations (ad 1), (ad 2) and

(ad 3), we consider its dual, denoted by (ad 1∗), (ad 2∗) and (ad 3∗), respec-
tively. These six operations are called the admissible operations. Clearly,
the admissible operations can be defined as operations on translation quiv-
ers rather on Auslander–Reiten components. The definitions are done in the
obvious manner (see [2] or [27] for details). A translation quiver Γ is called
a coil if there exists a sequence of translation quivers Γ0, Γ1, . . . , Γm = Γ
such that Γ0 is a stable tube and, for each i, 0 ≤ i < m, Γi+1 is obtained
from Γi by an admissible operation. For an axiomatic description of the
coils we refer to [3].

Let C be an algebra, and T = (Ti)i∈I a family of pairwise orthogonal
(generalized) standard stable tubes of ΓC . Following [4], an algebra B is
called a coil enlargement of C using modules from T if there exists a finite
sequence of algebras C = C0, C1, . . . , Cm = B such that, for each 0 ≤ j < m,
Cj+1 is obtained from Cj by an admissible operation with pivot either on
a stable tube of T or on a coil of ΓCj obtained from a stable tube of T by
means of the sequence of admissible operations done so far. The sequence
C = C0, C1, . . . , Cm = B is then called an admissible sequence. In this



NUMBERS OF DISCRETE INDECOMPOSABLE MODULES 107

process the family Ti, i ∈ I, of stable tubes is transformed into a family Ci,
i ∈ I, of pairwise orthogonal standard coils of ΓB . A tame coil enlargement
B of a tame concealed algebra C using modules from its unique P1(K)-family
T = (Tλ)λ∈P1(K) of stable tubes is said to be a coil algebra.

We shall use the following lemma:

Lemma 6. Let B be an algebra and Γ a standard coil of ΓB. Then for
any sectional path Σ in Γ and x ∈ K0(B), Σ admits at most one module X
with [X] = x.

P r o o f. We divide our proof into three steps. Without loss of generality
we may assume that B is the support algebra of Γ .

(1) Assume first that Γ is a standard stable tube. In this case, if M and
N are two nonisomorphic indecomposable modules in Γ , then [M ] = [N ] if
and only if ql(M) = ql(N) = cr for some c ≥ 1, where r is the rank of Γ
and ql(Z) denotes the quasi-length of a module Z in Γ [26, (4.3)]. Clearly
then our claim follows.

(2) Assume that Γ is a standard ray tube, containing at least one projec-
tive module. Then there exists a convex subcategory C of B and a standard
stable tube T of ΓC such that B is obtained from C (respectively, Γ is ob-
tained from T ) by a sequence of admissible operations of type (ad 1) (see [3,
(5.9)]). Let C = C0, C1, . . . , Cm = B be an admissible sequence of algebras
such that each Ck, 1 ≤ k ≤ n, is obtained from Ck−1 by an admissible op-
eration of type (ad 1). We than get also a sequence T = Γ0, Γ1, . . . , Γm = Γ
of ray tubes such that, for each 1 ≤ k ≤ m, Γk is a standard ray tube of ΓCk

obtained from the standard ray tube Γk−1 of ΓCk−1 by the corresponding
admissible operation of type (ad 1). We shall prove our claim by induction
on k. Let 1 ≤ k ≤ m and assume that M and N are two indecomposable
Ck-modules with [M ] = [N ] and lying on a sectional path Σ in Γk. If M
and N are Ck−1-modules, then they lie on a sectional path Ω of Γk−1, and
by our inductive assumption we get M ' N . Hence, we may assume that
both M and N are not Ck−1-modules. For the new indecomposable mod-
ules in Γk = Γ ′k−1 we use the notation introduced above. Thus M = Zi,j or
M = X ′

i, and N = Zr,s or N = X ′
r for some i, r ≥ 0, 1 ≤ j, s ≤ t. In our

case, the equality [M ] = [N ] implies [Xi] = [Xr]. Moreover, Xi and Xr lie
on a sectional path Θ of Γk−1. Hence, by our inductive assumption, we have
i = r. It remains now to consider the case when M = Zi,j and N = Zi,s.
But then [M ] = [N ] implies [Yj ] = [Ys]. Since Yj and Ys are indecomposable
directing Ck−1-modules we obtain j = s. Therefore M ' N , and we are
done.

