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0. Introduction. In this paper we study fundamental solutions for
second order differential operators on connected, simply connected homo-
geneous manifolds of negative curvature. Such manifolds are solvable Lie
groups S with a left-invariant Riemannian structure. By a result of Heintze
[He], S is a semidirect product of its maximal nilpotent normal subgroup
N = expN and A = R

+ with the following property:

There is an H in the Lie algebra A of A such that the real parts of the

eigenvalues of adH ∈ End(N ) are all strictly positive.

Moreover, every solvable Lie group with this property admits a left-
invariant Riemannian structure with strictly negative curvature.

These groups, which will be called here Heintze groups, are very inter-
esting objects from the point of view of harmonic analysis. As a particular
case we recognize rank one symmetric spaces and, more generally, harmonic
spaces. Harmonic analysis on harmonic spaces has been intensively studied
by various authors ([ADY], [A], [ACD], [CDKR], [DR1], [DR2], [Di], [R]).
The approach developed in the papers mentioned above brings new ideas
also to noncompact rank one symmetric spaces incorporating them into a
new picture. On harmonic manifolds there is a notion of radiality [DR1],
spherical analysis is a particular case of the Jacobi function analysis [ADY],
the Poisson kernel and the fundamental solution for the Laplace–Beltrami
operator are given by formulas [DR1] and the heat kernel has sharp lower
and upper estimates [ADY]. All this makes harmonic analysis there “very
concrete” in a sense.

Nothing of that is available on general NA groups with N being a homo-
geneous group and A not necessarily one-dimensional. The natural questions
considered in these two extreme settings are clearly different (see [DH]).
Heintze groups are somewhere in between. No radiality or concrete formulas
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are available there, but some conjectures can be made on what is known
for harmonic spaces, as well as analogous results (or generalizations) can be
proved. A step in this direction was made in [DHZ], where sharp pointwise
estimates for the Poisson kernel and its derivatives were obtained.

In the present paper we apply Ancona’s potential theory of negatively
curved manifolds to S. This is a theory which provides tools to describe
global behavior of potentials. We use it to obtain sharp poinwise estimates
for fundamental solutions for a large class of left-invariant subelliptic op-
erators. The estimates we get imply weak type (1, 1) of the corresponding
Riesz transforms of the first and the second order.

Let π : S → A, π(xa) = a, be the canonical homomorphism of S onto
A. We consider a left-invariant second order operator

L = Y 2
1 + . . .+ Y 2

p + Y + γ,

where Y1, . . . , Yp generate the Lie algebra S of S, π(L) = (a∂a)
2 −αa∂a + γ

and γ < α2/4. Under this condition, L+λI for λ ≤ α2/4−γ admits a global
Green function Gλ. Therefore Ancona’s approach to the Martin boundary
theory on negatively curved manifolds can be used. Following Ancona we
formulate certain boundary Harnack inequalities which give sharp pointwise
estimates from above and below for Gλ, λ < α2/4 − γ (Theorem (2.21)).
It is remarkable that using Ancona’s theory we do not need any further
assumptions on L like symmetry or L being the Laplace–Beltrami operator
with respect to the underlying Riemannian metric. Also, the N -part of Y
is arbitrary.

In fact, all the work can be reduced to the case γ = 0 thanks to a simple
conjugation of the operator, and then the case α = Q becomes the most
interesting. It is so not only because the Laplace–Beltrami operator on S
has α = Q, but also, because this is somehow a limit case. If α > Q or
1 < p < ∞ then the operator f → f ∗ G is bounded on Lp(mL), and if λ
belongs to the Lp(mL) spectrum of −L then ℜλ≥(Q/p)α−Q2/p2>0. This
follows from a very simple calculation, which does not require any pointwise
estimates for G. If α = Q then f → f ∗G is no longer bounded on L1(mL)
but it is of weak type (1, 1). To prove this we use essentially our pointwise
estimates for G. If α < Q, then f → f ∗G is not of weak type (1, 1).

This is an interesting phenomenon, which gives weak type (1, 1) of the
first and second order Riesz transforms

f → ∇j(−L)j/2f, j = 1, 2,

for L elliptic with γ = 0, α = Q, i.e. in the case where L has a spectral gap
on L2(mL). (For the first order Riesz transforms we assume additionally
that Y = −Qa∂a and so L is selfadjoint on L2(mL).) Indeed, the local part
is standard, and by the Harnack inequality the kernel at infinity can be dom-
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inated by G. This gives also a new proof in the case of the Laplace–Beltrami
operator on harmonic spaces, namely, a proof which does not require heat
kernel estimates as the one presented in [ADY].

The problem of Lp, p > 1, boundedness of the Riesz transforms cor-
responding to the Laplace–Beltrami operator on a Riemannian manifold is
solved in a quite general setting. They are bounded on Riemannian mani-
folds with Ricci curvature bounded from below [Ba], [L1]. This is not the
case with weak type (1, 1) and the problem is still open. To our knowledge,
the best result about Riesz transforms of integrable functions on Rieman-
nian manifolds with bounded curvature tensor together with its first and
second derivatives has been obtained by N. Lohoué [L2] and it says that

µ({x : |∇(−L)1/2f(x)| > β}) ≤ c‖f‖L1(µ)(1 + |log β|1/2)/β,
where µ is the Riemannian volume element on the manifold and L the
Laplace–Beltrami operator. Heintze groups give a partial answer to the
question of weak type (1, 1) of Riesz transforms for the Laplace–Beltrami
operator.

