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ON THE WITT RINGS OF FUNCTION FIELDS OF
QUASIHOMOGENEOUS VARIETIES

BY

PIOTR JAWORSK I (WARSZAWA)

1. Introduction. Let V be a quasihomogeneous normal variety (i.e. a
quasihomogeneous cone). The aim of this paper is to describe the Witt ring
of the function field of V in terms of the second residue homomorphisms
associated with the subvarieties and the resolution data of V .

Let K be a field of characteristic not equal to 2 and K̂ its algebraic
closure. Let V be a normal irreducible affine variety contained in Kn. Then

V = SpecK[x1, . . . , xn]/I.

Let a = (a1, . . . , an) be an n-tuple of relatively prime positive integers. We
say that the affine variety V is quasihomogeneous of type a if its algebraic
closure V̂ = V⊗K̂ is invariant under the weighted multiplication by elements
of K̂:

t · α = (ta1α1, . . . , t
anαn), t ∈ K̂, a ∈ V̂ .

Analogously, we say that the polynomial F (x1, . . . , xn) is quasihomogeneous
of type a if

F (ta1x1, . . . , t
anxn) = tdF (x1, . . . , xn).

The integer d is called the weight of the polynomial F . This induces a
natural grading of the polynomial algebra K[x1, . . . , xn].

Obviously a quasihomogeneous affine variety may be defined by a system
of quasihomogeneous polynomials, i.e. homogeneous with respect to the
graded structure. Therefore the factor algebra K[x1, . . . , xn]/I is graded,
too.

Let K(V ) be the field of rational functions on V . A rational function is
said to be quasihomogeneous if it is a quotient of quasihomogeneous poly-
nomials; its weight is the difference of their weights. Let K̃ be the subfield
of K(V ) containing all quasihomogeneous rational functions of weight 0 and
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0 itself. We remark that trdeg K̃ : K is one less than trdegK(V ) : K and
K̃ is the function field of a one-less dimensional variety C over the ground
field K; namely:

C = ProjK[x1, . . . , xn]/I.
Moreover, V is a quasihomogeneous cone over C.

It is well-known that many invariants of varieties with singularities can
be described in terms of their resolutions. In the case of quasihomogeneous
varieties the main resolution data are: the associated projective variety and
the irregular orbits of the weighted multiplication (compare [12]). Our goal
is to describe the Witt ring of the function field K(V ) in terms of the second
residue homomorphisms associated to the prime divisors of the variety V
and the Witt ring of the function field of the associated projective variety C.
We show that the kernel and cokernel of the direct sum of all second residue
homomorphisms associated to the prime divisors of the variety V can be
described in terms of kernels and cokernels of two direct sums of residue
homomorphisms associated to the prime divisors of the projective variety
C. The choice of these direct sums is determined by the set of fixed points of
the weighted multiplication by −1. We remark that similar results are also
valid for certain algebroid surfaces (see [4]) and for Milnor K-theory groups
(see [5]). We also investigate the link between the kernel of the above direct
sum and the graded selfdual modules over the ring of regular functions on V .

Furthermore, we construct the Pardon type long exact sequence for the
quasihomogeneous surface S with an isolated singularity (compare [10]) and
describe the Witt ring of the surface S \ {0}. We deal in more detail with
the affine plane and with the surfaces described by the equation

yz − xn = 0, n ≥ 2.

In this case, we find the selfdual line bundles which generate the Witt rings
of the complements of the origin and show that, although the above surfaces
are birationally equivalent, the kernel and the cokernel of the direct sum of
all second residue homomorphisms associated with prime divisors may be
different.

Acknowledgements. The author would like to express his gratitude
to Prof. Winfried Scharlau for many valuable discussions during the prepa-
ration of the manuscript.

2. Notation

2.1. Homomorphisms of Witt rings. We consider the Witt rings over
integral domains as defined by Knebusch (see [6], [11] or [8]), i.e. W (R) is
the Grothendieck ring of nondegenerate bilinear forms on projective modules
over R modulo the metabolic (split) ones. We recall the basic facts.
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Every ring homomorphism i : R → S induces a ring homomorphism of
Witt rings (the extension of scalars)

i∗ : W (R) →W (S).

The so-called residue homomorphisms are other examples of widely used
mappings of Witt rings (see [7, 8, 9, 11]). Let v : K → Γ ∪{∞} be a discrete
valuation on a field K. Then

V = {a ∈ K : v(a) ≥ 0}
is the discrete valuation ring with the maximal ideal

m = {a ∈ K : v(a) > 0}.
The factor field V/m is called the residue field and is denoted by Kv. Any
generator π of the idealm is called a uniformizer of the valuation. Obviously,
the value group Γ is generated by the weight of π:

Γ = Z · γ, γ = v(π).

Every element of the field K may be uniquely written as a product πka,
where k ∈ Z, and a ∈ V \m (obviously v(πka) = kγ). The first and the
second residue homomorphisms are defined as follows:

∂i : W (K) →W (Kv), i = 1, 2,

∂i〈πk · a〉 =
{
〈a〉 if k + i is odd,
0 otherwise,

where a is the image of a in the residue field Kv = V/m.
We remark that the residue homomorphisms are only group homomor-

phisms. But they define a ring homomorphism (see [11], Ch. 6, §2)

∂ = ∂1 + γ · ∂2 : W (K) →W (Kv)[Γ/2Γ ]

where W (Kv)[Γ/2Γ ] is the group ring and γ is the image of the generator γ:

∂(〈πk · a〉) = 〈a〉 · γk̄, k = k (mod 2).

We consider Γ/2Γ as the multiplicative group; γ2 = 1.
Moreover, we remark that the ring residue homomorphism and the sec-

ond group residue homomorphism depend on the choice of the uniformizer
π. Namely, if π and π′ = ωπ are two uniformizers then the residue homo-
morphisms ∂2

π and ∂2
π′ , respectively ∂π and ∂π′ , are related in the following

way:
∂2
π′(α) = 〈ω〉∂2

π(α), ∂π′(α) = ∂1
π(α) + 〈ω〉∂2

π(α)γ.
Thus they differ only by an isomorphism of the target space.

2.2. Prime divisors and valuations. Let Z be an integral scheme. By a
prime divisor we shall mean a closed integral (i.e. irreducible and reduced)
subscheme of Z of codimension 1. If Z is an affine scheme, i.e. Z = SpecA
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for some ring A, then there is a one-to-one correspondence between prime
divisors and prime ideals of height = 1.