(3) Let Γ be an arbitrary standard coil of ΓB , and M , N indecomposable
B-modules with [M ] = [N ] and lying on a sectional path Σ in Γ . If one of
the modules M and N is directing, then M ' N . Hence, we may assume
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that M and N lie on oriented cycles in Γ . In this case, Σ can be extended
to an infinite sectional path. By symmetry, we may assume that M and
N lie on an infinite sectional path of the form U1 → U2 → U3 → · · ·. It
follows from [3, (5.9)] and [4, (3.5)] that there is a convex subcategory B∗

of B and a standard coray tube Γ ∗ in ΓB∗ such that B is obtained from B∗

(respectively, Γ is obtained from Γ ∗) by a sequence of admissible operations
of type (ad 1), (ad 2) and (ad 3). Let B∗ = B0, B1, . . . , Bm = B, m ≥ 0,
be an admissible sequence of algebras such that each Bk, 1 ≤ k ≤ m, is
obtained from Bk−1 by an admissible operation of type (ad 1), (ad 2), or
(ad 3). We then get also a sequence Γ ∗ = Γ0, Γ1, . . . , Γm = Γ of coils such
that, for each 1 ≤ k ≤ m, Γk is a standard coil of ΓBk

obtained from the
standard coil Γk−1 of ΓBk−1 by the corresponding admissible operation of
type (ad 1), (ad 2), or (ad 3). We shall prove our claim by induction on
0 ≤ k ≤ m. The case k = 0 is dual to (1) and (2). Assume now that k ≥ 1
and M , N are indecomposable Bk-modules with [M ] = [N ] and lying on
an infinite sectional path U1 → U2 → U3 → · · · of Γk. Again, if M and
N are Bk−1-modules, then they lie on a sectional path of Γk−1, and hence
M ' N by our inductive assumption. Assume now that M and N are not
Bk−1-modules. For the new indecomposable modules in Γk = Γ ′k−1 we use
the notation introduced above. Since M and N lie on an infinite sectional
path in Γk consisting of arrows pointing to infinity, we have two possibilities
for M and N : M = X ′

i and N = X ′
r, or M = Zi,j and N = Zr,j . In

both cases, [M ] = [N ] implies [Xi] = [Xr], and hence, by our inductive
assumption, we get i = r. Therefore, M ' N , and this finishes our proof.

Recall that a short cycle M
f−→N

g−→M of nonzero nonisomorphisms
in indA is called infinite [27] if f or g belongs to rad∞(modA). We have the
following consequence of the above lemma and results proved in [25] and [4].

Proposition 7. Let B be an algebra, n the rank of K0(B), x a vector of
K0(B), and Γ a standard coil of ΓB. Then the number of indecomposable
modules X in Γ with [X] = x is bounded by n. Moreover , if Γ consists
of modules which do not lie on infinite short cycles then the number of
indecomposable modules X in Γ with [X] = x is bounded by n− 1.

P r o o f. We may assume that B is the support algebra of Γ . Let C be
a convex subcategory of B and T a standard stable tube of ΓC such that
B (respectively, Γ ) is obtained from C (respectively, T ) by a sequence of
admissible operations. It follows from [4, (3.5)] that the admissible sequence
leading from C to B can be replaced by another one consisting of a block of
operations of type (ad 1∗) followed by a block of operations of types (ad 1),
(ad 2), (ad 3). The block of operations of type (ad 1∗) creates a tubular
coextension B∗ of C and a standard coray tube Γ ∗ in ΓB∗ such that B is
obtained from B∗ and Γ is obtained from Γ ∗ by the block of operations
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of types (ad 1), (ad 2) and (ad 3). Denote by m the rank of K0(C), by r
the rank of T , and by p and q the numbers of rays and corays in Γ . Then
q coincides with the number of corays in Γ ∗, and is the sum of r and the
number of corays inserted by application of the operations of type (ad 1∗).
Clearly, r is the number of rays in Γ ∗. Further, p is the sum of r and the
number of rays inserted by application of the operations of types (ad 1),
(ad 2) and (ad 3). It is also known that the indecomposable modules in
Γ ∗ which do not lie on an oriented cycle in Γ ∗ are uniquely determined by
their composition factors. In particular, the modules Yj which occur in the
description of the operations (ad 1), (ad 2) and (ad 3) have this property.
Finally, observe that if two rays in Γ have nonempty intersection, then one
of the rays consists of a finite number of directing B∗-modules from Γ ∗

followed by infinitely many modules which belong to the second ray. From
Lemma 6 we know that each ray of Γ contains at most one module X with
[X] = x. We know also that p − r is the number of objects of B which
are not objects of B∗. Then we conclude that m + (p − r) ≤ n. Since T
is generalized standard, it follows from [25, (5.11)] that r ≤ m, and then
p ≤ n. Moreover, if Γ consists of indecomposable modules which do not lie
on infinite short cycles in indB, then T consists of indecomposable modules
which do not lie on infinite short cycles in indC. In this case, by [25, (5.14)],
we get r ≤ m − 1, and hence p ≤ n − 1. Therefore, the statements of the
proposition follow.