The author would like to express her gratitude to Waldemar Hebisch,
Andrzej Hulanicki and Peter Sjögren for helpful discussions on the subject.
A substantial part of the work on this paper was done in the spring of 1996
during her stay at the University of Göteborg in the atmosphere of Peter
Sjögren’s extraordinary hospitality.

1. Preliminaries. Let S be a solvable Lie algebra which is the sum
S = N ⊕A of its nilpotent ideal N and a one-dimensional algebra A = R.
We assume that there is H ∈ A such that the real parts of all the eigenvalues
of adH : N → N are positive.

Let N,A, S be the connected and simply connected Lie groups whose Lie
algebras are N , A, S respectively. Then S = NA is a semidirect product of
N and A = R

+.
We consider a left-invariant second order operator

(1.1) L = Y 2
1 + . . .+ Y 2

p + Y + γ,

where Y1, . . . , Yp generate the Lie algebra S. It follows from elementary
linear algebra that L can be written in the form

L = β(H + Y ′
0)2 +

m∑

j=1

Y ′2
j + Y + γ,

where Y ′
0 , . . . , Y

′
m are left-invariant vector fields on S such that Y ′

0(e), . . .
. . . , Y ′

m(e) ∈ N . We may assume β = 1.
The decomposition of S into a semidirect product of the maximal nilpo-

tent normal subgroup N and A = R
+ is not unique, i.e. there is no canonical



232 E. DAMEK

choice of A. We are going to make use of this fact and select A in a conve-
nient way.

Let A′ = lin(H+Y ′
0). Clearly the real parts of the eigenvalues of adH+Y ′

0

are again strictly positive.
Decomposing s ∈ S as

s = xa, x ∈ N, a = exp((log a)(H + Y ′
0))

we have S = N expA′ and for an α ∈ R,

(1.2) L = γ + (a∂a)
2 − αa∂a +

m∑

i=1

Φa(Xi)
2 + Φa(X),

where Φa = Adexp((log a)(H+Y ′

0
)) and X,X1, . . . ,Xm are left-invariant vector

fields on N .
L satisfies the following Harnack inequality [VSC]:

For every open set Ω, every compact set K ⊂ Ω, every point x ∈ Ω and

every multiindex I there is a constant c such that

(1.3) sup
y∈K

|∂If(y)| ≤ cf(x)

whenever f ≥ 0 and Lf = 0 in Ω.

Since L is left-invariant, if we take x0Ω, x0K, x0x instead of Ω, K, x
we have (1.3) with the constant c independent of x0 ∈ S.

We are also going to use a parabolic Harnack inequality, which is satisfied
by L− ∂t [VSC]:

For every open set Ω, every compact set K ⊂ Ω, every t1 < t2 < t3 < t4
and every multiindex I there is a constant c such that

(1.4) sup
y∈K

|∂If(y, t2)| ≤ c inf
y∈K

f(x, t3)

whenever f ≥ 0 and (L− ∂t)f = 0 in Ω × (t1, t4).

Again we will profit from the left-invariance of the above Harnack in-
equality.

Let µt be the semigroup of probability measures generated by L. The
right convolution with µt,

Ttf(x) =
\
S

f(xy−1) dµt(y),

defines a strongly continuous semigroup of bounded operators on Lp spaces,
1 ≤ p ≤ ∞, both with respect to the left and to the right Haar measures.
Let µt = pt dmR. Then

(1.5) Ttf(x) =
\
S

f(xy−1)pt(y) dmR(y) =
\
S

f(y)pt(y
−1x) dmL(y).
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pt(x) is a C∞ function on S×R
+ and (L−∂t)pt(x) = 0. Assume for a while

that γ = 0. Let

K1 =

∞\
0

e−tµt dt.

Since the right random walk with the law K1 is transient [C], it follows that

G =

∞\
0

µt dt =
∑

n≥1

K∗n
1

is a Radon measure. Moreover, G does not have an atom at e. The density
of G with respect to the right Haar measure will be denoted also by G, i.e.

(1.6) G(x) =

∞\
0

pt(x) dt.

Then G is a fundamental solution of L, i.e.

(1.7) LG = −δe
in the sense of distributions. Since S is not a unimodular group we must
choose a measure to define derivatives of a distribution. For a left-invariant
vector field X on S and a distribution F on S, XF is defined by

(1.8) 〈XF,ϕ〉 = −〈F,X∗ϕ〉, ϕ ∈ C∞
c (S),

where

〈Xϕ,ψ〉 = 〈ϕ,X∗ψ〉
and

〈ϕ,ψ〉 =
\
S

ϕ(x)ψ(x) dmL(x), ϕ, ψ ∈ C∞
c (S).

A locally integrable function F is identified with the distribution FdmL.
(1.7) follows from Harnack’s inequality (1.4) which allows us to dominate
derivatives of ϕ ∗ pt. More precisely, for a constant c we have

(1.9) |∂t(ϕ ∗ pt)(x)| ≤ cϕ ∗ pt+1(x)

for every ϕ ∈ Cc(S), ϕ ≥ 0, every x ∈ S and t ≥ 1.

We come back to L with an arbitrary γ. Let L∗ be defined by

〈Lϕ,ψ〉 = 〈ϕ,L∗ψ〉, ϕ, ψ ∈ C∞
c (S).