Every prime divisor P defines a valuation on the function field K(Z);
for every f ∈ K(Z) the weight v(f) is equal to the order of 0 of f at P or
to minus the order of the pole of f at P . The corresponding valuation ring
V is the integral closure of the local ring OZ,p, where p is a generic point of
P . We remark that when p is a regular point of the scheme Z then the local
ring OZ,p is integrally closed and the residue field Kv of the corresponding
valuation is isomorphic to the function field K(P ) = Kp of the scheme P .
Therefore the images of the induced residue homomorphisms are the Witt
rings of the field Kp:

∂ip : W (K(Z)) →W (Kp), i = 1, 2.

Other examples of valuations are the quasihomogeneous ones. Let a =
(a1, . . . , an) be an n-tuple of relatively prime positive integers. A quasihomo-
geneous valuation of type a on the field of rational functions K(x1, . . . , xn)
is defined by the following rules:

v : K(x1, . . . , xn) → Z ∪ {∞},
v(1) = 0, v(0) = ∞, v(xi) = ai.

If

g(x1, . . . , xn) =
∑

gi1,...,inx
i1
1 . . . xinn

then we put

v(g) = min{i1a1 + . . .+ inan : gi1,...,in 6= 0}.

Moreover, the weight of a fraction is the difference of weights:

v

(
f

g

)
= v(f)− v(g).

We remark that

v(f(x1, . . . , xn)) = ordt f(ta1x1, . . . , t
anxn).

Now let V be an irreducible quasihomogeneous variety (of type a):

V = SpecK[x1, . . . , xn]/I,

where I is a prime ideal generated by quasihomogeneous polynomials. The
above defined quasihomogeneous valuation v on the field K(x1, . . . , xn) in-
duces a quasihomogeneous valuation v∗ on the function field K(V ). Namely,
if g is a polynomial then

g =
∞∑
i=0

gi,
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where gi are either 0 or quasihomogeneous polynomials of weight i, and we
put

v∗(g) = min{i : gi 6∈ I}.
Moreover,

v∗

(
f

g

)
= v∗(f)− v∗(g).

We remark that the residue field of the induced quasihomogeneous valu-
ation v∗ is isomorphic to the subfield K̃ of the function field K(V ) consisting
of all quasihomogeneous elements of weight 0 and 0 itself. The value group
ΓI of v∗ is a subgroup of the value group of the quasihomogeneous valua-
tion on the field of rational functions K(x1, . . . , xn) (i.e. of Z). We observe
that if V is not contained in any linear subscheme {xi = 0} then ΓI = Z.
Moreover, ΓI ⊂ 2Z if and only if every point of V is invariant under the
weighted multiplication by −1:

(x1, . . . , xn) → ((−1)a1x1, . . . , (−1)anxn).

2.3. Quasihomogeneous and projective varieties. The quasihomogeneous
valuation induces a graded structure on the polynomial ring K[x1, . . . , xn]:

K[x1, . . . , xn] =
∞⊕
i=0

Si,

where S0 = K and Si, i > 0, are K-linear spaces generated by monomials
of weight i.

Let I be a prime quasihomogeneous ideal. There are two schemes asso-
ciated with I (compare [3], II.2):

(i) the quasihomogeneous affine variety

V = SpecK[x1, . . . , xn]/I;

(ii) the projective variety

C = ProjV = ProjK[x1, . . . , xn]/I.

Obviously, the function field of Proj V is the subfield K̃ of the function field
K(V ) consisting of all quasihomogeneous elements of weight 0 and 0 itself.
We remark that if V is normal then so is ProjV . Therefore if V is a normal
surface then ProjV is a smooth curve. Moreover, in general, the complement
of the set of normal points of a quasihomogeneous variety is contained in a
proper quasihomogeneous subvariety (see [1], V.1.8 and IV.3.1).

We remark that quasihomogeneous means homogeneous with respect to
the grading induced by the quasihomogeneous weight.
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2.4. Graded rings. Let S be a graded ring with unity:

S =
∞⊕
i=0

Si,

where Si, i ≥ 0, are abelian groups and Si · Sj ⊂ Si+j . We assume that S
is an integral domain and 1/2 belongs to S0.

We denote byK(S) the field of quotients of S and by T the multiplicative
set of nonzero homogeneous elements of the ring S:

T =
∞⋃
i=0

S∗i .

The graded structure of the ring S induces a valuation on the field K(S),

v : K(S) → Z ∪ {∞},
defined by the rule:

• if a ∈ S∗i then v(a) = i,
• if a, b ∈ S∗ then v(a/b) = v(j(a))− v(j(b)),

where j is the multiplicative map which associates with each nonzero element
of the graded ring S its leading form:

j : S∗ → T,

if a =
∑
i≥i0 ai, where ai ∈ Si and ai0 6= 0, then j(a) = ai0 .

The residue field of the induced valuation v is a subfield K̃ of K(S)
generated by homogeneous fractions of degree 0:

K̃ =
{
a

b
: a, b ∈ Si, b 6= 0

}
.

Let W be the subring of the Witt ring W (K(S)) generated by homoge-
neous elements (W = W (T )). We remark that the multiplicative mapping
j induces a ring homomorphism

j∗ : W (K(S)) →W, j∗(〈a〉) = 〈j(a)〉.

We shall use the following notation:
Speci (respectively Spehi, Spnhi) denotes the subset of Spec of the

graded ring consisting of prime ideals (resp. prime homogeneous, prime
nonhomogeneous ideals) of height i.

Proji denotes the subset of Proj consisting of homogeneous ideals of
height i and

ψ : Spehi → Proji
is the canonical bijection. Moreover, by V (p) we denote the subset of Spec
consisting of all prime ideals containing the ideal p.
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2.5. Graded modules. An S-module M is called graded if it is a direct
sum of abelian groups

M =
⊕

Mi,

where Sj ·Mi ⊂Mi+j .
Analogously an S-bilinear form b(·, ·) on M is graded if

b(Mi,Mj) ⊂ Si+j .

We recall that a bilinear form is called nondegenerate (regular) if the
induced mapping

b∗ : M →M∗, (b∗(α))(β) = b(α, β),

is an isomorphism. In such a case M is selfdual and reflexive.

2.6. Direct sums. We shall use the following convention:

(i) If α : A → B and β : A → C are homomorphisms (of groups or
modules) then by α⊕ β we shall denote their direct sum

α⊕ β : A→ B ⊕ C, (α⊕ β)(a) = (α(a), β(a)).

(ii) We shall denote by the same symbol a homomorphism and its trivial
extension to the direct sum: If α : A → B, is a homomorphism, then
α : A⊕ C → B, denotes the mapping (a, c) → α(a).

3. Main results. Let an integral domain S be a graded ring with unity
such that 1/2 belongs to S0, and let v be the valuation on the field K(S)
induced by the graded structure.