We shall need also the following concepts. A component C of an Aus-
lander–Reiten quiver is said to be a multicoil [3] if it contains a full transla-
tion subquiver Γ such that: (i) Γ is a disjoint union of coils; (ii) no vertex of
C \Γ lies on an oriented cycle in C. The component quiver ΣA of an algebra
A [27] is the quiver whose vertices are the (connected) components of ΓA,
and two components C and D are connected in ΣA by an arrow C → D if
rad∞(X,Y ) 6= 0 for some modules X from C and Y from D.

P r o o f o f T h e o r e m 5. We shall prove first that (i) implies (ii), (iii)
and (iv). Assume that A is of polynomial growth. It is shown in [30, (4.1)]
that then ΣA is directed and every component of ΓA is a standard multi-
coil. In particular, every cycle M = M0 →M1 → · · · →Ms →Ms+1 = M ,
s ≥ 0, of nonzero nonisomorphisms in indA is finite, that is, the mor-
phisms forming it do not belong to rad∞(modA), and consequently, the
modules M0, . . . ,Ms belong to a coil of a multicoil of ΓA. We also know
that if an indecomposable A-module M does not lie on such a cycle (M
is directing) then M is uniquely determined by [M ], by [21, (2.4)] or [18,
(2.2)]. Moreover, if T is a stable tube in ΓA then the support of T is a
tame concealed or tubular convex subcategory of A [30, (4.6)]. Hence, for
any indecomposable A-module X lying in a stable tube of rank 1, we have
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qA([X]) = χA([X]) = 0. Let x be a vector in K0(A) such that there exists
a nondirecting indecomposable A-module X with [X] = x and X 6' τAX.
Then X belongs to a proper coil Γ of a standard multicoil C of ΓA. Recall
that a coil Γ is called proper if any vertex of Γ lies on an oriented cycle
of Γ (see [3, (3.3)]). Furthermore, by [30, (4.8)], Γ is the full translation
subquiver of ΓA consisting of all nondirecting modules of a standard coil
Γ ′ of the Auslander–Reiten quiver ΓB of a convex coil subcategory B of
A. Assume first that HomA(P,X) 6= 0 for some indecomposable projective
module in Γ ′. Then it follows from the inductive proof of [30, (4.1)] that any
indecomposable A-module Y with [Y ] = x also lies in Γ , and hence in Γ ′.
Applying now Proposition 7 we conclude that the number of isomorphism
classes of indecomposable A-modules Z with [Z] = [X] = x is bounded by
n − 1. We get the same statement in the case when HomA(X, I) 6= 0 for
an indecomposable injective module I in Γ ′. Hence, it remains to consider
the case when the support of X is contained in a convex subcategory, say
C, which is tame concealed or tubular. Then Γ belongs to a P1(K)-family
T = (Tλ)λ∈P1(K) of standard stable tubes of ΓC . Moreover, if Z is an in-
decomposable A-module with [Z] = [X] = x then Z is a C-module and lies
in one of the tubes Tλ (see [21] or [26]). Denote by m the rank of K0(C),
and by rλ the rank of the tube Tλ, λ ∈ P1(K). Then the following equality
holds: ∑

λ∈P1(K)

(rλ − 1) = m− 2

(see [21]). Further, if Y ∈ Tλ and Z ∈ Tµ are two nonisomorphic modules
in T with [Y ] = [Z] then the quasi-length of Y is divisible by rλ and the
quasi-length of Z is divisible by rµ. We note that then qA([Y ]) = qC([Y ]) =
χA([Y ]) = 0 and qA([Z]) = qC([Z]) = χA([Z]) = 0 (see [26, (3.6)]), since
gl.dimC ≤ 2. Now a simple inspection of tubular types of tame concealed
and tubular algebras shows that, if λ1, . . . , λt are all indices λ ∈ P1(K) with
rλ 6= 1, then rλ1 + . . . + rλt ≤ m + 2 ≤ n + 2. Therefore, the number of
isomorphism classes of indecomposable A-modules Z with [Z] = [X] = x is
bounded by n+ 2. Thus we proved that (i) implies the conditions (ii), (iii)
and (iv).