Since Φa(Xi)
∗ = −Φa(Xi) and (a∂a)

∗ = −a∂a +Q, we have

L∗ = γ +Q2 − αQ+ (a∂a)
2 + (α− 2Q)a∂a(1.10)

+

m∑

i=1

Φa(Xi)
2 − Φa(X).
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We assume that L in (1.2) satisfies

(1.11) γ ≤ α2/4.

Then the same condition is satisfied by L∗, i.e.

γ +Q2 − αQ ≤ (α− 2Q)2/4.

If L satisfies (1.11) then it admits a global Green function. Indeed, let

(1.12) L′f = a−βL(aβf) = Lf + 2βa∂af + (β2 − αβ)f, f ∈ C∞(S).

If γ ≤ α2/4 we can find β such that β2 +αβ+γ = 0 and so the fundamental
solution G for L can be easily expressed in terms of the fundamental solution
for L′, which exists by (1.6), (1.7). We write

(1.13) G(x, y) = G(y−1x).

Then G is the Green function for L in the sense of potential theory. More-
over, we have

(1.14) T ∗
t f(x) =

\
S

f(xy−1)p̆t(y) dmR(y)

and hence G∗(x) = Ğ(x) = G(x−1), i.e. G∗(x, y) = G(y, x).
Let Tt be the semigroup with the infinitesimal generator (1.2). In what

follows we will need the norms of the operators Tt acting on Lp(mL), 1 ≤
p ≤ ∞. Let f, g ∈ Lp(mL). A simple calculation shows that

|〈Ttf, g〉| ≤ ‖f‖Lp‖g‖Lq

\
S

a−Q/p dµt.

The last integral can be easily computed. Since

πA(L) = (a∂a)
2 − αa∂a + γ,

we have\
S

a−Q/p dµt = eγt
∞\
−∞

e−rQ/p
1√
4πt

e−(r−αt)2/(4t) dr = e(γ−(Q/p)α+Q2/p2)t.

Therefore,

(1.15) ‖Tt‖Lp(mL)→Lp(mL) ≤ e(γ−(Q/p)α+Q2/p2)t.

2. Estimates for the Green function. In this chapter we give sharp
pointwise estimates for the fundamental solution G of L. They will follow
from certain boundary Harnack inequalities due to Ancona [A1] and adapted
to our case as in [D]. We start with showing that we are in the framework of
Ancona’s theory. In fact, this has already been elaborated in [D] for the case
when the action of H on N is diagonal, and there is no difference between
this particular case and general S = NA considered here.
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First of all, the sheaf of L + λI harmonic functions satisfies Brelot’s
axioms (for the details we refer to [B] and to Brelot’s potential theory as
presented in [A2], [B1], [B2], [H], [HH]).

Next, by (1.12) the global Green function for L+ λI with γ + λ ≤ α2/4
exists.

Finally, there is a basis R of open subsets of S which are Dirichlet regular
with respect to all the operators L+λI, γ+λ ≤ α2/4 (Theorem 5.2 of [B]).

To proceed with Ancona’s theory we must guarantee a certain good
behaviour of elements of R with respect to the distance. This is immediate
if L is elliptic (the case considered in [A1]) because R contains Riemannian
balls B(x, r) = {y ∈ S : τ(x, y) < r} of sufficiently small radii r. For L as
in (1.1) we need the following lemma

(2.1) Lemma.(a) There are positive constants c1, c2 and r0 such that for

every 0 < r < r0 there is a neighbourhood Vr of e which belongs to R and

B(e, c1r) ⊂ Vr ⊂ B(e, c2r).

(b) Given any compact set K there is Ω ∈ R such that K ⊂ Ω.

The proof of Lemma (2.1) is elementary and, provided (1.2), the same
as the proof of Lemma (4.1) in [D]. Since L is left-invariant we immediately
get existence of Vr(x) = xVr ∈ R such that

(2.2) B(x, c1r) ⊂ Vr(x) ⊂ B(x, c2r).

Moreover, we have uniform estimates for GλVr(x), which is the Green function

for L+ λI on Vr(x).

(2.3) Lemma. Given r < r0 there is a constant cr such that for 0 ≤ λ ≤
α2/4 − γ,

GλVr(x)(y, z) ≥ cr when y, z ∈ B
(
x, 1

2c1r
)
,(2.4)

GλVr(x)(y, z) ≤ c−1
r when τ(y, z) ≥ 1

4c1r.(2.5)

Clearly it is enough to prove (2.4) for x = e and λ = 0, and (2.5) for
x = e and λ = α2/4 − γ, which is standard.

Let Φ : [0,∞) → [c0,∞) with Φ(0) = c0 be a positive, increasing function
such that limt→∞ Φ(t) = ∞. By a Φ-chain we mean a sequence of open sets
V1 ⊃ . . . ⊃ Vm together with a sequence of points xi ∈ ∂Vi, i = 1, . . . ,m,
such that for every i and every z ∈ ∂Vi+1,

(2.6) τ(z, ∂Vi) ≥ Φ(τ(z, xi+1))

and

(2.7) c0 ≤ τ(xi, xi+1) ≤ c−1
0 .

Notice that S \ V1 ⊂ . . . ⊂ S \ Vm together with x1, . . . , xm is a Φ∗-chain
with some Φ∗ closely related to Φ. It is called a dual chain. Clearly after a
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small modification we may have both chains with the same Φ. A sequence of
points x1, . . . , xm is called a Φ-chain if there exist open subsets V1, . . . , Vm
with xi ∈ ∂Vi satisfying conditions (2.6), (2.7).