Theorem 1. The mapping

∆S = ∂1
v ⊕ ∂2

v ⊕
⊕

p∈Spnh1

∂2
p : W (K(S)) →W (K̃)⊕W (K̃)⊕

⊕
p∈Spnh1

W (Kp)

is an isomorphism of W (K̃)-modules (for any choice of uniformizers).

Furthermore, as the direct sum W (K̃) ⊕ W (K̃) is isomorphic to the
W (K̃)-module W, we may replace ∂1

v ⊕ ∂2
v by the mapping j∗ induced by

taking the leading forms.

Corollary 1. The mapping

∆ = j∗ ⊕
⊕

p∈Spnh1

∂2
p : W (K(S)) →W ⊕

⊕
p∈Spnh1

W (Kp),

is an isomorphism of W (K̃)-modules.

We can describe the kernel of
⊕
∂2
p , p ∈ Spnh1, in more detail:

Corollary 2. Let b(·, ·) be a nondegenerate bilinear form over a K(S)-
vector space L. If the equivalence class of (L, b(·, ·)) in the Witt ring
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W (K(S)) belongs to the kernel of ∂2
p for every p ∈ Spnh1, then there exists

an orthogonal base e1, . . . , en of L such that b(ei, ei) is homogeneous with
respect to the gradating of S for every i.

Moreover, it follows from Theorem 1 that the so-called “weak Hasse
principle” is valid for the field K(S), namely:

Corollary 3. If a quadratic form with coefficients in K(S) is hyperbolic
over every completion of K(S) with respect to a discrete K̃-valuation then
it is hyperbolic over K(S).

Let K be a field of characteristic not equal to 2. Let V be a normal
quasihomogeneous affine variety contained in Kn,

V = SpecK[x1, . . . , xn]/I.

We assume that V is not contained in any linear subspace of SpecK[x1, . . .
. . . , xn], i.e. the ideal I does not contain any variable xi.

Let C be the weighted projective variety associated with V :

C = ProjV = ProjK[x1, . . . , xn]/I.

By C2 we denote the zero set of the quasihomogeneous ideal generated
by those coordinate functions which have odd weights, i.e. the set of points
of C which correspond to the codimension one subschemes of V invariant
under the weighted multiplication by −1 (compare s. 2.2).

In the following we fix the second residue homomorphism associated with
the valuation v. Namely, we choose a quasihomogeneous fraction π ∈ K(V )
of weight 1, i.e. the uniformizer of the quasihomogeneous valuation v, and
we put

∂2
v(α) = ∂1

v(〈π〉 · α).

Let Z(π) denote the set of points of C corresponding to height 1 quasi-
homogeneous prime ideals of K[V ] = K[x1, . . . , xn]/I at which π has an odd
weight. In Section 5 we show that the set Z(π) contains the set C2.

We fix the uniformizers for all valuations associated with prime divi-
sors of the projective variety C and denote by keri and cokeri, i = 1, 2,
respectively the kernel and cokernel of the following homomorphisms:

∇1 =
⊕

q∈Proj1 \C2

∂2
q : W (K(C)) →

⊕
q∈Proj1 \C2

W (Kq);

∇2 =
⊕

q∈Proj1 \Z(π)

∂2
q ⊕

⊕
q∈Z(π)

∂1
q ⊕

⊕
q∈C2

∂2
q :

W (K(C)) →
⊕

q∈Proj1

W (Kq)⊕
⊕
q∈C2

W (Kq).
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Moreover, we denote by i∗ : W (K(C)) → W (K(V )) the mapping in-
duced by the inclusion i : K(C) = K̃ → K(V ), where K̃ is the subfield
of the function field K(V ) consisting of the quasihomogeneous elements of
weight 0 and 0 itself.

Theorem 2. For any choice of uniformizers there exists a homomor-
phism of W (K)-modules δ such that the following sequence is exact :

0 → ker1⊕ ker2
̂→W (K(V ))

∂V−→
⊕

p∈Spec1

W (Kp)
δ→ coker1⊕ coker2⊕

⊕
r∈Spnh2

W (Kr) → 0

where

(i) ∂V =
⊕

p∈Spec1
∂2
p ;

(ii) ̂(α, β) = i∗(α) + 〈π〉 · i∗(β).

In Section 6 we describe δ in more detail and show how it depends on
the choice of uniformizers of valuations vp, p ∈ Spec1, and vq, q ∈ Proj1.

The kernel of ∂V can also be described in terms of selfdual graded K[V ]-
modules. Let L be a vector space over the field K(V ) equipped with a
nondegenerate bilinear form b(·, ·).
Theorem 3. If the equivalence class of (L, b(·, ·)) in the Witt ring

W (K(V )) belongs to the kernel of ∂V then L contains a graded K[V ]-module
M such that

• L = K(V ) ·M ,
• b(·, ·) restricted to M is graded and nondegenerate.

Now let us assume that V is an integral surface. Being normal and
quasihomogeneous it has no singular points except the origin and the as-
sociated weighted projective variety is a smooth curve. The scheme V ∗ =
V \ {(x1, . . . , xn)} is quasiprojective and smooth. Hence we have (compare
[2]):

Corollary 4. Let V be a quasihomogeneous normal integral surface.
Then:

• the Witt ring W (V ∗) of the scheme V ∗ is isomorphic to the direct sum
ker1⊕ ker2,

• every vector bundle over V ∗ with nondegenerate inner product is stably
equivalent to a graded reflexive module over the ring K[V ].

Moreover, Spnh2(V ) consists of all closed points of V , except the origin
(the only 0-dimensional quasihomogeneous subvariety). Thus our sequence
is an analogue of Pardon exact sequences for algebraic regular local rings
(compare [10]).



204 P. JAWORSKI

Corollary 5. Let V be a quasihomogeneous normal integral surface.
Then the following sequence of W (V ∗)-modules is exact :

0 →W (V ∗) →W (K(V ))
∂V−→

⊕
p∈Spec1

W (Kp)
δ→ coker1⊕ coker2⊕

⊕
r∈Spec2 \{(x1,...,xn)}

W (Kr) → 0

where ∂V and δ are as above.

For the affine surface V1 = SpecK[x, y] the above sequence simplifies.

Corollary 6. There exists a mapping δ such that the following sequence
of W (K)-modules is exact :

0 →W (K) i∗−→W (K(x, y)) ∂V−→
⊕

p∈Spec1

W (Kp)
δ→

⊕
r∈Spec2

W (Kr) → 0

where

(i) i∗ is induced by the canonical inclusion i : K → K(x, y);
(ii) ∂V =

⊕
p∈Spec1

∂2
p.