Assume now that qA is weakly nonnegative but A is not of polynomial
growth. Then, by [30, (4.2)], A admits a convex subcategory Λ which is
pg-critical. Since gl.dimΛ = 2, we have qΛ = χΛ. Let r be an arbitrary
positive integer. Then, by Proposition 4, there exist pairwise nonisomorphic
indecomposable Λ-modules M1, . . . ,Mr such that

(a) [M1] = . . . = [Mr].
(b) pdΛM1 = . . . = pdΛMr = 1.
(c) dimK EndΛ(Mi) > dimKExt1Λ(Mi,Mi) for any 1 ≤ i ≤ r.
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(d) Mi 6' τΛMi for any 1 ≤ i ≤ r.

We may clearly consider M1, . . . ,Mr as indecomposable A-modules. Ob-
serve that, if Mi ' τAMi, then we have an Auslander–Reiten sequence
0 → Mi → E → Mi → 0 in modA. Then [E] = 2[Mi], which implies that
E is a Λ-module, and so it is an Auslander–Reiten sequence in modΛ, a
contradiction. Therefore, Mi 6' τAMi for any 1 ≤ i ≤ r. Finally, since
pdΛMi = 1 we have

qΛ([Mi]) = χΛ([Mi]) = dimK EndΛ(Mi)− dimKExt1Λ(Mi,Mi) > 0,

and hence

qA([Mi]) = qΛ([Mi]) > 0 and χA([Mi]) = χΛ([Mi]) > 0.

This proves that each of the conditions (ii), (iii) and (iv) implies (i).

It is well known that if A is a representation-finite (strongly) simply
connected algebra then any indecomposable A-module X is directing, hence
uniquely determined by [X], and qA([X]) = χA([X]) = 1. As a direct
consequence of our proof of Theorem 5 we get the following

Corollary 8. Let A be a representation-infinite strongly simply con-
nected algebra of polynomial growth, n be the rank of K0(A), and x be a
vector of K0(A). Then

(i) The number of isomorphism classes of indecomposable A-modules X
with [X] = x and X 6' τAX is bounded by n+ 2.

(ii) The number of isomorphism classes of indecomposable A-modules X
with [X] = x and qA(x) 6= 0 is bounded by n− 1.

(iii) The number of isomorphism classes of indecomposable A-modules X
with [X] = x and χA(x) 6= 0 is bounded by n− 1.

We note that for a tubular algebra C of type (2, 2, 2, 2) the rank of K0(C)
is 6 and we have 8 = 6+2 pairwise nonisomorphic indecomposable modules
with the same composition factors, and of τA-period 2. Hence, the bound
n+2 in (i) of the above corollary is optimal. Possibly n−1 is not the optimal
bound in the statements (ii) and (iii). We end the paper with examples of
polynomial growth strongly simply connected algebras for which there exist
large numbers of pairwise nonisomorphic indecomposable modules X with
X 6' τAX, qA([X]) 6= 0, χA([X]) 6= 0 and having the same composition
factors.

Example 9. Let r ≥ 2. Denote by A the algebra KQ/I given by the
quiver Q of the form
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• •
η↘yξ

•
ρ↙

yω

• •

α↙

β↘

•
↘γ1

•
↓γ2

•···•
↓•

↙γr•
and the ideal I in KQ generated by ωα, ρα, βξ, βη, βα− γr . . . γ2γ1. Then
A is a strongly simply connected (coil) algebra of polynomial growth and
gl.dimA = 2. In fact, µA(d) ≤ 1 for any d ≥ 1, and the one-parameter
families of indecomposable A-modules are those given by the unique convex
hereditary subcategory H of A of type D̃4. For each 1 ≤ t ≤ r, consider the
indecomposable A-module Mt given by

K K

η=
[1
1
1

]↘yξ=
[1
1
0

]
K3

ρ=[0 1 0]↙
yω=[1 0 0]

K K

↙α=
[0
0
1

]
↘β=[1−1 0]

K

↘γ1=1

K···
↓
K
↓ γt−1=1

K
↓ γt=0

K
↓ γt+1=1

K···
↓
K

↙γr=1
K

Then the modules M1, . . . ,Mr are pairwise nonisomorphic with the same
composition factors given by the vector

x =

1
1

1 1

3
...

1 1
1

1

and χA(x) = qA(x) = (r + 14)− (18 + r) + 5 = 1. Note also that the rank
of K0(A) is equal to r + 6.
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