Existence of a global Green function and properties (2.2), (2.4), (2.5)
allow us to proceed as in [A1] to get

(2.8) Theorem. There is a constant c depending only on L and Φ such

that for every Φ-chain x1, . . . , xm and every 1 < k < m,

(2.9) c−1G(xm, xk)G(xk, x1) ≤ G(xm, x1) ≤ cG(xm, xk)G(xk, x1).

The crucial point in the above theorem is that c does not depend on a
particular sequence x1, . . . , xm provided it is a Φ-chain. As a consequence
of Theorem (2.8) we obtain some boundary Harnack inequalities which are
going to be our main tool in proving estimates for the Green function. Let
V1 ⊃ V2 be two open sets and B(p, r) a Riemannian ball included in V1 \V2.
(V1, V2, B(p, r)) will be called a (Φ, r)-triple if for every x ∈ ∂V1 and every
y ∈ ∂V2 there is a Φ-chain passing through x, p, y. Proceeding as in [A1],
Theorem 2, we obtain

(2.10) Theorem. Given Φ and r there is a constant c such that for every

(Φ, r)-triple (V1, V2, B(p, r)) and any nonnegative superharmonic functions

f, g with the properties

(a) f is harmonic on the complement of V2 and f is dominated by a

potential there,

(b) g is harmonic in B(p, r),

we have

(2.11)
f(x)

f(p)
≤ c

g(x)

g(p)
for x 6∈ V1.

To get convenient boundary Harnack inequalities we must recognize ap-
priopriate Φ-chains in S.

Given an arbitrary euclidean scalar product (·, ·) in N let

〈X,Y 〉H =

∞\
0

〈e−t adHX, e−t adHY 〉 dt and ‖X‖H =
√

〈X,X〉H .

We define a norm ̺ by

(2.12) ̺(expX) = (inf{a > 0 : ‖elog a adHX‖H ≥ 1})−1.

Since for X 6= 0, lima→∞ ‖elog a adHX‖H = ∞, lima→0 ‖elog a adH‖H = 0 and
the function a→ ‖elog a adHX‖H is strictly increasing, for every X 6= 0 there
is precisely one a such that ‖elog a adHX‖ = 1. Moreover,

(2.13) ̺(exp elog a adHX) = a̺(expX).



FUNDAMENTAL SOLUTIONS 237

Now we proceed as in [A1] and [D], and so it is convenient to write
elements of S as s = xa, x ∈ N , a ∈ A. Therefore we will keep this notation
until the end of this chapter. Let

T d = {xa : ̺(x) < d, a < d}
and for s ∈ S,

sT d = {sw : w ∈ T d}.
In particular, for q ∈ A,

qT d = {xa : ̺(x) < qd, a < qd} = T qd.

It turns out that s, sq, . . . , sqn together with sT d, sqT d, . . . , sqnT d is a
Φ-chain with a Φ depending only on q and d. Since left translations are
isometries it is enough to prove that for x = e and n = 1. Then the statement
follows from the following estimate for τ which is due to Guivarc’h [G]:

(2.14) Lemma. There is a constant c such that for every x ∈ N and

a ∈ A we have

c−1(log(1 + ̺(x)) + |log a|) ≤ τ(xa) + 1(2.15)

≤ C(log(1 + ̺(x)) + |log a| + 1).

In fact, we have more:

(2.16) Lemma. Let d1 < d2 < d3. Every y ∈ ∂qT d1 and every z ∈ ∂qT d3

can be joined by a Φ-chain passing through y, qd2 and z for some Φ which

depends only on d1, d2, d3 and does not depend on q.

The proof goes along the lines suggested in [A1], Lemma 2.6, for a slightly
different setting. For the group S = NA with diagonal action of A on N
the details of the proof are given in [D] (Lemma 5.3).

The above lemma and Theorem (2.10) imply

(2.17) Corollary. There is a constant c such that for every q and for

every y ∈ 3
4qT

1 and z1, z2 6∈ 2qT 1,

(2.18) c−1G(y, z2)

G(q, z2)
≤ G(y, z1)

G(q, z1)
≤ c

G(y, z2)

G(q, z2)
.

Before proving estimates for the Green function we need one more lemma.

(2.19) Lemma. Let an → ∞ be a sequence such that

lim
n→∞

G(s, an)

G(e, an)
= h(s)

exists. Then for every x ∈ N ,

(2.20) h(xs) = h(s).
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P r o o f. Let x ∈ N . We have

G(xs, an)

G(e, an)
=
G(s, ana

−1
n x−1an)

G(s, an)
· G(s, an)

G(e, an)

and limn→∞ a−1
n x−1an = e. By the Harnack inequality (1.3) for L∗ there is

c independent of n such that

|G(s, ana
−1
n x−1an) −G(s, an)| ≤ cτ(a−1

n xan)G(s, an)

provided τ(a−1
n s) > 1 and τ(a−1

n xan) < 1/2. Therefore

lim
n→∞

G(s, ana
−1
n xan)

G(s, an)
= 1

and (2.20) follows.

Now we are ready to formulate our main result.

(2.21) Theorem. Let L be as in (1.2) with γ = 0, α > 0. Given

B(e, r) = B there is a constant c such that

c−1h(s) ≤ G(s) ≤ ch(s), s 6∈ B(e, r),

where s = xa and h is the function

(2.22) h(xa) =





aα if ̺(x) ≤ 1, a ≤ 1,
̺(x)−Q−αaα if ̺(x) ≥ 1, ̺(x) ≥ a,
a−Q if ̺(x) ≤ a, a ≥ 1.