Analogously, for the surfaces Vn = SpecK[x, y, z]/(yz − xn), n ≥ 2, we
obtain:

Corollary 7. For each m ≥ 1 there exist mappings δo and δe such that
the following sequences of W (K)-modules are exact :

0 →W (K) i∗−→W (K(V2m+1))
∂V−→

⊕
p∈Spec1

W (Kp)
δo−→

⊕
r∈Spec2

W (Kr) → 0,

and

0 →W (K)⊕W (K)
i∗1−→W (K(V2m)) ∂V−→

⊕
p∈Spec1

W (Kp)

δe−→W (K)⊕
⊕

r∈Spec2

W (Kr) → 0,

where

(i) i∗ is induced by the canonical inclusion i : K → K(Vn);
(ii) i∗1(α, β) = i∗(α) + 〈y〉 · i∗(β);
(iii) ∂V =

⊕
p∈Spec1

∂2
p.

Note that all the surfaces Vn, n > 1, have an isolated singular point at
the origin, which in the case K = C is called An−1.

We remark that similar exact sequences were constructed by the author
also for certain algebroid surfaces (see [4]).

Furthermore, basing on the above we can describe the Witt ring of inner
products on V ∗

n -vector bundles.
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Corollary 8. (a) W (V ∗
2m+1), m = 0, 1, . . . , is a W (K)-module gener-

ated by a trivial line bundle with the inner product

b(e, e) = 1,

where e is a nonvanishing global section.
(b) W (V ∗

2m), m = 1, 2, . . . , is a W (K)-module generated by two elements:
a trivial line bundle with the inner product

b(e, e) = 1,

where e is a nonvanishing global section, and a line bundle generated by two
global sections e1, e2, xme2 = ze1, with the inner product

b(e1, e1) = y, b(e2, e2) = z, b(e1, e2) = xm.

4. Witt rings of fields of quotients of graded rings. The proof of
Theorem 1 is based on the following construction (see [1], Ch. V, §1.8L.4):

Let the homogeneous fraction π be a uniformizer of the valuation v
induced by the graded structure; i.e.

π =
a

b
, a ∈ S∗i+d, b ∈ S∗i

where d is the greatest common divisor of all nontrivial indices:

d = GCD{i > 0 : Si 6= {0}}.

Proposition 1. The K̃-linear mapping

Ψ : K̃[t]t → ST , Ψ(tk) = πk, k ∈ Z,

is a ring isomorphism.

P r o o f. Since both π and π−1 belong to the ring ST and K̃ is a sub-
field of this ring, the mapping Ψ is well defined. On the other hand, any
homogeneous element a of ST is a product

a = bπk, b ∈ K̃, k ∈ Z,

thus Ψ is onto.

Corollary 9. Ψ induces a 1-1 correspondence between the prime non-
quasihomogeneous height 1 ideals of the ring S and the prime ideals of the
ring K̃[t] different from the one generated by t:

Ψ ] : Spnh1(S) → Spec1(K̃[t]) \ {(t)}.

Corollary 10. For any nonhomogeneous ideal p ∈ Spnh1(S) the local
rings Sp and K̃[t]Ψ](p) are isomorphic.
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To finish the proof of Theorem 1 we apply Ψ to the Milnor exact sequence
of the ring K̃[t] (see [7], [11]). We have

0 →W (K̃) i∗−→W (K̃(t)) ∂→
⊕

p∈Spec1

W (Kp) → 0

where
∂ =

⊕
p∈Spec1

∂2
p .

We remark that:

(a) the field K̃(t) is isomorphic to the field K(S),
(b) the residue field of the ideal (t) is isomorphic to the field K̃ and

∂2
(t) = ∂2

v ◦ Ψ∗ (v is the valuation induced by the grading),
(c) the other ideals of K̃[t] correspond to nonquasihomogeneous ideals

of height 1 of the ring S and the residue fields of the corresponding ideals
are isomorphic.

Hence the following sequence is split exact:

0 →W (K̃) i∗−→W (K(S)) ∂→W (K̃)⊕
⊕

p∈Spnh1

W (Kp) → 0

where
∂ = ∂2

v ⊕
⊕

p∈Spnh1

∂2
p .

Next we observe that the mapping i∗ is a right inverse of the first residue
homomorphism ∂1

v . Thus the mapping

∆S = ∂1
v ⊕ ∂2

v ⊕
⊕

p∈Spnh1

∂2
p : W (K(S)) →W (K̃)⊕W (K̃)⊕

⊕
p∈Spnh1

W (Kp)

is a group isomorphism. Moreover, it commutes with the multiplication by
the forms defined over the field K̃, hence it is an isomorphism of W (K̃)-
modules.

Since the mapping

̂ : W (K̃)⊕W (K̃) →W, ̂(α, β) = i∗(α) + 〈π〉i∗(β),

is a group isomorphism and

j∗ = ̂ ◦ (∂1
v ⊕ ∂2

v),

we conclude that the mapping ∆ = j∗⊕
⊕

p∈Spnh1
∂2
p is an isomorphism too,

which proves Corollary 1.
To prove the next corollary we have first to choose an orthogonal base

of L such that b = 〈a1, . . . , an〉, where all ai belong to S. Due to Corol-
lary 1, (L, b) is Witt equivalent to (L′, b′) where b′ = 〈j(a1), . . . , j(an)〉.
Since the dimensions of both spaces are equal, it follows that b and b′ are



WITT RINGS 207

linearly equivalent, i.e. we may choose an orthogonal base of L in which b
has homogeneous coefficients (namely j(a1), . . . , j(an)).

Furthermore, if iv : K(S) → K̂v is the completion with respect to a
discrete valuation v then

∂kv = ∂kv̂ ◦ i∗v, k = 1, 2,

where v̂ is an extension of v to K̂v. Therefore for any α ∈ W (K(S)) if
i∗v(α) = 0 then ∂1

v(α) = ∂2
v(α) = 0.

Now all valuations induced by prime nonhomogeneous ideals of height 1
map K̃ to 0, i.e. they are K̃-valuations. Hence if for every K̃-valuation v,
i∗v(α) = 0 then ∆S(α) = 0 and due to Theorem 1, α = 0.

Later we shall need one more consequence of Proposition 1.

Corollary 11. Every nonhomogeneous height 2 prime ideal of the
graded ring contains just one homogeneous prime ideal of height 1.

P r o o f. Let r be any nonhomogeneous height 2 prime ideal of the graded
ring S. Since the quotient ring ST has no proper prime ideals of height 2
(see Proposition 1), it follows that the extension rT of the ideal r is equal to
the whole ring. Thus there are some homogeneous elements in the ideal r
and it contains a homogeneous prime ideal of smaller height, i.e. of height 1.