R e m a r k 1. Theorem (2.21) gives estimates for the fundamental solu-
tion of the operator (1.2) satisfying γ < α2/4.

Indeed, taking β = (α−
√
α2 − 4γ)/2 in (1.12) we obtain

L′f = a−β(L(aβf)) = (a∂a)
2 − (α− 2β)a∂a +

m∑

i=1

Φa(Xi)
2 + Φa(X)

with α−2β > 0. Moreover, if G and G′ are fundamental solutions for L and
L′ respectively then G(xa) = G′(xa)aβ . Since L′ satisfies the assumptions
of Theorem (2.21), for G′ we have estimates (2.22) with α − 2β instead of
α and so appropriate estimates for G.

R e m a r k 2. If S is a harmonic space and L the Laplace–Beltrami
operator then h(xa) ≈ e−Qτ(xa), where τ is the Riemannian metric ([DR1]).
This reflects radiality properties of L. In the general case the comparison
of the Green function for the Laplace–Beltrami operator with the function
e−δτ , although possible, is clearly not good enough. More precisely, on
pinched manifolds we have a trivial estimate [AS]

c−1e−(1/δ)τ ≤ G ≤ ce−δτ

outside a ball around the origin but it is far from being optimal. As an
example we can take the operators considered in this paper such that α 6= Q.
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Therefore, for Heintze groups it seems much better to formulate estimates
in terms of x and a coordinates, as well as to compare with aα rather than
with an exponential of the distance. This is important also for applications
(see Theorem (2.38)).

P r o o f o f T h e o r e m (2.21). In the proof various constants are de-
noted by c. First we prove that

(2.23) G(xa) ≤ caα for ̺(x) ≤ 3, a ≤ 3.

We take V1 = 3T 1, V2 = 2T 1, f = G, g = aα in Theorem (2.10). Then there
is a constant c such that

(2.24) G(xa) ≤ caα

for xa ∈ ∂V1. To extend (2.24) to V1 \B we use the Harnack inequality for
L∗ and G∗ = Ğ. Let ya ∈ V1 \B and xa ∈ ∂V1. Then τ(a−1y−1, a−1x−1) =
τ(xy−1), which is bounded by a constant d when ̺(x), ̺(y) ≤ 3. Therefore
by left-invariance of L∗,

G(ya) = G∗(a−1y−1) ≤ cG∗(a−1x−1) = G(xa)

with a constant c depending only on B and d, which proves (2.24).
Applying (2.24) to L∗, G∗ and aQ instead of aα we obtain

(2.25) G∗(a) ≤ caQ for a ≤ 1.

Hence

(2.26) G(a) ≤ ca−Q for a ≥ 1.

Let q ≥ 1. We take V1 = 3qT 1, V2 = 2qT 1, f = G, g = aα in Theorem
(2.10). Then

G(qxb) ≤ cG(2.5q)bα

for xb ∈ ∂T 3 with c independent of q. Therefore by (2.26),

(2.27) G(qxb) ≤ cq−Qbα, xb ∈ ∂T 3.

If b = 3, (2.27) implies

G(xa) ≤ ca−Q if ̺(x) ≤ a, a ≥ 3.

Since for 1 ≤ a ≤ 3 the above inequality is obvious, we obtain

(2.28) G(xa) ≤ ca−Q if ̺(x) ≤ a, a ≥ 1.

If b < 3 in (2.27) then ̺(x) = 3 and ̺(qxq−1) = 3q. Therefore (2.27) implies

G(qxq−1qb) ≤ c(qb)α̺(qxq−1)−Q−α

and so, combining the above inequality with (2.23), we have

(2.29) G(xa) ≤ c̺(x)−Q−αaα

for ̺(x) ≥ 1, ̺(x) ≥ a.
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Now we pass to lower estimates. The first one is

(2.30) G(xa) ≥ c−1aα if ̺(x) ≤ 2, a ≤ 2.

To prove (2.30) we use the dual chain to the one considered above. Namely,
let V2 =

(
3
4
T 1

)c
, V1 =

(
1
4
T 1

)c
, f = aα, g = G in Theorem (2.10). Before

we proceed further we must check that aα is dominated by a potential in
3
4
T 1. Let an → ∞ be a sequence such that

lim
an→∞

G(xa, an)

G(e, an)
= h(xa)

exists. By Lemma (2.19), h(xa) = h(a) and in view of (2.18), h is dominated
by a potential in 3

4T
1. It remains to prove that

(2.31) h(a) = aα.

By Lemma (2.16) and Theorem (2.8)

G(a, an)

G(e, an)
≤ c

G(a, e)G(e, an)

G(e, an)
= cG(a).

Now by (2.23),

G(a) ≤ caα, a ∈ 3
4
T 1.

Moreover, h is L-harmonic. Therefore h(xa) = aα.
Now Theorem (2.10) implies (2.30) for xa ∈ 1

4T
1. To extend (2.30) for

xa ∈ 2T 1 we must take care only of the points xa with a ≤ 1
4 . We use again

the Harnack inequality for L∗ and G∗. Let ya ∈ 2T 1 and xa ∈ 1
4T

1. Then

τ(a−1y−1, a−1x−1) = τ(xy−1),

which is bounded whenever ̺(x), ̺(y) ≤ 2. Therefore

G(xa) = G∗(a−1x−1) ≤ cG∗(a−1y−1) = cG(ya)

for a constant c. The next estimate is

(2.32) G(a) ≥ c−1a−Q for a ≥ 1.