On the other hand, if the ideal r contained two different homogeneous
ideals of height 1, say p1 and p2, then it would contain their union. But
the primary decomposition of the homogeneous ideal generated by p1 ∪ p2

consists only of homogeneous ideals of height greater than 1, a the contra-
diction.

5. Relations between residue homomorphisms on W (K(V )) and
W (K(C)). Let p be a prime quasihomogeneous ideal, p ∈ Speh1(K[V ]),
and q = ψ(p) the associated prime divisor of the projective variety C. We
shall compare four valuations, namely, the quasihomogeneous valuation v
on K(V ), the induced quasihomogeneous valuation v∗ on Kp, the valuation
vp on K(V ) and the valuation vq on K(C) = K̃.

Let the quasihomogeneous fractions π, π∗, πp and πq or respectively their
images be uniformizers of the valuations v, v∗,vp and vq. They are related
in the following way:

πq = πd1p π
d2
∗ ω1, π = πd3p π

d4
∗ ω2,

where di, i = 1, 2, 3, 4, are nonzero integers and the fractions ωi, i = 1, 2, are
quasihomogeneous of weight 0 and regular but not zero at the point q (or
equivalently at p). We shall call the above fractions ωi the linking elements
of the uniformizers.
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We start with the following fact:

Lemma 1. The integers di, i = 1, 2, 3, 4, fulfil the following conditions:

(i) d1 = v(π∗), d2 = −v(πp);
(ii) d1d4 − d2d3 = 1.

P r o o f. S t e p 1. The integers d1 and d2 are relatively prime, moreover ,
d1 is positive.

The quasihomogeneous fraction πp is a generator of the maximal ideal of
the ring K[V ]p. On the other hand, πq is a generator of the maximal ideal
of the ring K(C)∩K[V ]p. Therefore πq belongs to the maximal ideal of the
ring K[V ]p and d1 must be positive.

Now, if d1 and d2 had a common factor d > 1,

d1 = d · d′1, d2 = d · d′2,

then the product π′q = π
d′1
p ·πd

′
2
∗ would be quasihomogeneous of weight 0 and

0 < vp(π′q) < vp(πq). This would contradict the assumption that πq is a
uniformizer.

S t e p 2. We compare the v-weights of the fractions πp and π∗:

πq = πd1p π
d2
∗ ω1, π = πd3p π

d4
∗ ω2.

Hence we have

d1v(πp) + d2v(π∗) = 0, d3v(πp) + d4v(π∗) = 1.

Thus v(πp) and v(π∗) are relatively prime. Moreover, v(π∗) is positive hence
from the first equation we obtain

d1 = v(π∗), d2 = −v(πp).

We substitute the above to the second equation and obtain d1d4 − d2d3

= 1.

Next we consider the restriction of the second residue homomorphism
associated with the prime quasihomogeneous ideal p ∈ Speh1 to the sub-
group

W = W (K̃)⊕W (K̃) · 〈π〉

of the Witt ring W (K(V )) generated by all forms with quasihomogeneous
coefficients.

Lemma 2. Let p be a quasihomogeneous prime ideal of height 1 of the
ring K[V ] and q = ψ(p). Then for any choice of the uniformizers,
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(∂1
v∗ ⊕ ∂2

v∗) ◦ (∂2
p)|W =



〈ω1〉∂2
q ◦ (∂1

v)|W ⊕ 〈ω1ω2〉∂2
q ◦ (∂2

v)|W
if q 6∈ Z(π) and v(πp) even,

〈ω1ω2〉∂2
q ◦ (∂2

v)|W ⊕ 〈ω1〉∂2
q ◦ (∂1

v)|W
if q 6∈ Z(π) and v(πp) odd,

〈ω1〉∂2
q ◦ (∂1

v)|W ⊕ 〈ω2〉∂1
q ◦ (∂2

v)|W
if q ∈ Z(π) \ C2, v(πp) even,

〈ω2〉∂1
q ◦ (∂2

v)|W ⊕ 〈ω1〉∂2
q ◦ (∂1

v)|W
if q ∈ Z(π) \ C2, v(πp) odd ,

〈ω2〉∂1
q ◦ (∂2

v)|W ⊕ 〈ω1ω2〉∂2
q ◦ (∂2

v)|W
if q ∈ C2 and d4 is even,

〈ω1ω2〉∂2
q ◦ (∂2

v)|W ⊕ 〈ω2〉∂1
q ◦ (∂2

v)|W
if q ∈ C2 and d4 is odd ,

where v (resp. v∗) is the quasihomogeneous valuation on K(V ) (resp. on
Kp) and ω1, ω2 are the images in Kq of the linking elements ω1 and ω2.

P r o o f. We compare the restrictions of compositions of the residue ring
homomorphisms

∂v∗ ◦ ∂p : W →W (Kq)[ξ, η], ξ2 = 1, η2 = 1,

and

∂vq
◦ ∂v : W →W (Kq)[ξ, η], ξ2 = 1, η2 = 1.

We have

∂v∗ ◦ ∂p


〈1〉
〈πq〉
〈π〉
〈ππq〉

 =


〈1〉

〈ω1〉ξd1ηd2
〈ω2〉ξd3ηd4

〈ω1ω2〉ξd1+d3ηd2+d4


and

∂vq ◦ ∂v


〈1〉
〈πq〉
〈π〉
〈ππq〉

 =


〈1〉
〈1〉η
〈1〉ξ
〈1〉ξη

 .

The image of ∂v∗ ◦ ∂p depends on the parity of di’s. It follows from
Lemma 4 that there are only six possibilities. Namely:

(i,ii) d1 odd, d3 even, then d4 must be odd and d2 may be either even
or odd;

(iii) d1 odd, d3 odd, d2 even, then d4 must be odd;
(iv) d1 odd, d3 odd, d2 odd, then d4 must be even;

(v,vi) d1 even, then d2 and d3 must be odd and d4 may be either even or
odd.
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We remark that q ∈ C2 if and only if d1 is even (i.e. the value group of
v∗ is contained in 2Z) and q ∈ Z(π) if and only if d3 is odd. Thus C2 is a
subset of Z(π).

Moreover, d2 = −v(πp), therefore to finish the proof it is enough to check
the above six cases.

6. The proof of Theorem 2. We shall obtain the exact sequence from
Theorem 2 by glueing other exact sequences.

We start the construction of the exact sequence from Theorem 2, taking
the direct sum of the exact sequences induced by the mappings ∇i, i = 1, 2:

∇1 =
⊕

q∈Proj1 \C2

∂2
q : W (K(C)) →

⊕
q∈Proj1 \C2

W (Kq);

∇2 =
⊕

q∈Proj1 \Z(π)

∂2
q ⊕

⊕
q∈Z(π)

∂1
q ⊕

⊕
q∈C2

∂2
q :

W (K(C)) →
⊕

q∈Proj1

W (Kq)⊕
⊕
q∈C2

W (Kq).

We obtain the following exact sequence:

0 → ker1⊕ ker2 →W (K(C))⊕W (K(C))

∇1⊕∇2−−−−→
⊕

q∈Proj1 \C2

W (Kq)⊕
( ⊕
q∈Proj1

W (Kq)⊕
⊕
q∈C2

W (Kq)
)

δ1⊕δ2−−−→ coker1⊕ coker2 → 0,

where keri and cokeri denote the kernel and the cokernel of the homomor-
phism ∇i, and δi is the corresponding factor mapping.

Next, we add to it the trivial exact sequence

0 → 0 → 0 →
⊕

p∈Speh1

⊕
r∈Spnh2 ∩V (p)

W (Kr)

id−→
⊕

p∈Speh1

⊕
r∈Spnh2 ∩V (p)

W (Kr) → 0.

We obtain the exact sequence

(1) 0 → ker1⊕ ker2 →W (K(C))⊕W (K(C))

∇1⊕∇2−−−−→
⊕

q∈Proj1 \C2

W (Kq)⊕
( ⊕
q∈Proj1

W (Kq)
⊕
q∈C2

W (Kq)
)
⊕N

δ1⊕δ2⊕idN−−−−−−→ coker1⊕ coker2⊕N → 0,
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where

N =
⊕

p∈Speh1

⊕
r∈Spnh2 ∩V (p)

W (Kr).

We remark that every nonquasihomogeneous prime ideal of height 2 contains
just one quasihomogeneous prime ideal of height 1 (see Corollary 11). Thus
as a matter of fact

N =
⊕

r∈Spnh2

W (Kr).

We apply Theorem 1 to each quasihomogeneous variety P =
SpecK[V ]/p, p ∈ Speh1. We put S = K[V ]/p, and K(S) = Kp. Thus
there is a group isomorphism

∂1
v∗ ⊕ ∂2

v∗ ⊕
⊕

r∈Spnh1

∂2
r : W (Kp) →W (K̃P )⊕W (K̃P )⊕

⊕
r∈Spnh1

W (Kr),

where v∗ is the quasihomogeneous valuation on Kp. Moreover, the field K̃P ,
consisting of quasihomogeneous fractions of weight 0, is isomorphic to the
field Kq for q = ψ(p) and

Spnh1K[V ]/p ≈ V (p) ∩ Spnh2K[V ].

We remark that the images ω1 and ω2 (in Kq), of the linking elements
ω1 and ω2 introduced in the previous section, are nonzero. Therefore the
mapping

Θ1
p ⊕Θ2

p ⊕
⊕

r∈Spnh1

∂2
r : W (Kp) →W (Kq)⊕W (Kq)⊕

⊕
r∈Spnh1

W (Kr),

where

Θ1
p ⊕Θ2

p =



〈ω1〉∂1
v∗ ⊕ 〈ω1ω2〉∂2

v∗ if ψ(p) 6∈ Z(π) and v(πp) is even,
〈ω1〉∂2

v∗ ⊕ 〈ω1ω2〉∂1
v∗ if ψ(p) 6∈ Z(π) and v(πp) is odd,

〈ω1〉∂1
v∗ ⊕ 〈ω2〉∂2

v∗ if ψ(p) ∈ Z(π) \ C2 and v(πp) is even,
〈ω1〉∂2

v∗ ⊕ 〈ω2〉∂1
v∗ if ψ(p) ∈ Z(π) \ C2 and v(πp) is odd,

〈ω2〉∂1
v∗ ⊕ 〈ω1ω2〉∂2

v∗ if ψ(p) ∈ C2 and d4 is even,
〈ω2〉∂2

v∗ ⊕ 〈ω1ω2〉∂1
v∗ if ψ(p) ∈ C2 and d4 is odd,

is a group isomorphism for each p ∈ Speh1.
Let Θ be the direct sum of Θp’s:

Θ =
⊕

ψ(p)∈Proj1 \C2

Θ1
p ⊕

( ⊕
ψ(p)∈Proj1

Θ2
p ⊕

⊕
ψ(p)∈C2

Θ1
p

)
:

⊕
p∈Spec1

W (Kp) →
⊕

q∈Proj1 \C2

W (Kq)⊕
( ⊕
q∈Proj1

W (Kq)⊕
⊕
q∈C2

W (Kq)
)
.
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Taking into account the commutation rules from Lemma 2 we have

Θ ◦
( ⊕
p∈Speh1

∂2
p

)
|W

= (∇1 ◦ ∂1
v ⊕∇2 ◦ ∂2

v)|W ,

where

W = W (K(C))⊕ 〈π〉W (K(C)).

Moreover, for any r ∈ Spnh2 and p ∈ Speh1,

∂2
r ◦ ∂2

p(W) = {0}.

Hence the following diagram is commutative:
ker1⊕ ker2
↓

W ∂1v⊕∂
2
v−−−→ W (K(C))⊕W (K(C))y⊕

p∈Speh1
∂2p

y∇1⊕∇2⊕0⊕
p∈Speh1

W (Kp) Θ⊕Ω−−→
⊕

q∈Proj1 \C2
W (Kq)⊕

( ⊕
q∈Proj1

W (Kq)⊕
⊕
q∈C2

W (Kq)
)
⊕ Nyδ1⊕δ2⊕idN

coker1⊕ coker2⊕N

where

Ω =
⊕

p∈Speh1

⊕
r∈Spnh2 ∩V (p)

∂2
r :

⊕
p∈Speh1

W (Kp) → N .

The horizontal arrows are isomorphisms, the homomorphism i∗, induced
by the inclusion i : K(C) = K̃ → K(V ), is a right inverse of the residue
homomorphism ∂1

v and the homomorphism 〈π〉 · i∗ is a right inverse of ∂2
v .

Thus the following sequence is exact:

0 → ker1⊕ ker2
̂→W

⊕
p∈Speh1

∂2
p−−−−−−−→

⊕
p∈Speh1

W (Kp)

(δ1⊕δ2)◦Θ⊕Ω−−−−−−−−→ coker1⊕ coker2⊕N → 0,

where ̂(α, β) = i∗(α) + 〈π〉 · i∗(β).
We have an isomorphism ∆ (see Corollary 1):

∆ = j∗ ⊕
⊕

p∈Spnh1

∂2
p : W (K(V )) →W ⊕

⊕
p∈Spnh1

W (Kp),

j∗(α) = i∗ ◦ ∂1
v(α) + 〈π〉i∗ ◦ ∂2

v(α).