For (2.32) we prove, as above, that aQ is dominated by an L∗-potential
in 3

4
T 1. There are two L∗-harmonic functions depending only on a: aQ

and aQ−α. Proceeding as before and using (2.25) we see that if the limit
liman→∞G(a, an)/G(e, an) exists then it must be equal to aQ. Therefore
we may apply (2.30) to G∗ and aQ, which gives

(2.33) G∗(a) ≥ c−1aQ for a ≤ 1

and so (2.32) follows.
Let now q ≥ 1 and take V2 = (qT 3)c, V1 = (qT 2)c. If xb ∈ ∂qT 2 then by

Theorem (2.10) applied to f = aα, g = G,

(2.34) bα ≤ c
G(qxb)

G
(

5
2
q
) .
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If b = 2 then ̺(qxq−1) ≤ qb so (2.34) together with (2.32) implies

(2.35) G(xa) ≥ c−1a−Q for a ≥ ̺(x), a ≥ 1.

If b < 2 in (2.34) then ̺(qxq−1) = 2q and (2.34) together with (2.32) gives

G(qxq−1qb) ≥ c−1̺(qxq−1)−Q−α(qb)α

and so

(2.36) G(xa) ≥ c−1̺(x)−Q−αaα for ̺(x) ≥ a, ̺(x) ≥ 2.

For 1 ≤ ̺(x) ≤ 2, (2.36) follows from (2.30).

(2.37) Corollary. Under the assumptions of Theorem (2.21) there is

a constant c such that

G(xa) ≤ caα(1 + ̺(x))−Q−α.

(2.38) Theorem. Let K be a function on S which satisfies the estimate

|K(xa)| ≤ caQ(1 + ̺(x))−Q−ε

for an ε > 0. Then the operator Tf(s) = f ∗K(s) is of weak type (1, 1).

P r o o f. The proof comes back to the ideas of Strömberg [St]. (See also
[ADY].) We consider

Tf(s) =
\
S

f(s(ya)−1)(1 + ̺(y))−Q−εaQ dy da.

Then T is a composition of two operators

T1f(s) =
\
N

f(sy−1)(1 + ̺(y))−Q−ε dy

and

T2f(s) =
\
A

f(sa−1)aQ da.

T1 is bounded on L1. To prove that, it is convenient to write elements of S
as s = bx. Then dx db is the left Haar measure. Let f ∈ L1(mL). Then

‖T1f‖L1(mL) ≤
\
N

\
S

|f(bxy−1)|(1 + ̺(y))−Q−ε dx db dy

≤ ‖f‖L1(mL)

\
N

(1 + ̺(y))−Q−ε dy

and the boundedness of T1 follows.

For T2 we have

T2f(s) =
\
A

f(xca−1)a−Q da = cQ
\
A

f(xb)b−Q db = cQψ(x)
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where s = xc. Hence

mL({s : |T2f(s)| > λ}) =
\

|T2f(s)|>λ

c−Q dc dx(2.39)

=
\

c≥λ1/Qψ(x)−1/Q

c−Q dc dx.

Given x, let c0(x) = λ1/Qψ(x)−1/Q. Then
∞\
c0

c−Q dc =
1

Q
c−Q0 =

1

λQ
ψ(x).

Integrating first over c then over x in (2.39) we obtain

mL({s : |T2f(s)| > λ}) =
1

λQ

\
N

ψ(x) dx =
1

λQ
‖f‖L1(mL),

which proves weak type (1, 1) of T2 and hence of T .

(2.40) Corollary. If γ = 0 and α = Q in (1.2) then the operator

f → f ∗G is of weak type (1, 1).

Theorem (2.21) implies sharp pointwise lower and upper estimates for
the Poisson kernel P corresponding to L with α > 0. P is a smooth,
bounded, integrable function on N ,

T
N
P (x) dx = 1, such that all bounded

L-harmonic functions F on S are given by the Poisson integrals ([DH], [Ra])

F (xa) =
\
N

f(xaua−1)P (u) du =
\
N

f(u)a−QP (a−1(x−1u)a) du, f ∈L∞(N).

(If α ≤ 0 then there are no bounded L-harmonic functions on S [BR].) In
particular,

Pu(xa) = a−Q
P (a−1(x−1u)a)

P (u)

is L-harmonic as a function of xa. If the action of adH on N is diagonal,
sharp pointwise estimates for P were described in [D]. It turns out that
analogous estimates hold for general Heintze groups and the argument is,
in fact, the same as presented in [D]. However, for the reader’s convenience,
we outline the proof.

(2.41) Theorem. Let xnan be a sequence of points in S such that xn →
u ∈ N and an → 0. Then

Pu(xa) = lim
n→∞

G(xa, xnan)

G(e, xnan)
.