We remark that for α ∈ W and β ∈
⊕

p∈Spnh1
W (Kp),

∆−1(α, β) = α+∆−1(0, β).
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Moreover,

∂V ◦∆−1(α, β) =
( ⊕
p∈Speh1

∂2
p ◦∆−1(α, β),

⊕
p∈Spnh1

∂2
p ◦∆−1(α, β)

)
=

( ⊕
p∈Speh1

∂2
p(α+∆−1(0, β)), β

)
.

Furthermore, the following sequence is split exact:

0 →
⊕

p∈Spnh1

W (Kp)∆
−1(0,·)−−−−→W (K((V )))

j∗−→W → 0.

We use the above sequence to extend the sequence (1) by the trivial
exact sequence:

0 →
⊕

p∈Spnh1

W (Kp)
id−→

⊕
p∈Spnh1

W (Kp) → 0.

We obtain the following diagram:

0 0
↓ ↓

0 Ker(∂V ) ker1⊕ ker2
↓ ↓ ↓ ̂

0→
⊕

p∈Spnh1
W (Kp) ∆−1(0,·)−−−−−→ W (K((V )))

j∗−→ W → 0yid y∂V y⊕
p∈Speh1

∂2p

0→
⊕

p∈Spnh1
W (Kp)

ϕ1−→
⊕

p∈Spec1
W (Kp)

ϕ2−→
⊕

p∈Speh1
W (Kp) → 0y y y(δ1⊕δ2)◦Θ⊕Ω

0 Coker(∂V ) coker1⊕ coker2⊕N
↓ ↓
0 0

where ϕ1 and ϕ2 are defined by

ϕ1 :
⊕

p∈Spnh1

W (Kp) →
⊕

p∈Speh1

W (Kp)⊕
⊕

p∈Spnh1

W (Kp),

ϕ1(β) =
( ⊕
p∈Speh1

∂2
p ◦∆−1(0, β), β

)
;

ϕ2 :
⊕

p∈Speh1

W (Kp)⊕
⊕

p∈Spnh1

W (Kp) →
⊕

p∈Speh1

W (Kp),

ϕ2(α, β) = α−
⊕

p∈Speh1

∂2
p ◦∆−1(0, β).
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Lemma 3. The above diagram is commutative and furthermore
Ker(∂V ) and Coker(∂V ) are isomorphic respectively to ker1⊕ ker2 and
coker1⊕ coker2⊕N .

P r o o f. The commutativity of the left hand square is obvious. Indeed,

∂V ◦∆−1(0, β) =
⊕

p∈Spec1

∂2
p ◦∆−1(0, β)

=
( ⊕
p∈Speh1

∂2
p(∆

−1(0, β)), β
)

= ϕ1(β).

The commutativity of the right hand square is more complicated. We
have ⊕

p∈Speh1

∂2
p ◦ j∗ ◦∆−1(α, β) =

⊕
p∈Speh1

∂2
p(α).

On the other hand,

ϕ2 ◦ ∂V ◦∆−1(α, β) = ϕ2

( ⊕
p∈Speh1

∂2
p(α+∆−1(0, β)), β

)
=

⊕
p∈Speh1

∂2
p(α+∆−1(0, β))−

⊕
p∈Speh1

∂2
p(∆

−1(0, β)) =
⊕

p∈Speh1

∂2
p(α).

Since ∆−1 is an isomorphism, we conclude that
⊕

p∈Speh1
∂2
p ◦ j∗ = ϕ2 ◦ ∂V .

The second part of the lemma follows from the fact that the horizontal
rows of the above diagram are split exact.

Corollary 12. The following sequence is exact :

0 → ker1⊕ ker2
̂→W (K((V ))) ∂V−→

⊕
p∈Spec1

W (Kp)

δ→ coker1⊕ coker2⊕N → 0,

where δ(α, β) = (δ1 ⊕ δ2) ◦ (Θ ⊕ Ω)(α −
⊕

p∈Speh1
∂2
p(∆

−1(0, β))), for α ∈⊕
p∈Speh1

W (Kp) and β ∈
⊕

p∈Spnh1
W (Kp).

This finishes the proof of Theorem 2, because all the above homomor-
phisms commute with the multiplication by elements from W (K).

7. The proof of Theorem 3. Due to Corollary 2 there is a base
e1, . . . , en of the K(V )-vector space L such that

b(ei, ej) =
{
ai if i = j,
0 otherwise,

where all ai are nonzero, quasihomogeneous and belong to K[V ]. We put
a = a1 · . . . · an.
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Let N be a K[V ]-sublattice of L generated by e1, . . . , en and N∗ a dual
sublattice, i.e. the one spanned by a−1

1 e1, . . . , a
−1
n en. N and N∗ become

graded K[V ]-modules when we assume that ei are homogeneous of weight
v(ei) = −v(ai)/2. We remark that the bilinear form b(·, ·) restricted to N or
N∗ preserves the grading and has values in respectively K[V ] or (a−1)K[V ].
We shall denote by TN the set of homogeneous elements of N .

Generally b(·, ·) restricted to N is degenerate, therefore we seek some
greater module.

Lemma 4. There exists a graded K[V ]-module Q contained in N∗ such
that

(i) the bilinear form b(·, ·) restricted to Q takes values in K[V ] and for
every prime height 1 ideal p:

(ii) the bilinear form b(·, ·) restricted to K[V ]p-module Qp = K[V ]pQ is
nondegenerate;

(iii) K[V ]pN ⊂ Qp ⊂ K[V ]pN∗;
(iv) if no ai belongs to p then K[V ]pN = Qp = K[V ]pN∗.

P r o o f. Let p be a prime quasihomogeneous height 1 ideal containing
at least one ai. We fix a quasihomogeneous uniformizer π of the associated
valuation such that in all other valuations associated with prime height 1
ideals the weight of π is nonpositive. After a slight modification of the
method used in [8] in the proof of Theorem 3.1 (Ch. IV, §3) we obtain
a positive integer k and homogeneous vectors f1, . . . , fn ∈ (π−k)TN such
that b(·, ·) restricted to the K[V ]p-module N(p) generated by fi’s is K[V ]p-
nondegenerate. After multiplying by some invertible elements of K[V ]p we
see that the products of fi’s and the products of fi’s and ei’s belong to
K[V ].

We repeat the same procedure for other prime quasihomogeneous height
1 ideals containing at least one ai in such a way that the products of fi’s
defined for different ideals also belong to K[V ].

Let Q be a K[V ]-module generated by ei’s and fi’s constructed for all
prime ideals of height 1 containing ai’s.

Obviously Q fulfils the condition (i) of the lemma. The remaining con-
ditions (ii) and (iii) follow directly from the construction.

The module Q is usually not selfdual, therefore we put

M =
⋂

p∈Spec1K[V ]

Qp.

Lemma 5. The module M defined above is a graded K[V ]-module and
the bilinear form b(·, ·) restricted to M is nondegenerate.
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P r o o f. As V is normal, K[V ] is a Krull domain and we may apply
[1], §VII.4, Theorem 3, to show that M is a reflexive K[V ]-module. Thus
Mp = Qp for all p ∈ Spec1K[V ].

Next we show that the bilinear form b(·, ·) restricted to the module M
is nondegenerate, i.e. M is selfdual.

Let α be any K[V ]-functional on M . Since α can be extended to a
K(V )-functional on L, it follows that there exists η ∈ L such that for every
x ∈ L, α(x) = (η, x).

But, on the other hand, α can be extended to a K[V ]p-functional on
Mp = Qp, for every prime divisor p. Qp is selfdual, hence η belongs to every
Qp. Therefore it belongs to their intersection, i.e. to M .

Let Q∗ be the dual of Q, i.e. the set of η ∈ L such that for every x ∈ Q
b(η, x) ∈ K[V ]. Obviously it is graded.

Now, as M is selfdual and contains Q, it is contained in Q∗. But, in the
same way as above we can show that if α is a K[V ]-functional on Q then
the corresponding η belongs to M . Therefore M is equal to Q∗, hence it is
graded.

8. The two-dimensional case. When the variety V is a surface then
every point of codimension 2 is closed and is contained in some quasiho-
mogeneous subvariety V (p). Moreover, there is only one quasihomogeneous
closed point—the origin. Thus

Speh2 =
⋃

p∈Speh1

(Spnh2 ∩V (p)) = Spec2 \{(x1, . . . , xn)}.

The open subscheme V ∗ = V \ {(x1, . . . , xn)} is quasiprojective and
smooth hence the kernel of the direct sum of all second residue homomor-
phisms corresponding to prime divisors is isomorphic to the Witt ring of
this subscheme (see [2]).

Comparing the above with Theorems 2 and 3 we obtain the first two
corollaries.

Now if V1 = SpecK[x, y] then we may choose the quasihomogeneous
weight in several ways. For example we may put

v(x) = v(y) = 1.

In this case the weight coincides with the order of an element at the origin.
The associated projective variety C is just the projective line and the func-
tion field K(C) is the field of rational functions in one variable. We choose
π = x. Thus Z(π) consists of one point (x). Moreover, C2 is empty. Thus
∇1 is the direct sum of all second residue homomorphisms associated with
points of C. Hence its kernel and cokernel are isomorphic to W (K) (see [7,
8, 11]). ∇2 is the direct sum of the first residue homomorphism associated
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with (x) and the second residue homomorphisms associated with all points
distinct from (x). Hence it is an isomorphism (compare [7, 8, 11]).

Moreover,

(i) the function field corresponding to the maximal ideal (x, y) is K,
(ii) the forms from W (K(x, y)) defined over K belong to the kernel of

any second residue homomorphism.

Therefore we may rewrite the exact sequence from Theorem 2 in the
following way:

0 →W (K) i∗−→W (K(x, y)) ∂V−→
⊕

p∈Spec1

W (Kp)
δ−→

⊕
r∈Spec2

W (Kr) → 0

where

(i) i∗ is induced by the canonical inclusion i : K → K(x, y);
(ii) ∂V =

⊕
p∈Spec1

∂2
p .

Analogously if Vn = SpecK[x, y, z]/(yz − xn) then we may also choose
the quasihomogeneous weight in several ways. For example we may put

v(x) = 1, v(y) = v(z) = m for n = 2m,
v(x) = 1, v(y) = m, v(z) = m+ 1 for n = 2m+ 1.

The associated projective variety C is just the projective line and the func-
tion field K(C) is the field of rational functions in one variable.

K̃ = K

(
y

xm

)
.

We choose π = x. Thus Z(π) consists of two points (x, y) and (x, z). More-
over,

C2 =


Z(π) if n = 0 (mod 4),
∅ if n = 2 (mod 4),
(y, x) if n = 1 (mod 4),
(z, x) if n = 3 (mod 4),

∇1 =
⊕

q∈Proj1 \C2

∂2
q .

Thus

ker∇1 =

W (K)〈1〉 ⊕W (K)〈y〉 if n = 0 (mod 4),
W (K)〈1〉 if n = 2 (mod 4),
W (K)〈1〉 if n = 1 (mod 2);

and

coker∇1 =

 0 if n = 0 (mod 4),
W (K) if n = 2 (mod 4),
0 if n = 1 (mod 2),
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∇2 =
⊕

q∈Proj1 \Z(π)

∂2
q ⊕

⊕
q∈Z(π)

∂1
q ⊕

⊕
q∈C2

∂2
q .

Thus

ker∇2 =

 0 if n = 0 (mod 4),
W (K)〈y〉 if n = 2 (mod 4),
0 if n = 1 (mod 2),

and

coker∇2 =

W (K)⊕W (K) if n = 0 (mod 4),
W (K) if n = 2 (mod 4),
W (K) if n = 1 (mod 2).

As before, the function field corresponding to the origin, i.e. to the maximal
ideal (x, y, z), is K. Therefore we may rewrite the exact sequence from
Theorem 2 in the following way. For n odd,

0 →W (K) i∗−→W (K(Vn))
∂V−→

⊕
p∈Spec1

W (Kp)
δ→

⊕
r∈Spec2

W (Kr) → 0,

and for n even,

0 →W (K)⊕W (K)
i∗1−→W (K(Vn))

∂V−→
⊕

p∈Spec1

W (Kp)
δ→W (K)⊕

⊕
r∈Spec2

W (Kr) → 0

where

(i) i∗ is induced by the canonical inclusion i : K → K(Vn);
(ii) i∗1(α, β) = i∗(α) + 〈y〉i∗(β);
(iii) ∂V =

⊕
p∈Spec1

∂2
p .

This finishes the proof of Corollary 7. Corollary 8 follows from the
following two facts.

• Let L be a line bundle over V ∗
n with a nonvanishing section e. Then

the inner product b(e, e) = 1 is nondegenerate and corresponds to 〈1〉 in
W (K(V )).

• Let L be a line bundle over V ∗
n generated by two sections e1, e2, xm·e1 =

z · e2. The matrix (
y xm

xm z

)
has rank one at every point of V ∗

2m = V2m \ {(x, y, z)}. Therefore the inner
product on L

b(e1, e1) = y, b(e2, e2) = z, b(e1, e2) = xm

is nondegenerate. Moreover, the image of (L, b) in W (K(V )) is equal to 〈y〉.
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