Moreover , there is c such that

(2.42) c−1(1 + ̺(x))−Q−α ≤ P (x) ≤ c(1 + ̺(x))−Q−α, x ∈ N.
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P r o o f. First we notice as in [D], Proposition 2.12, that for every u ∈ N ,
Pu(xa) is a minimal L-harmonic function. Secondly, in view of Corollary
(2.17) and Lemma (2.19), if ̺(xn) + an → ∞ then a minimal function
obtained as limn→∞G(xa, xnan)/G(e, xnan) does not depend on x. Indeed,
by Corollary (2.17), all the potentials G(·, y)/G(q, y) are comparable on
3
4
qT 1 as long as y 6∈ 2qT 1 with a constant independent of q. It follows that

there is a constant c such that for every q and every y1, y2 6∈ 2qT 1,

c−1G(xa, y2)

G(e, y2)
≤ G(xa, y1)

G(e, y1)
≤ c

G(xa, y2)

G(e, y2)

and so by Lemma (2.19) the only minimal function we can obtain this way
is h(xa) = aα. On the other hand, if xn → u and an → 0 then

(2.43) lim
n→∞

G(xa, xnan)

G(e, xnan)
= Ku(xa)

exists. This follows from Theorem 7 of [A1] applied to the Φ-chain uqnT 1 for
a q < 1. Moreover, Ku(xa) = K(u−1xa), Pe must be one of these functions
and clearly the others correspond to the translates Pu of Pe normalized at
e. By (2.22) and (2.43),

Ke(xa) ≤ ̺(x)−Q−αaα if ̺(x) > a.

This proves that given a neighbourhood U of e in N we have

lim
a→0

\
Uc

Ke(xa) dx = 0,

which is possible only if Ke = Pe. Now (2.42) follows from (2.22).

3. Riesz transforms for elliptic operators. In this section we
assume that L is elliptic. Then

|ℑ〈Lf, f〉| ≤ c(ℜ〈−Lf, f〉+ ‖f‖2
L2), f ∈ C∞

c (S),

for a constant c and so Tt is an analytic semigroup ([P], §2.5) on Lp(mL)
and its infinitesimal generator will be denoted L. Let L = −L and for δ > 0
let

(3.1) L−δ =
1

Γ (δ)

∞\
0

tδ−1Tt dt.

In view of (1.15), if γ−(Q/p)α+Q2/p2 < 0 then L−δ is a bounded one-to-one
operator on Lp(mL) and L−(δ+η) = L−δ ◦ L−η ([P], §2.5). We define

Lδ = (L−δ)−1.

Then Lδ is a closed operator with domain D(Lδ) = R(L−δ) and moreover,

Lδ ◦ Lβf = Lδ+βf
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for every f ∈ D(Lγ), γ = max(δ, β, δ + β). The kernel Kδ of L−δ is given
by

(3.2) Kδ(x) =
1

Γ (δ)

∞\
0

tδ−1pt(x) dt,

i.e.

L−δf =
1

Γ (δ)

∞\
0

tδ−1f ∗ pt(x) dt, f ∈ Lp(mL).

Clearly if γ = 0 and α > Q then convolution with Kδ, δ > 0, is a
bounded operator on all Lp(mL), p ≥ 1. If α = Q it is so for p > 1
and in view of Corollary (2.40) convolution with K1 is of weak type (1, 1).
This phenomenon has a very nice application to the Riesz transforms. We
assume that L is elliptic and γ = 0. Given left-invariant vector fields Y1, Y2

we consider the operator

Rf = Y1Y2(f ∗G), f ∈ C∞
c (S),

where G = K1 is the kernel of L−1. By (3.1) and the following lemma, R is
bounded on L2(mL) if α > Q/2.

(3.3) Lemma. If Y If ∈ L2(mL) for every multiindex I such that |I| ≤ 2,
then

(3.4) ‖Y If‖L2(mL) ≤ c(‖Lf‖L2(mL) + ‖f‖L2(mL))

whenever |I| ≤ 2.

For Lp boundedness or weak type (1, 1) of R it is convenient to write
G = G1 + G2, where G1 = ϕG with ϕ ∈ C∞

c (S), 0 ≤ ϕ ≤ 1 and ϕ ≡ 1
in a neighbourhood of e. Since the behaviour of the “local” part R1f =
Y1Y2(f ∗G1) is well understood, only the “global” part R2f = Y1Y2(f ∗G2)
matters. In view of (3.1) and the Harnack inequality (1.3), R2 is bounded on
all Lp if α > Q. Therefore if α > Q then the second order Riesz transforms
R are trivially bounded on Lp(mL), p ≥ 1, and only the case α = Q is
interesting. It contains, in particular, the Laplace–Beltrami operator for a
left-invariant Riemannian metric on S. If α < Q our methods do not give
any decisive results. Therefore, we formulate our next theorem under the
assumption γ = 0, α ≥ Q. B(x, r) is, as before, the Riemannian ball with
centre x and radius r.

(3.5) Theorem. Assume γ = 0 and α ≥ Q. Then the operator R is

bounded on Lp, p > 1, and of weak type (1, 1). Let Gε = ϕεG, where ϕε ∈
C∞(G), 0 ≤ ϕε ≤ 1, ϕε(x) = 0 if x ∈ B(e, ε), ϕε(x) = 1 if x 6∈ B(e, 2ε).
Then given f ∈ Lp, 1 ≤ p < ∞, the limit limε→0 Rεf(x) = limε→0 f ∗



FUNDAMENTAL SOLUTIONS 245

Y1Y2Gε(x) exists for almost every x in S and

Rf = lim
ε→0

Rεf.

P r o o f. Let ϕ ∈ C∞
c (S), 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a neighbourhood of e.

Let

G0(x) = ϕ(x)

1\
0

pt(x) dt,

G∞(x) = ϕ(x)

∞\
1

pt(x) dt + (1 − ϕ)G(x).

We split R as

(3.6) R = R0 +R∞,

where

R0f = Y1Y2(f ∗G0), R∞f = Y1Y2(f ∗G∞).

By the Harnack inequality for both L and L− ∂t (see (1.9)),

(3.7) |Y1Y2G∞(x)| ≤ cG(x)

and

R∞f = f ∗ Y1Y2G∞.

Therefore boundedness of R∞ on Lp and weak type (1, 1) follow from (3.1)
and Corollary (2.40). In particular, R0 is bounded on L2(mL).

To prove weak type (1, 1) of R0 and boundedness on Lp, 1 < p ≤ 2,
we show that it is a Calderón–Zygmund type singular operator with kernel
K = Y1Y2G0. For f ∈ C∞

c and x 6∈ supp f , we have R0f(x) = f ∗K(x). In
view of [Heb],

(3.8) |Y Ipt(x)| ≤ c1t
−(n+1)/2−|I|/2e−c2τ(x)

2/t, t ≤ 1,

where n+ 1 = dimS and so, for a constant c,

|∇K(x)| ≤ c‖x‖−n−2.

This shows that if suppf is contained in a fixed compact set U the assump-
tions of Theorem 3, §4, Chapter 1 in [S] are satisfied and so R0 is of weak
type (1, 1) and bounded on Lp(U), 1 < p ≤ 2, with a constant depending on
U . Moreover, the maximal function associated with the truncated singular
integral Rεf ,

Mf = sup
ε>0

|Rεf |,

is of weak type (1, 1) and bounded on Lp(U), 1 < p ≤ 2 (see [S], Chapter 1,
§7). Since limε→0Rεf = Rf for f ∈ C∞

c (S), limε→0 Rεf(x) exists for every
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f ∈ Lp(U), 1 ≤ p ≤ 2, and so

(3.9) Rf = lim
ε→0

Rεf, f ∈ Lp(U).

To get rid of the support assumption and to extend (3.9) to Lp(S), 1 ≤ p ≤ 2,
we use the following lemma:

(3.10) Lemma. Given ε, δ > 0 there exist a sequence x1, x2, . . . of points

of S and positive integers m1, m2 such that

(i) S =
⋃
k xkB(e, ε).

(ii) Each point x ∈ S belongs to at most m1 of the sets xkB(e, ε).

(iii) Each point x ∈ S belongs to at most m2 of the sets xkB(e, ε+ δ).

For the proof of Lemma (3.10) see [An], [GQS].

To prove boundedness on Lp, p > 2, we use the adjoint kernel K̆ =
(Y1Y2G0)

˘ = Ỹ1Ỹ2Ğ0, where Ỹj is a right-invariant vector field. Since the
support ofG0 is compact andG∗ = G(x−1) (see (1.14)), Lp boundedness and
weak type (1, 1) of the convolution with K̆ follow from the above argument
applied to L∗. Although L∗1 6= 0 if α > Q, the condition γ − (Q/p)α +
Q2/p2 < 0 is satisfied provided it is satisfied by L, and so the argument for
L∗ is the same as for L.

For the first order Riesz transforms we restrict ourselves to L0 of the
form

L0 = (a∂a)
2 −Qa∂a +

n∑

i=1

Φa(Xi)
2,

where X1, . . . ,Xn is a basis of N . Given a left-invariant vector field Y let

R̃f = Y (f ∗K1/2), where K1/2 = (−L0)
−1/2.

(3.11) Theorem. The operator R̃ is bounded on Lp, p > 1, and of weak

type (1, 1). Let K
1/2
ε = ϕεK

1/2, where ϕε is as in Theorem (3.5). Then

given f ∈ Lp, 1 ≤ p <∞, the limit

lim
ε→0

R̃εf(x) = lim
ε→0

f ∗ Y K1/2
ε (x)

exists for almost every x in S and R̃f = limε→0 R̃εf .

P r o o f. Let Y0 = a∂a and Yi = Φa(Xi). First we notice that

(3.12)

n∑

i=0

‖Yif‖2
L2(mL) = 〈−L0f, f〉, f ∈ C∞

c ,

which implies that R̃ is bounded on L2. Indeed, substituting f ∗ K1/2 ∈



FUNDAMENTAL SOLUTIONS 247

D(L0) in (3.12) we obtain
n∑

i=0

‖Yi(f ∗K1/2)‖L2(mL) = 〈−L0(f ∗K1/2), f ∗K1/2〉

= ‖(−L0)
1/2(f ∗K1/2)‖2

L2 = ‖f‖2
L2 .

As before we split R̃ into two parts. Let ϕ be as in the proof of Theorem
(3.5) and let

K0(x) =
ϕ(x)

Γ (1/2)

1\
0

t−1/2pt(x) dt,

K∞(x) =
1 − ϕ(x)

Γ (1/2)

1\
0

t−1/2pt(x) dt +
1

Γ (1/2)

∞\
1

t−1/2pt(x) dt.

Then R̃ = R̃0 + R̃∞, where R̃0f = Y (f ∗K0) and R̃∞f = Y (f ∗K∞). For

R̃0 we proceed as before. For R̃∞ we notice that by (3.8) and (1.4) given a
compact set U there are constants c1, c2 such that

|Y K∞(xu)| ≤ c1(G(x) + e−c2τ(x)
2

) for u ∈ U, x ∈ S.

Therefore,

R̃∞f = f ∗ Y K∞, f ∈ C∞
c (S),

and by (1.15) and Corollary (2.40), R̃∞ is bounded on Lp, p > 1, and of
weak type (1, 1).
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